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Domain characterizations of certain
functions of power-bounded operators

by

Markus Haase (Delft) and Yuri Tomilov (Toruń and Warszawa)

Abstract. We create a general framework for describing domains of functions of
power-bounded operators given by power series with log-convex coefficients. This sheds
new light on recent results of Assani, Derriennic, Lin and others. In particular, we resolve
an open problem regarding the “one-sided ergodic Hilbert transform” formulated in a 2001
paper by Derriennic and Lin.

1. Introduction. The mean ergodic theorem for power-bounded oper-
ators T on a reflexive Banach space X states that

(1.1) Px := lim
n→∞

1
n+ 1

n∑
k=0

T kx

exists in the norm of X for any x ∈ X, and the limit operator P is the
projection onto the subspace fix(T ) = ker(I − T ) of fixed points of T . It
is known that there is no, in general, universal rate of decay in (1.1) (see
e.g. [2, Theorem 4]). However, in view of the applications to probability
theory, e.g. the Central Limit Theorem for Markov chains, and for a deeper
understanding of ergodic issues, e.g. pointwise ergodic theorems, it is of
interest to identify vectors x for which the convergence in (1.1) takes place
with a specified—e.g. polynomial—rate. This leads to the study of solutions
to “Poisson” equations (I − T )sx = y, s ∈ (0, 1], for fixed y ∈ X, and the
associated series representations of these solutions.

Rates of convergence in the mean ergodic theorem and their relations to
Poisson equations were treated in detail in [1, 3, 6, 7, 10, 8, 9, 11] and—from
a somewhat different point of view—in [30]. In [11], basic for our considera-
tions here, subtle results were obtained for rates of convergence of means of
(Tn)n≥0, as well as their pointwise counterparts for Dunford–Schwartz oper-
ators. In particular, as a consequence of the power series representations for
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(I −T )−s, s ∈ (0, 1), it was proved that the ranges of the operators (I −T )s

“realize” the polynomial rates of decay o(1/nr), r < s, in the mean ergodic
theorem. The case s = 1 was treated in [3]. There it is also shown that the
rate o(1/n) in (1.1) implies that x = 0.

The family of operators ((I −T )s)Re s>0 forms a holomorphic semigroup
of angle π/2 and it is natural to consider its generator G (defined via the
Laplace transform). If the range of I−T is dense in X then this semigroup is
strongly continuous at zero. (This is the case considered in [11].) Intuitively,
one should be able to write G = log(I − T ) and it is natural to ask how G
relates to the operator

HT :=
∑
k≥1

T k

k
, dom(HT ) :=

{
x ∈ X

∣∣∣ ∑
k≥1

T kx/k exists
}
,

called the one-sided ergodic Hilbert transform. (It is not clear to us who
introduced this name, but it is used in [11] and subsequent papers. The
concept itself, although in a purely ergodic-theoretic context, dates back at
least to [18] and has been considered many times since, e.g. in [14] and [19].
Note that the two-sided ergodic Hilbert transform has also been studied, e.g.
in [4].)

It was proved in [11, Prop. 2.21] that G always extends HT and it was
asked whether the equality G = HT holds in general. In a number of par-
ticular situations, e.g. when T is a normal contraction, this equality can be
established (see [1, 10, 8]), but the general question seems to be still open.

Secondly, in [11, Prop. 2.20] it is shown that ran (I−T )s ⊂ dom(HT ) for
each 0 < s < 1. (Note that from the theory of holomorphic semigroups it is
immediate that ran (I − T )s ⊂ dom(G) whenever Re s > 0.) Elements in

dom(HT ) \
⋃
s>0

ran (I − T )s

provide examples of non-polynomial convergence rates in the mean ergodic
theorem. It was proved in [1] that for a unitary operator T with 1 ∈ σ(T ),⋃

s>0

ran (I − T )s 6= dom(HT )

but it was left as an open question whether this is true in general.
In the present paper we shall resolve the above-mentioned two problems

in the affirmative. More precisely, we shall show that if T is a power-bounded
operator on a Banach space such that I − T has dense range, then HT =
log(I−T ) (Theorem 6.2). If, in addition, I−T is not invertible, then indeed⋃

s>0

ran (I − T )s 6= dom(HT )

(Theorem 6.3). Our approach is operator-theoretic and uses the theory
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of functional calculus (for power-bounded and sectorial operators, respec-
tively), thereby avoiding technicalities and providing a conceptual and trans-
parent treatment. Apart from answering the above-mentioned questions, our
approach yields new proofs for some other results of [11], e.g. the power series
characterization of the ranges ran (I − T )s, 0 < s < 1.

The paper is organized as follows. In Section 2 we review the construction
of the functional calculus for power-bounded operators, based on the map

f(z) =
∑
k≥0

αkz
k 7→ f(T ) :=

∑
k≥0

αkT
k

for α = (αk)k ∈ `1. General functional calculus theory (as developed in [13,
Chapter 1]) allows one to extend this functional calculus to more general
functions/power series. The main objective of the paper will be to charac-
terize the domain dom(f(T )) by means of the convergence of∑

k≥0

αkT
kx

when f has the Taylor expansion f(z) =
∑∞

k=0 αkz
k.

In Section 3 we show that for a power-bounded operator T the operator
I−T is sectorial. Then we review the functional calculus for sectorial opera-
tors from [13] and prove that the two functional calculi are compatible. This
implies that the operators (I−T )s and log(I−T ) are unambiguously defined
in either calculus, and this accounts for a greater flexibility in dealing with
them. In particular, one can replace the (sometimes tedious) power series
arguments from [11] by invoking general theory. Examples are the analytic
semigroup property of ((I−T )s)Re s>0 and the identification of the generator
G as log(I − T ).

The functional calculus reduces operator-theoretic questions to function-
theoretic ones, even if the operator is not a normal operator on a Hilbert
space. In Section 4 we provide some results for “admissible” holomorphic
functions on the unit disc. Our major tool is a result about power series with
log-convex coefficients proved by Kaluza in 1928 [20]. Finally, in Section 5
we apply the function theory via the calculus to operators, leading to our
main result, Theorem 5.6. In Section 6 we apply the main result to fractional
powers and the logarithm, eventually resolving both questions above.

