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Swiss cheeses, rational approximation and
universal plane curves

by

J. F. Feinstein (Nottingham) and M. J. Heath (Lisboa)

Abstract. We consider the compact plane sets known as Swiss cheese sets, which are
a useful source of examples in the theory of uniform algebras and rational approximation.
We develop a theory of allocation maps connected to such sets and we use this theory
to modify examples previously constructed in the literature to obtain examples homeo-
morphic to the Sierpiński carpet. Our techniques also allow us to avoid certain technical
difficulties in the literature.

1. Introduction and motivation. In this paper we shall concern
ourselves with “Swiss cheese” constructions. These represent a particular
method for constructing compact subsets of the complex plane that has
been used extensively in the theory of rational approximation and, more
generally, in the theory of uniform algebras. In general, little is specified
about the topology of the sets produced by this technique. Since uniform
algebra theory has strong connections to topology, the topological proper-
ties of the sets on which we build our examples is an obvious thing to study.
In this paper we shall show that it is possible to modify many Swiss-cheese-
based examples related to uniform algebras and rational approximation in
such a way that our compact plane set is homeomorphic to the well-known
Sierpiński carpet.

1.1. Basic uniform-algebraic concepts. Throughout this paper by
a compact space we will mean a non-empty, compact, Hausdorff topological
space. Let X be a non-empty, locally compact, Hausdorff space. We denote
by C0(X) the set of all continuous functions from X to C which tend to
zero at infinity. If X is a compact space, this is equal to the set of all
continuous C-valued functions, which we denote by C(X). Equipping C(X)
with the usual pointwise operations makes it a commutative, semisimple,
complex algebra. If we further equip C(X) with the supremum norm ‖ · ‖∞,
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it is standard that it is then a Banach algebra. We always treat C(X) as
a Banach algebra with this norm. We call a closed subalgebra A of C(X)
a uniform algebra on X if it contains the constant functions and if, for all
x, y ∈ X with x 6= y, there is f ∈ A with f(x) 6= f(y). A uniform algebra
on X is trivial if it is equal to C(X) and non-trivial otherwise.

A character on a uniform algebra A is a non-zero algebra homomorphism
from A into C. A uniform algebra A on a compact space X is natural if the
only characters from A into C are evaluations at points of X.

We shall use the term plane set to mean “subset of the complex plane”.
For a non-empty, compact plane set X we define R0(X) to be the subalgebra
of C(X) consisting of functions f = g|X where g : C→ C∪{∞} is a rational
function with∞ 6∈ g(X). We define R(X) to be the supremum-norm closure
of R0(X) in C(X). It is standard that R(X) is a natural uniform algebra
on X.

Definition 1.1. A uniform algebra, A, on a compact space, X, is es-
sential if, for each non-empty, proper, closed subset, Y , of X, there is a
function f ∈ C(X) \A such that f |Y = 0.

Definition 1.2. Let X be a compact space, let µ be a regular Borel
measure on X and let U ⊂ C(X). We say that µ is an annihilating measure
for U if

	
X f dµ = 0 for all f ∈ U . We shall denote by M(X) the Banach

space of regular, complex Borel measures on X with the total variation
norm.

The following result is [4, Theorem 2.8.1] together with some observa-
tions made in the proof of that theorem.

Proposition 1.3. Let A be a uniform algebra on a compact space, X,
and let E(A) be the closure in X of the union of the supports of all anni-
hilating measures for A on X. Then E(A) is the unique, minimal, closed
subset of X such that, for all f ∈ C(X) with f(E(A)) ⊆ {0}, we have f ∈ A.
Furthermore, A|E(A) is uniformly closed in C(E(A)), and

A = {f ∈ C(X) : f |E ∈ A|E}.

The uniform algebra A is essential if and only if E(A) = X, and A = C(X)
if and only if E(A) = ∅.

We may think of the essential set of A as being “the set on which A is
non-trivial” and “essential” as meaning “everywhere non-trivial”.

Definition 1.4. Let A be a commutative Banach algebra and let ψ be
a character on A. A point derivation at ψ is a linear functional d on A such
that

d(ab) = ψ(a)d(b) + ψ(b)d(a) for all a, b ∈ A.
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Let n ∈ N ∪ {∞}. A point derivation of order n at φ is a sequence (dk)nk=0
of linear functionals such that d0 = φ and, for each i < n+ 1,

di(fg) =
i∑

k=0

dk(f)di−k(g).

We call (dk)nk=0 bounded if, for each i < n + 1, di is a bounded linear
functional.