We would like to point out that a similar description of domains of
functions of sectorial operators was given in [17], based on the so-called
Hirsch calculus. This line of research, related to a continuous version of our
setting, was further developed in [28].

Remark 1.1. After the completion of this paper we learnt that the
characterization of the domain of log(I − T ) for power-bounded T as in
Theorem 6.2 below has also been obtained independently in [5]. However,
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[5] focuses just on the case of the logarithm while our work aims at a general
approach to the domain descriptions by means of suitable functional calculi.

Note that the results of [11] and [5] hold for Banach spaces over either
the real or the complex numbers, while we work exclusively with complex
Banach spaces, as a matter of convenience.

Notation. For a closed linear operator A on a complex Banach space
X we denote by dom(A), ran (A), ker(A), fix(A) and σ(A) the domain, the
range, the kernel, the set of fixed points and the spectrum of A, respectively.
The norm-closure of the range is written as ran(A). The space of bounded
linear operators on X is denoted by L(X). By D, T and Sϕ we denote, respec-
tively, the open unit disc, the torus and the sector {z ∈ C : |arg z| < ϕ} in
the complex plane. For a sequence (xn)n≥0 ⊂ X we denote by C-limn→∞ xn
its Cesàro limit whenever the limit exists. If α = (αk)∞k=0 is a scalar sequence
we write α̂(z) :=

∑∞
k=0 αkz

k for the associated power series.

2. Functional calculus for power-bounded operators. In this sec-
tion we set up a functional calculus for power-bounded operators. The most
natural approach uses power series representations of functions and is pre-
sented first. Afterwards we sketch the connection with the functional calcu-
lus for sectorial operators.

For α ∈ `1 its associated power series

α̂(z) =
∞∑
k=0

αkz
k

represents a function on D and we let

A1
+(D) := {α̂ : α ∈ `1}

be the totality of all these functions. If f = α̂ ∈ A1
+(D) then f is holomorphic

on D, continuous on D, and αk is the kth Taylor coefficient of f :

αk = f̂(k) =
1

2πi

�

∂D
f(z)z−(k+1) dz, k ≥ 0.

On A1
+(D) we introduce the norm

‖f‖A1
+

:= ‖α‖`1 =
∞∑
k=0

|αk| if f = α̂.

It is well-known that A1
+(D) is a unital commutative Banach algebra with

respect to usual multiplication, isomorphic to the convolution algebra `1 by
virtue of the product identity

α̂ ∗ β(z) = α̂(z)β̂(z), α, β ∈ `1, z ∈ D.
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Now let X be a Banach space. Recall that an operator T ∈ L(X) is said to
be power-bounded if

M(T ) := sup
n∈N0

‖Tn‖ <∞.

If T is power-bounded and f = α̂ ∈ A1
+(D) we define

(2.1) f(T ) :=
∞∑
k=0

αkT
k,

the sum being convergent in operator norm. The following proposition states
that power-bounded operators admit a bounded A1

+(D)-calculus. We omit
its straightforward proof.

Proposition 2.1. Let T be a power-bounded operator on a Banach
space X. Then the mapping f 7→ f(T ) : A1

+(D) → L(X) is a homomor-
phism of Banach algebras such that

‖f(T )‖ ≤M(T )‖f‖A1
+
, f ∈ A1

+(D).

We call this homomorphism the primary functional calculus for T . Let
us give an important example.

Example 2.2. For s ∈ C we write

fs(z) := (1− z)s =
∞∑
n=0

α(s)
n zn, z ∈ D.

If 0 < s < 1 and n ≥ 1 then by the binomial series

α(s)
n =

(
s

n

)
(−1)n =

(−s)(1− s) · · · (n− 1− s)
n!

≤ 0.

Since α(s)
0 = 1, this implies that ‖α(s)‖`1 = 2 and so fs ∈ A1

+(D). Since
fns = fns for every n ∈ N we obtain fs ∈ A1

+(D) for every s > 0. We shall
see below that the same is true even for s with Re s > 0.

One may view Proposition 2.1 as a transference principle. Namely, con-
sider as a special case of the above situation the left shift operator τ on
X0 := `1(Z) given by τej = ej−1, j ∈ Z. Then

α̂(τ)β = α ∗ β, α ∈ `1, β ∈ X0,

i.e., α̂(τ) is just convolution with α. This implies that

‖f‖A1
+(D) = ‖f(τ)‖L(X0),

that is, for the special case T = τ the functional calculus above is actually
an isometric embedding. Proposition 2.1 can then be rephrased as

‖f(T )‖L(X) ≤M(T )‖f(τ)‖L(X0), f ∈ A1
+(D).
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This means that the special case T = τ has all features (in terms of operator
norms) of the general case and it depends much on the context or on personal
taste whether to prove a general result directly or just for the operator τ .

The next simple lemma is a consequence of the mean ergodic theorem
(see e.g. [23]).

Lemma 2.3. Let T be a power-bounded operator on a Banach space X.
Then

(a) σp(T ) ∩ T ⊂ σp(T ∗) ∩ T.
(b) If X is reflexive, then σp(T ) ∩ T = σp(T ∗) ∩ T.

By the lemma, if I − T has dense range, then it is also injective, and if
X is reflexive also the converse is true.

In the following we shall always suppose that the operator A := I − T
has a trivial kernel, i.e. fix(T ) = {0}. Under this hypothesis we are going
to extend the primary functional calculus defined in Proposition 2.1 to un-
bounded functions. The way to do this is canonical and described in depth
in [13, Chapters 1 and 2].

Definition 2.4. A function f on D is called regularizable if there exists
e ∈ A1

+(D) such that ef ∈ A1
+(D) as well and e(T ) is an injective operator.

In this case we define
f(T ) := e(T )−1(ef)(T )

with its natural domain.

The operator f(T ) is closed as the product of a closed and a bounded
operator. The definition is independent of the chosen regularizer e, as is
easily seen [13, Chapter 1]. The class of functions f such that f(T ) is defined
by this method forms an algebra, and there are specific rules governing this
extended functional calculus (see [13, Chapter 1]). Note that whereas the
primary functional calculus is the same for all power-bounded operators,
the extended functional calculus depends on the particular operator T .

Examples 2.5. (1) Consider

f(z) = log(1− z) = −
∞∑
n=1

1
n
zn, z ∈ D.

Then

(1− z)f(z) = −z
(

1−
∑
n≥1

1
n(n+ 1)

zn
)
∈ A1

+(D).

Hence log(1− z) is regularizable by e(z) = 1− z, since (1− z)(T ) = I − T
is injective by our standing assumption.
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(2) Using the notation above we have

f−s(z) = (1− z)−s =
∞∑
n=0

α(−s)
n zn

for s > 0 with

α(−s)
n =

(
−s
n

)
(−1)n =

s(s+ 1) · · · (s+ n− 1)
n!

≥ 0, n ≥ 0.

IfN > s then (1−z)Nf−s = fN−s ∈ A1
+(D), and since (1−z)N (T ) = (I−T )N

is injective (standing assumption), f−s(T ) is defined by regularization. Ac-
tually, by standard functional calculus [13, Theorem 1.3.2],

f−s(T ) = fs(T )−1, s ∈ R.

It seems reasonable to write

log(I − T ) = [log(1− z)](T ), (I − T )−s = [(1− z)−s](T ).

This was done in [11] and in subsequent papers [1], [6]–[8]. However, loga-
rithms as well as fractional powers are usually defined for so-called sectorial
operators in a different way. In the following section we shall see that the
two approaches coincide.

3. Sectorial operators. Let us begin with an elementary resolvent
estimate.

Lemma 3.1. Let T be a power-bounded operator on a Banach space X,
and let A := I − T . Then

‖R(λ,A)‖ ≤ M(T )
|λ− 1| − 1

≤ M(T )
|Reλ|

, Reλ < 0.

Proof. If |µ| > 1 then R(µ, T ) =
∑∞

k=0(1/µ)k+1T k. Hence ‖R(µ, T )‖ ≤
M/(|µ| − 1). Since R(λ,A) = −R(1− λ, T ), the assertion follows.

A closed operator A on X is said to be sectorial of angle ω if σ(A) ⊂ Sω
and sup{‖λR(λ,A)‖ : λ ∈ C \ Sω′} is finite for every ω′ ∈ (ω, π). A conse-
quence of Lemma 3.1 is that, for a power-bounded operator T , the operator
A = I − T is sectorial of angle (at most) π/2.

For an (injective) sectorial operator A one has classical definitions of
its fractional powers As, s ∈ C, and logA as closed operators [13, Section
3.6]. Equivalently, these operators are obtained by means of a certain “nat-
ural” functional calculus for sectorial operators, extensively developed in
[13, Chapter 2]. We shall show that the A1

+(D)-functional calculus for T is
compatible with this “sectorial” functional calculus for A = I − T . To this
end we briefly recall its construction.
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For ϕ ∈ (ω, π) denote by E0(Sϕ) the set of holomorphic functions on Sϕ
such that

(3.1) |f(z)| ≤ C|z|s, z ∈ Sϕ ∩ D,

for some s > 0 and C > 0 depending on f . Fix some ω′ ∈ (ω, π) and let the
contour Γ consist of the two segments {re±iω′

: r ∈ [0, r0]} as well as the
arc {r0eir : r ∈ [−ω′, ω′]}, oriented so that it surrounds the enclosed region
once in positive direction. It follows from Cauchy’s theorem that

f(z) =
1

2πi

�

Γ

f(λ)
λ− z

dλ

for every z in the interior of Γ . If A is sectorial of angle ω and has spectral
radius r(A) < r0 then we define

(3.2) f(A) =
1

2πi

�

Γ

f(λ)R(λ,A) dλ.

The sectoriality of A implies that the integral converges in L(X) and Cau-
chy’s theorem implies that this definition of f(A) is independent of the
chosen parameters ω′ and r0. Standard arguments show that the mapping
f 7→ f(A), E0(Sϕ) → L(X) is an algebra homomorphism, the primary
functional calculus for the bounded sectorial operator A. This functional
calculus coincides with the Dunford—Riesz calculus on the common domain.
In particular, for a polynomial p, p(A) keeps its usual meaning.

If ker(A) = {0}, the primary calculus induces an extended functional
calculus by regularization, as above. Basically, one regularizes with powers
of A so that every holomorphic function on the sector growing at most
polynomially at 0 becomes regularizable. See [13, p. 46] for details.

It has been shown in [13, Proposition 1.2.7] that compatibility carries
over from primary to extended functional calculi. So we are reduced to
showing the following.

Proposition 3.2. Let ϕ ∈ (π/2, π), f ∈ E0(Sϕ), and g(z) := f(1 − z).
Then g ∈ A1

+(D) and
g(T ) = f(A)

(the left being defined as in (2.1) and the right being defined by (3.2)), where
T is any power-bounded operator on a Banach space X and A = I − T .

Proof. The argument is simple and illustrates the power of the above
transference principle. Note that for Γ in definition (3.2) we have to take
π/2 < ω′ < ϕ and r0 > 2. Then for λ ∈ Γ \ {0} the function

sλ(z) :=
1

λ− (1− z)
, z ∈ D,
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is in A1
+(D) and sλ(T ) = R(λ,A). Now consider the integral

g(z) = f(1− z) =
1

2πi

�

Γ

f(λ)sλ(z) dλ.

This integral converges in A1
+(D) since replacing z by τ (the left shift on

X0 = `1(Z)) makes it convergent in L(X0), and the A1
+(D)-functional calcu-

lus for τ is an isometric embedding. But since the A1
+(D)-functional calculus

for T is continuous, one obtains

g(T ) =
1

2πi

�

Γ

f(λ)sλ(T ) dλ =
1

2πi

�

Γ

f(λ)R(λ,A) dλ = f(A)

as desired.

As an application we note first that if Re s > 0 then zs ∈ E0(Sπ) and by
Proposition 3.2 we have fs(z) = (1 − z)s ∈ A1

+(D) and fs(T ) = (I − T )s.
Passing to the extended calculi we obtain

[log(1− z)](T ) = log(I − T ) and [(1− z)s](T ) = (I − T )s, s ∈ C,

as desired. The family ((I − T )s)Re s>0 is a holomorphic semigroup [13,
Prop. 3.1.1], which is strongly continuous as s↘ 0 if and only if ran (I −T )
is dense in X [13, Prop. 3.1.15]. Its generator (defined via the Laplace trans-
form) is G := log(I − T ) [13, Prop. 3.5.3], a fact that goes back to [26].