Let A be a natural uniform algebra on a compact space X. We say that:
A is regular if, for all x ∈ X and all compact sets E ⊆ X \ {x}, there exists
f ∈ A such that f(E) ⊆ {1} and f(x) = 0; A is normal if, for every closed
set F ⊆ X and every compact set E ⊆ X \ F , there exists f ∈ A such that
f(E) ⊆ {1} and f(F ) ⊆ {0}. It is standard that regularity and normality
are equivalent for natural uniform algebras (see [6, Proposition 4.1.18]).

1.2. Connections between uniform algebras and topology. In
order to motivate our results we shall discuss connections between the theory
of uniform algebras and topology. The key observation is the following, which
is basically trivial.

Proposition 1.5. Let P be a property, which a Banach algebra may
have and which is invariant under Banach algebra isomorphism. Then, for
a compact space X, “there exists a uniform algebra on X which satisfies P”
and “there exists a natural uniform algebra on X which satisfies P” are
topological properties of X.

Thus, for a compact space X, it makes sense to consider questions of
the form: “Which Banach-algebraic properties may a (natural) uniform al-
gebra on X have?” These sorts of question have been little studied. In the
many examples of uniform algebras constructed using Swiss cheese tech-
niques there is not typically any mention made of the topological properties
of the underlying compact space.

Now, an obvious technique for constructing uniform algebras with dif-
ferent sets of properties on a fixed compact space is as follows. Let Y be a
compact space, let X be a compact subspace of Y , and let A be a uniform
algebra on X. We may define a uniform algebra, A(Y ), on Y thus:

A(Y ) = {f ∈ C(Y ) : f |X ∈ A}.
Many properties of A are then necessarily shared by A(Y ). For example the
following are easily proven and probably all well-known (see, for example,
[13, Lemma 2.4.9] for details).

Lemma 1.6. Let A be a uniform algebra on a compact space X, and let
Y be a compact space such that X ⊆ Y . Then:

(a) A(Y ) is trivial if and only if A is trivial;
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(b) A(Y ) is natural if and only if A is natural;
(c) A(Y ) is normal if and only if A is normal;
(d) if z ∈ X, n ∈ N∪{∞} and A has a non-zero bounded point derivation

of order n at z, then A(Y ) has a non-zero, bounded point derivation
of order n at z.

Hence we may, for example, construct a non-trivial, natural, normal,
uniform algebra on the compact unit disc. These examples are somewhat
artificial, since they are not essential.

1.3. A survey of the use of Swiss cheese constructions in the
theory of uniform algebras. Examples in the theory of uniform algebras
are often constructed by considering compact subsets of the complex plane
obtained by removing some sequence of open discs from a compact disc. Sets
built in such a way are usually called “Swiss cheeses” or “Swiss cheese sets”;
we shall use the term “Swiss cheese” in a related but different sense, and we
note that every compact plane set may be constructed in this way. We let X
be a compact plane set constructed by means of a Swiss cheese and consider
the uniform algebra R(X). By placing conditions on the radii and centres
of the discs to be removed we are able to control certain Banach-algebraic
properties of R(X).

For a (closed or open) disc D in the plane, we let r(D) be the radius
of D. If D is the empty set or a singleton we say r(D) = 0.

Definition 1.7. We shall call a pair, D = (∆,D) ∈ P(C) × P(P(C)),
a Swiss cheese if ∆ is a compact disc and D is a countable or finite collection
of open discs. Let D = (∆,D) be a Swiss cheese. We say that D is: semi-
classical if the discs in D intersect neither one another, nor C\∆, and if, for
each D ∈ D, D ( ∆ and

∑
D∈D r(D) < ∞; classical if the closures of the

discs in D intersect neither one another nor C\ int∆, and
∑

D∈D r(D) <∞;
finite if D is finite.

Let D = (∆,D) be a Swiss cheese. We call the plane set XD := ∆ \
⋃
D

the associated Swiss cheese set. We say that a plane set X is: a semiclassical
Swiss cheese set if there is a semiclassical Swiss cheese D such that X = XD;
a classical Swiss cheese set if there is a classical Swiss cheese D such that
X = XD.

The earliest use of a Swiss cheese set in the theory of rational approx-
imation was in [19], where Roth constructed a classical Swiss cheese set K
with empty interior such that R(K) 6= C(K). This showed that there are
compact plane sets such that R(X) 6= A(X) where A(K) is the uniform
algebra of continuous functions on K which are analytic on the interior
of K. Roth’s proof was essentially the same as that of Theorem 1.8, be-
low.
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A second example, showing how careful choice of the discs to be removed
allows us to control the properties of R(X) was given by Steen in [22]. This
example is a classical Swiss cheese set X such that R(X) contains a non-
constant, real-valued function, something that had been conjectured to be
impossible. Furthermore, this function depended only on the real part of the
independent variable.