4. Admissible functions and log-convex sequences. After these
functional calculus preliminaries we approach the main objective of our pa-
per. Let T be a power-bounded operator T on a Banach space X and let f
be a holomorphic function on D with Taylor expansion f(z) =

∑∞
k=0 αkz

k.
Then for a vector x ∈ X we ask whether x ∈ dom(f(T )) is characterized by
the convergence (in one way or another) of the series

∞∑
k=0

αkT
kx.

Unfortunately, we are not able to answer this question in its full generality.
Instead, we restrict ourselves to the case that f is regularizable by e(z) =
1−z as in the motivating examples. It turns out that then a weak hypothesis
about the convergence of the series already implies that x ∈ dom(f(T )) (see
Proposition 5.1 below). The idea for the converse implication is to write

fn(z) :=
n−1∑
k=0

αkz
k =

[
1

f(z)

n−1∑
k=0

αkz
k

]
f(z) = gn(z)f(z)

if 1/f ∈ A1
+(D). Under certain conditions on the Taylor coefficients of 1/f

we shall show that supn≥1 ‖gn‖A1
+
<∞ and that (gn)n≥1 forms an “approx-
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imation of the identity” in A1
+(D), in some sense. Transferring this via the

functional calculus yields the desired statement for f(T ).

Definition 4.1. Let f(z) :=
∑∞

k=0 αkz
k be a holomorphic function

on D. The function f (or, equivalently, the sequence (αk)k≥0) is called ad-
missible if αk ≥ 0 for all k ≥ 0, f does not have zeros in D, and

−1
f(z)

=
∞∑
k=0

βkz
k, z ∈ D,

with βk ≥ 0 for all k ≥ 1.

Example 4.2. If f(z) = f−s(z) = (1 − z)−s for 0 < s < 1, then f is
admissible because

1
f−s(z)

= fs(z) =
∞∑
k=0

α
(s)
k zk = 1−

∑
(−α(s)

k )zk

and −α(s)
k ≥ 0 (cf. Example 2.5(2)).

In the following we describe a large class of admissible functions. A se-
quence α = (αk)k≥0 is called logarithmically convex or just log-convex if
αk ≥ 0 for all k ≥ 0 and

α2
k ≤ αk−1αk+1, k ≥ 1.

Log-convex sequences are sometimes called Kaluza sequences. They form a
convex cone, a fact which is seen by employing the 2-dimensional Cauchy–
Schwarz inequality. A log-convex sequence (αk)k≥0 is either identically zero
or αk > 0 for all k ∈ N0. In the latter case, log-convexity is obviously
equivalent to the sequence (αn+1/αn)n≥0 being monotonically increasing.

By direct computation one checks that for s > 0 the sequences

((n+ 1)−s)n≥0 and α(−s)
n =

s(s+ 1) . . . (s+ n− 1)
n!

, n ≥ 0,

are log-convex. If α is log-convex then (αsn)n is log-convex for every s > 0.
A typical example of a log-convex sequence is the sequence of moments

αk :=
1�

0

tk µ(dt), k ≥ 0,

of a positive finite Borel measure µ on [0, 1]. (This, again, follows from the
Cauchy–Schwarz inequality.) For more details on the structure of log-convex
sequences see e.g. [21] and [22].

Suppose that α is log-convex and define

f(z) := α̂(z) =
∞∑
k=0

αkz
k, z ∈ D.
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Then we have f = 0 or αk > 0 for all k ∈ N0. As the quotients αk+1/αk are
increasing, they converge to a limit l, which by elementary complex analysis
is the inverse of the radius of convergence of the power series defining f . As
we are mainly interested in functions being defined on D, we shall consider
only the case l ≤ 1, i.e., (αk)k≥0 is decreasing. In this case, f is regularizable
by e(z) = 1− z, as the following simple lemma shows.

Lemma 4.3. Suppose that f(z) =
∑∞

k=0 αkz
k such that 0 ≤ αk+1 ≤ αk.

Then f has an extension to a continuous function on D \ {1}, and (1− z) ·
f(z) ∈ A1

+(D). Furthermore, 0 ≤ f(t) is increasing in t ∈ [0, 1] and either
f ∈A1

+(D) with ‖f‖A1
+

= f(1) := limt↗1 f(t), or f(1) := limt↗1 f(t) = +∞.

Proof. Clearly (1 − z)f(z) = α0 +
∑

k≥1(αk − αk−1)zk. Since α is de-
creasing,

∑
k |αk − αk−1| <∞. The rest is clear.

The following result states that decreasing log-convex sequences are ad-
missible. It is originally due to Kaluza [20] (see also [29] and [15, Chapter IV,
Theorem 22]). For the convenience of the reader we include the short proof.

Proposition 4.4 (Kaluza). Let α = (αk)k≥0 be a decreasing log-convex
sequence and let f(z) :=

∑∞
k=0 αkz

k, z ∈ D. Then f and α are admissible.
More precisely, f does not have a zero in D and

1
f(z)

= −
∞∑
k=0

βkz
k, z ∈ D,

with β0 = −1/α0 ≤ 0 and 0 ≤ βk ≤ αk/α2
0 for all k ≥ 1.

Proof. Since f(0) = α0 > 0, −1/f(z) has a power series representation

−1/f(z) =
∑
k≥0

βkz
k

around zero. Clearly β0 = −1/α0, β1 = α1/α
2
0 and

0 = αnβ0 +
n∑
j=1

αn−jβj , 0 = αn+1β0 +
n+1∑
j=1

αn+1−jβj

for all n ≥ 1. Multiplying the first identity by αn+1 and the second by αn
and subtracting yields

0 =
n∑
j=1

αn−jαn+1βj −
n+1∑
j=1

αn+1−jαnβj

= −α0αnβn+1 +
n∑
j=1

(αn−jαn+1 − αn+1−jαn)βj ,
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which leads to

βn+1 =
1
α0

n∑
j=1

(
αn+1

αn
− αn−j+1

αn−j

)
αn−jβj ≥ 0

by the log-convexity of α. Hence by induction βk ≥ 0 for all k ≥ 1. Moreover,
using this we obtain

βn =
−1
α0

(
αnβ0 +

n−1∑
j=1

αjβn−j

)
=
αn
α2

0

− 1
α0

n−1∑
j=1

αjβn−j ≤
αn
α2

0

for all n ≥ 1. Therefore, the radius of convergence of the power series for
1/f is greater than or equal to 1, and therefore f has no zeros in D.

By virtue of Kaluza’s theorem, admissible sequences abound. We hence
return to the general situation.

Lemma 4.5. Let f be admissible. Then 1/f ∈ A1
+(D) and

‖1/f‖A1
+

=
2

f(0)
− 1
f(1)

where 1/∞ := 0. Moreover, f does not have a zero on D.

Proof. Write as above −1/f(z) =
∑∞

k=0 βkz
k = −1/f(0) +

∑
k≥1 βkz

k.
Then ∑

k≥1

βk = lim
t↗1

∑
k≥1

βkt
k =

1
α0
− lim
t↗1

1
f(t)

=
1

f(0)
− 1
f(1)

<∞.

Hence β ∈ `1 and

‖1/f‖A1
+

= ‖β‖1 = |β1|+
∑
k≥1

βk =
1

f(0)
+

1
f(0)

− 1
f(1)

=
2

f(0)
− 1
f(1)

as claimed. This shows that 1/f extends continuously to D, whence f cannot
have a zero even on ∂D = T.

For an admissible α consider

(4.1) gn(z) :=
1

f(z)

n−1∑
k=0

αkz
k, n ≥ 1, z ∈ D.

Clearly gn → 1 pointwise on D.

Lemma 4.6. For every n ∈ N,

gn(z) = 1−
∞∑
k=n

γk,nz
k with γk,n ≥ 0.
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Furthermore,

‖gn − 1‖A1
+

= 1− gn(1) = 1− 1
f(1)

n−1∑
k=0

αk

and

‖gn‖A1
+

= 2− gn(1) = 2− 1
f(1)

n−1∑
k=0

αk.

Proof. On the one hand,

gn(z) =
1

f(z)

n−1∑
k=0

αkz
k =

1
f(z)

(
f(z)−

∞∑
k=n

αkz
k
)

= 1− 1
f(z)

∞∑
k=n

αkz
k,

and on the other hand,

gn(z) = −
( ∞∑
j=0

βjz
j
)(n−1∑

k=0

αkz
k
)

= 1−
n−1∑
k=1

β0αkz
k −

∑
j≥1,0≤k<n

βjαkz
k+j .

The first representation tells us that the kth Taylor coefficient of gn vanishes
for k = 1, . . . , n− 1. Hence

gn(z) = 1−
∞∑
k=n

γk,nz
k

and, from the second representation,

γk,n =
n−1∑
j=0

αjβk−j ≥ 0, k ≥ n,

since βj ≥ 0 for all j ≥ 1 and αk ≥ 0 for all k ≥ 0. This implies

‖gn − 1‖A1
+

=
∑
k≥n

γk,n = 1− gn(1)

and
‖gn‖A1

+
= 1 +

∑
k≥n

γk,n = 2− gn(1).

Now we are ready to prove our main approximation result.

Corollary 4.7. Suppose that f is an admissible function with Taylor
coefficients α, and let gn be defined as above. Then the following assertions
hold.

(a) If f(1) <∞ then gn → 1 in A1
+(D) as n→∞.

(b) If f(1) =∞ then ‖gn‖A1
+

= 2 for all n.
(c) If (1− z)f(z) ∈ A1

+(D) then

C-lim
n→∞

(1− z)gn(z) = 1− z in A1
+(D).
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(d) If (1− z)f(z) ∈ A1
+(D) and limn→∞ αn = 0 then

lim
n→∞

(1− z)gn(z) = 1− z in A1
+(D).

Proof. If f(1) <∞ then ‖α‖1 = f(1) <∞ and

gn(1)− 1 = f(1)−1
( ∞∑
k=n+1

αk

)
→ 0, n→∞.

Lemma 4.6 implies the statement in (a). In order to prove (b), suppose that
f(1) =∞. Then Lemma 4.6 shows that ‖gn‖A1

+
= 2 for all n ≥ 1. Write

(1− z)gn(z) =
1

f(z)

(
α0 +

n−1∑
k=1

(αk − αk−1)zk
)
− z αn−1z

n−1

f(z)
(4.2)

= hn(z) + rn(z).

Since (1 − z)f ∈ A1
+(D), we have hn → (1− z)f/f = 1 − z in A1

+(D) as
n→∞. For the Cesàro means of (rn)n≥1 we obtain

1
N

N∑
n=1

rn(z) = z
gN (z)
N

→ 0, N →∞,

in A1
+(D), since ‖gN‖A1

+
= 2 for all N ≥ 1. If limn→∞ αn = 0, then rn

obviously tends to 0 in ‖ · ‖A1
+(D).

5. Partial sum approximations for power-bounded operators.
Let us now return to our main subject. First we will characterize the domain
of f(T ) by means of the extrapolation norm ‖x‖−1 := ‖(I − T )x‖, x ∈ X,
weaker than the original norm on X. This result nevertheless will be useful
for obtaining a characterization of the domain in the original norm as well.

Proposition 5.1. Let f : D→ C be holomorphic such that (1−z)f(z) ∈
A1

+(D), and let T be a power-bounded operator on a Banach space X with
fix(T ) = 0.

(a) If x ∈ X is such that there is y ∈ X with

(5.1) C-lim
n→∞

(I − T )
n∑
k=0

αkT
kx = (I − T )y weakly,

then x ∈ dom(f(T )) and f(T )x = y.
(b) If x ∈ dom(f(T )) is such that C-limn→∞ αnT

n+1x = 0 weakly, then

C-lim
n→∞

(I − T )
n∑
k=0

αkT
kx = (I − T )f(T )x weakly.
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The result of (b) is also true on replacing weak convergence by strong con-
vergence, and/or Cesàro convergence by ordinary convergence.

Proof. To prove (a), note that (5.1) implies that C-limn→∞(I−T )αnTnx
= 0 weakly. Next, since

(5.2) (1− z)
n∑
k=0

αkz
k = α0 +

n∑
k=1

(αk − αk−1)zk − αnzn+1,

we have

(5.3) (1− z)f(z) = α0 +
∞∑
k=1

(αk − αk−1)zk, z ∈ D,

with
∑

k≥1|αk − αk−1| <∞ by hypothesis. Hence

lim
n→∞

(
α0 +

n∑
k=1

(αk − αk−1)T k
)

= [(1− z)f ](T )

in operator norm. This implies that C-limn→∞ αnT
n+1x = z weakly for

some z ∈ X. But then

(I − T )z = C-lim
n→∞

(I − T )αnTn+1x

= T C-lim
n→∞

(I − T )αnTnx = 0 weakly,

which yields z = 0 since fix(T ) = {0}. Therefore we obtain

[(1− z)f ](T )x = (I − T )y

and this is—by definition via regularization—equivalent to f(T )x = y.
Assertion (b) is a consequence of (5.2) and (5.3) and the fact that one

has [(1− z)f ](T )x = (I − T )f(T )x for x ∈ dom(f(T )).

If limn→∞ αn = 0 we obtain a neat characterization of dom(f(T )).

Corollary 5.2. Let f, α be as in Proposition 5.1 and such that
limn→∞ αn = 0. Then the condition x ∈ dom(f(T )) is equivalent to the
convergence in X of the series

∑
k≥1 αkT

kx with respect to the extrapola-
tion norm ‖ · ‖−1.

The next example shows that the condition x ∈ dom(f(T )) in general is
too weak to imply the convergence of the series

∑∞
k=0 αkT

kx.

Example 5.3. Consider f(z) = (1− z)−1 =
∑

k≥0 z
k. Let x = (I −T )y.

Then the convergence

(I − T )
n∑
k=0

αkT
kx→ (I − T )y, n→∞,

is equivalent to Tn+1x → 0. But if for example T = −I, then Tnx → 0 if
and only if x = 0.
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The following is an operator counterpart of Corollary 4.7, yielding an
approximation (gn(T ))n≥1 of I with uniformly bounded norms.

Proposition 5.4. Let f(z) =
∑

k≥0 αkz
k be admissible, with (1− z)f ∈

A1
+(D). Let (gn)n≥1 ⊂ A1

+(D) be defined as in (4.1). Suppose that T is a
power-bounded operator on X with fix(T ) = {0}. Then the following asser-
tions hold:

(a) If f(1) <∞ then

lim
n→∞

gn(T ) = I in operator norm.

(b) If f(1) =∞ then ‖gn(T )‖ ≤ 2M(T ) for all n ≥ 1 and

C-lim
n→∞

(I − T )gn(T ) = I − T in operator norm.

(c) If f(1) =∞ and limk→∞ αk = 0 then

lim
n→∞

(I − T )gn(T ) = I − T in operator norm.

(d) If f(1) = ∞ and x ∈ X is such that limn→∞ αnT
n+1f(T )−1x = 0

then
lim
n→∞

(I − T )gn(T )x = (I − T )x in norm.

Proof. In view of Proposition 2.1, assertions (a), (b) and (c) follow from
(a), (b), and (c) of Corollary 4.7, respectively. To prove (d) we use (4.2) and
write

(5.4) (I − T )gn(T ) = hn(T )(I − T )− αn−1T
nf(T )−1

where hn(T )→ I in operator norm. Then the statement follows.

Corollary 5.5. Let α, f, gn and T,X be as in Proposition 5.4. Then

C-lim
n→∞

gn(T )x = x, x ∈ ran(I − T ).

Furthermore, one has

lim
n→∞

gn(T )x = x, x ∈ ran(I − T ),

if and only if
lim
n→∞

αnT
n+1x = 0, x ∈ ran(I − T ).

Proof. The first statement is a direct consequence of Proposition 5.4, as
also is the “if” part of the second statement. To prove the “only if” part
suppose that gn(T )x → x for all x ∈ ran(I − T ). Then (I − T )gn(T ) →
(I − T )x strongly. Using (5.4) we infer that αnTn+1f(T )−1 → 0 strongly.
But since f(T )(I−T ) ∈ L(X), we have ran(I−T ) ⊂ dom(f(T )), and hence
αnT

n+1 → 0 strongly on ran(I − T ).

Let us now focus on the most interesting case f(1) = ∞. To simplify
the formulation of our main result we will state it only for a power-bounded
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operator T such that ran(I − T ) = X (so that fix(T ) = {0}) and for α
tending to zero. This will suffice for the domain descriptions of functions of
T given in the next section.

Theorem 5.6. Let (αk)k≥0 be an admissible sequence tending to zero,
let f(z) :=

∑
k≥0 αkz

k, z ∈ D, and suppose that f(1) = ∞ and (1 − z)f ∈
A1

+(D). Let T be a power-bounded operator on a Banach space X such that
ran(I − T ) = X. For x ∈ X the following assertions are equivalent.

(i) x ∈ dom(f(T )).
(ii) The series

∑
k≥0 αkT

kx Cesàro-converges in norm.
(iii) The series

∑
k≥0 αkT

kx converges in norm.
(iv) The series

∑
k≥0 αkT

kx Cesàro-converges weakly.
(v) The series

∑
k≥0 αkT

kx converges weakly.

If X is reflexive then assertions (i)–(v) are equivalent to

(vi) supN ‖
∑N

k=0 αkT
kx‖ <∞.

Furthermore, if (i)–(v) hold true, then f(T )x =
∑∞

k=0 αkT
kx.

Proof. To prove the equivalence of (i)–(v) it is enough to show that
(i)⇒(iii) and (iv)⇒(i).

Let x ∈ dom(f(T )). By Corollary 5.5 and the hypothesis ran(I−T ) = X
we see that gn(T ) → I strongly. General functional calculus theory [13,
Proposition 1.1.2] implies that gn(T )f(T ) ⊂ (gnf)(T ) and hence we obtain

n−1∑
k=0

αkT
kx = (gnf)(T )x = gn(T )f(T )x→ f(T )x, n→∞.

Suppose now that (iv) holds. Then (5.1) holds as well, and Proposition 5.1(a)
implies that x ∈ dom(f(T )).

If X is reflexive and (vi) is true, then the mean ergodicity of T ′ yields
X ′′ = fix(T ′)⊕ ran(I − T ′), and

fix(T ′) = ker(I − T ′) = ran (I − T )⊥ = X⊥ = 0,

whence X ′′ = ran(I − T ′). For x′′ = (I − T ′)y′ ∈ X ′ we have〈 n∑
k=0

αkT
kx, x′

〉
=
〈
α0x+

n∑
k=1

(αk − αk−1)T kx, y′
〉
− 〈αnTn+1x, y′〉

where the first summand converges to 〈[(1 − z)f ](T )x, y′〉 and the second
converges to 0 in the Cesàro sense (using (vi)). Using (vi) again we conclude
that the limit limn→∞〈

∑n
k=0 αkT

kx, x′〉 exists in the Cesàro sense for all
x′ ∈ X ′. Hence

∑∞
k=0 αkT

kx Cesàro converges in the weak∗ topology of X ′′,
but as X is reflexive we arrive at (iv).
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Remark 5.7. Let f : D → C be such that (1 − z)f ∈ A1
+(D). Then

f(T )(I−T ) = [(1−z)f ](T ) ∈ L(X) and this yields ran (I−T ) ⊂ dom(f(T )).
Hence if 1 /∈ σ(T ) then f(T ) is a bounded operator.

The converse holds if in addition f = α̂ with α being an admissible
null-sequence and f(1) =∞. Indeed, in this case, 1 ∈ σ(T ) implies that∥∥∥ n∑

k=0

αkT
k
∥∥∥ ≥ sup

λ∈σ(T )

∣∣∣ n∑
k=0

αkλ
k
∣∣∣ ≥ n∑

k=0

αk →∞

as n → ∞. This shows that the series
∑∞

k=0 αkT
kx cannot converge for

every x ∈ X. Hence dom(f(T )) 6= X, by Theorem 5.6.

6. Examples: fractional powers and the logarithm. As the first
application of our Corollary 5.6 we characterize the domains of (I − T )−s,
s ∈ (0, 1), for a power-bounded operator T on X with ran(I−T ) = X. Since
ran((I − T )s) = dom((I − T )−s) this characterization allows one to obtain
a solution x of the equation (I − T )sx = y as a limit of certain averages of
{Tny : n ≥ 0}. These solutions are called s-fractional coboundaries for T
and are of importance in operator ergodic theory.

Recall from Example 2.5(2) our notation

(1− z)−s =
∞∑
k=0

α
(−s)
k zk, z ∈ D,

for s ∈ R. If s ∈ (0, 1) then the sequence (α(−s)
k )k≥0 is log-convex and

decreasing to zero with rate ks−1. It follows from a classical asymptotic
analysis using [31, part I, p. 77] that

(6.1) α
(−s)
k =

1
Γ (s)k1−s +O(ks−2) +O(k−s−1)

(cf. also [11, proof of Theorem 2.11]. The following result was proved in
[11] by a subtle analysis of the series expansions for (1− z)s (see [11, The-
orems 2.11, 2.13]). Here it becomes a straightforward consequence of our
Corollary 5.6.

Theorem 6.1. Let T be a power-bounded operator on a Banach space X
such that ran(I − T ) = X, and let s ∈ (0, 1). Then for x ∈ X the following
statements are equivalent.

(i) x ∈ ran(I − T )s.
(ii)

∑∞
k=1 T

kx/k1−s converges.

(iii)
∑∞

k=0 α
(−s)
k T kx converges weakly.

(iv)
∑∞

k=0 α
(−s)
k T kx converges.
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If either of (i)–(iv) holds, then (I−T )−sx =
∑∞

k=0 a
(−s)
k T kx. If X is reflexive

then each of the statements (i)–(iv) is equivalent to

(v) supn ‖
∑n

k=1 T
kx/k1−s‖ <∞.

Proof. By the above remarks, the equivalence of (i), (iii) and (iv) follows
immediately from Theorem 5.6. The equivalence of (ii) and (iv) follows from
(6.1), as does the fact that (v) is equivalent to

sup
n

∥∥∥ n∑
k=0

α
(−s)
k T kx

∥∥∥ <∞.
But this is equivalent to (i) again by Theorem 5.6.

Let us turn to the logarithm. The function log(1− z) = −
∑∞

k=1 z
k/k is

not admissible; however, the function

f(z) :=
− log(1− z)

z
=
∞∑
k=0

1
k + 1

zk

is, since its Taylor coefficients form a decreasing, log-convex null-sequence.
Moreover,

(6.2) h(z) := log(1− z)− f(z) = 1−
∞∑
k=1

zk

k(k + 1)
∈ A1

+(D).

Using these preparations, we are now able to identify the operator log(I−T )
as the “one-sided ergodic Hilbert transform”

HT =
∞∑
k=1

1
k
T k

with its natural domain. As explained in the Introduction, this answers an
open question from [11].

Theorem 6.2. Let T be a power-bounded operator on a Banach space
X such that ran(I − T ) = X. Then log(I − T ) = HT . More precisely, for
x ∈ X the following statements are equivalent.

(i) x ∈ dom(log(I − T )).
(ii) The series

∑∞
k=1 T

kx/k converges.
(iii) The series

∑∞
k=1 T

kx/k converges weakly.

If (i)–(iii) hold, then log(I − T )x = −
∑∞

k=1 T
kx/k. If X is reflexive, each

of the statements (i)–(iii) is equivalent to

(iv) supn ‖
∑n

k=1 T
kx/k‖ <∞.

Proof. Equation (6.2) gives that log(1−z) = f+h and h(T ) is bounded.
Hence it follows from general functional calculus theory [13, Cor. 1.2.3] that
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log(I − T ) = f(T ) + h(T ) and that the domains of log(I − T ) and f(T )
coincide. For the partial sums of f and log(1− z) we obtain

n∑
k=0

zk

k + 1
=

n∑
k=1

zk

k
+
(

1−
n∑
k=1

zk

k(k + 1)

)
,

which yields
n∑
k=0

T k

k + 1
x =

n∑
k=1

T kx

k
+
(
x−

n∑
k=1

T kx

k(k + 1)

)
for each n ≥ 1. Since the rightmost series converges in norm, the left-hand
series converges (weakly) if and only if the middle one does. So all assertions
follow directly from Theorem 5.6.

Finally, we answer a question from [1, p. 23].

Theorem 6.3. Let T be a power-bounded operator on a Banach space
X such that ran(I − T ) is dense in X and 1 ∈ σ(T ). Then the inclusion

(6.3)
⋃
s>0

ran (I − T )s ⊂ dom(log(I − T ))

is strict.

The inclusion (6.3) was proved in [11]. For T being a unitary operator
on a Hilbert space, the inclusion was shown to be strict in [1], and it was
asked there whether it remains strict under the hypotheses of Theorem 6.3.
Note that, together with the characterization HT = log(I−T ), the theorem
shows that for a “generic” element in dom(I − T ) the convergence of the
ergodic averages does not happen with a polynomial rate.

Proof of Theorem 6.3. We employ the sectorial functional calculus sket-
ched in Section 3. Let A := I − T and B := logA. We know that A is
an injective bounded sectorial operator. For every Re s > 0 and n ∈ N the
function zs(log z)n lies in the basic function class E0(Sπ), i.e., is holomorphic
on the sector Sπ and vanishes at zero with a polynomial rate. Since (zs)(A) =
As is bounded, functional calculus theory [13, Thm. 1.3.2.c] yields

BnAs = (logA)nAs = (zs(log z)n)(A) ∈ L(X).

This implies that ranAs ⊂ domBn for all Re s > 0 and n ∈ N. On the other
hand, suppose that one has equality⋃

s>0

ranAs = dom(logA) = dom(B).

Then in particular dom(B) = dom(B2). Since the operator B = logA always
has non-empty resolvent set (Nollau’s theorem [13, Lemma 3.5.1]), such an
identity is only possible if B is a bounded operator. But if B = logA is
bounded then I − T = A = elogA is invertible, whence 1 /∈ σ(T ).



Functions of power-bounded operators 285

For the proof of Theorem 6.3 one can also use Remark 5.7 to deduce
that 1 /∈ σ(T ). However, the proof given here works even under the weaker
assumption fix(T ) = 0 in place of ran(I − T ) = X.

7. Final remarks. 1) On a conceptual level, the main difference be-
tween our approach and the one in [1] and [8] lies in the fact that we use
‖ · ‖A1

+(D)-estimates instead of ‖ · ‖∞-estimates in our function theory. Using
the uniform norm restricts the results to operators that are essentially mul-
tiplication operators, e.g., normal contractions on Hilbert spaces. However,
the transference principle formulated in Section 2 shows that the A1

+(D)-
norm is exactly the right one when one aims at general results.

2) Our results are far from comprehensive. It is likely that with the same
techniques one can obtain results for functions f that are “higher-order”
admissible in the sense that −1/f =

∑
k βkz

k such that for some N ∈ N,
βk ≤ 0 for 0 ≤ k ≤ N − 1 and βk ≥ 0 for all k ≥ N . Also, one would
expect positive results when the condition (1− z)f(z) ∈ A1

+(D) is replaced
by (1− z)Mf(z) ∈ A1

+(D), for some M ∈ N.
3) The following function-theoretic problem turned out to be fundamen-

tal for our discussion. Suppose that α = (α0, α1, . . . ) is a sequence with
αn ↘ 0 and α0 = 1. Define f(z) = α̂(z) =

∑∞
k=0 αnz

n for z ∈ D. Is it al-
ways true that 1/f ∈ A1

+(D)? If not, what conditions ensure that? Kaluza’s
theorem yields just a sufficient criterion, but it is far from necessary.

4) It is of interest to understand relations between analytic properties
of the semigroup of fractional powers ((I − T )s)s≥0 and its generator G =
log(I−T ). In view of a special structure of the semigroup one might expect
to find relations different from those following just from general semigroup
theory.

Such relations are not straightforward. Recall an important assertion in
semigroup theory saying that if I − T is sectorial with angle less than π/2,
i.e., a Ritt type operator, if and only if (es(I−T ))s≥0 is a sectorially bounded
holomorphic (in fact entire) semigroup. This property does not transfer to
the semigroup of fractional powers. Indeed, consider the Riemann–Liouville
semigroup (V s)s≥0 on Lp(0, 1), 1 ≤ p <∞, defined by

(V sf)(r) =
1

Γ (s)

r�

0

(r − t)s−1f(t) dt, f ∈ Lp(0, 1).

Recall that, while the semigroup (V s)s≥0 is bounded and extends holomor-
phically to the right half-plane (see e.g. [13, Chapter 3]), its generator log V
is not a Ritt type operator (see [16, Chapter XXIII, 6]), so that (V s)s≥0 is
not a sectorially bounded holomorphic semigroup. Recall also that by [24,
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Theorem] the operator I − V s is of Ritt type for every s ∈ (0, 1). For fixed
s0 ∈ (0, 1) consider T = I − V s0 . Then (I − T )s = V s0s, s ≥ 0, so that the
generator G of (V s0s)s≥0 is given by

G = log V s0 = s0 log V,

and ((I − T )s)s≥0 is not sectorially bounded.
On the other hand, if I − T = (I − V )s, s ∈ (0, 1), then I − T is a Ritt

type operator by [12, Theorem 1.3]. At the same time, ((I − T )s)s≥0 is not
bounded on Lp(0, 1) unless p = 2 (see [25, Theorem 1.1]).

5) Another question concerns the behavior of ((I−T )z)Re z>0 in the right
half-plane. What conditions on T , apart from power-boundedness, guarantee
that

�

R

log+ ‖(I − T )1+it‖
1 + t2

dt <∞ ?

Obtaining such conditions would open the door for applications of potential
theory, e.g. Poisson integrals, to the study of ((I − T )z)Re z>0. (A similar
question in a more general situation was asked by T. Ransford in [27].)
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[11] Y. Derriennic and M. Lin, Fractional Poisson equations and ergodic theorems for
fractional coboundaries, Israel J. Math. 123 (2001), 93–130.

[12] N. Dungey, Subordinated discrete semigroups of operators, preprint.
[13] M. Haase, The Functional Calculus for Sectorial Operators, Oper. Theory Adv.
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E-mail: tomilov@mat.uni.torun.pl

and
Institute of Mathematics

Polish Academy of Sciences
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