We shall concentrate on Swiss cheeses D such that the associated Swiss
cheese set, XD, has empty interior in C. We mention in passing that Swiss
cheese sets with non-empty interior are used, for example, in Examples 9.1–
9.3 of [11], to demonstrate that a compact plane set K may have dense
interior and yet have R(K) 6= A(K).

We introduce some notation for integration over paths and chains.
Further details may be found in Chapter 10 of [20]. Let (γ1, . . . , γk) and
(δ1, . . . , δn) be finite sequences of piecewise smooth paths in the plane. We
say (γ1, . . . , γk) and (δ1, . . . , δn) are equivalent if, for all f ∈ C0(C), we have

k∑
i=1

�

γi

f dz =
n∑
i=1

�

δi

f dz.

It is standard that this defines an equivalence relation on the set of all such
sequences; we call the equivalence classes induced by this relation chains. We
denote the chain containing (γ1, . . . , γk) by γ1u· · ·uγk. Let Γ = γ1u· · ·uγk.
We define integration over Γ as follows:

�

Γ

f dz :=
k∑
i=1

�

γi

f dz (f ∈ C0(C)).

If γ1, . . . , γn are chains we write γ1 u · · ·u γn for the chain Γ with�

Γ

f dz =
�

γ1

f dz + · · ·+
�

γn

f dz (f ∈ C0(C)).

For a chain or piecewise smooth path γ we define µγ to be the unique,
regular, Borel measure on C satisfying�

C
f dµγ =

�

γ

f dz (for all f ∈ C0(C)).

Theorem 1.8. Let X be a semiclassical Swiss cheese set. Then R(X) is
essential.

Proof. Suppose first that z ∈ int(X) and let r > 0 be sufficiently small
that B(z, γ) ⊆ X. We define a path γ : [π, π] → C by γz,r(t) = z + reit.
Then, by Cauchy’s theorem, µγz,r is an annihilating measure for R(X) and
so, by Proposition 1.3, z ∈ E(R(X)). We shall show that there exists an an-
nihilating measure, µ, for R(X) with supp(µ) = ∂X and so, by Proposition
1.3 again, ∂X ⊆ E(R(X)). Hence we will have shown that X = E(R(X)).
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Let D = (∆,D) be a semiclassical Swiss cheese such that X = XD. We let
γ∆ be the boundary circle of ∆ given the positive orientation. For D ∈ D,
let γD be the boundary circle of D given the negative orientation. Obvi-
ously supp(µγ∆) = ∂∆, supp(µγD) = ∂D (D ∈ D) and these measures are
non-atomic.

Now, for each D ∈ D, ‖µγD‖ ≤ 2πr(D). Hence∑
D∈D
‖µγD‖ ≤ 2π

∑
D∈D

r(D) <∞,

so
µ := µγ∆ +

∑
D∈D

µγD

defines a measure µ ∈M(X). Clearly, if Y is a closed subset of int(X) then
µ(Y ) = 0, so supp(µ) ⊆ ∂X. To show the reverse inclusion, first note that
for D ∈ D ∪ {∆} and z ∈ X, µγD({z}) = 0. Now let Y be a closed subset
of ∂∆. Then Y ∩

⋃
D∈DD is countable and so µ(Y ∩

⋃
D∈DD) = 0 and

µ∆(Y ∩
⋃
D∈DD) = 0. Hence µ(Y ) = µ∆(Y ). Similarly, if we let D ∈ D and

Y ⊆ ∂D then µ(Y ) = µD(Y ). Hence, for each point z ∈ ∂∆∪
⋃
D∈D ∂D and

every neighbourhood U of z there is a set Y ⊆ U with µ(Y ) 6= 0. Thus, z ∈
supp(µ) and so ∂∆∪

⋃
D∈D ∂D ⊆ supp(µ). However, ∂∆ ∪

⋃
D∈D ∂D = ∂X,

so we have ∂X ⊆ supp(µ). Thus ∂X = supp(µ). It only remains to show
that µ is an annihilating measure for R(X).

To show this we let f ∈ R0(X); then f is holomorphic on the open set

V := C \ {z ∈ C : z is a pole of f}.

We shall assume that D is infinite; the proof in the case where D is finite
is similar (and easier). We let (Dn)n∈N be a sequence enumerating D and
pick N ∈ N such that those poles of f which are contained in ∆ all lie in
D1 ∪ · · · ∪DN . Then

ΓN = γ∆ u γD1 u · · ·u γDN

is a cycle with Ind(Γ, z) = 0 for all z ∈ C \ V . Hence, by Cauchy’s theorem,
�

ΓN

f dz = 0,

and letting N tend to infinity yields
	
f dµ = 0. Hence µ is an annihilating

measure for R(X).

The first known example of a non-trivial uniform algebra with no non-
zero bounded point derivations was due to Wermer, [23]. In fact, he proved
the following.
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Proposition 1.9. Let ∆ be a closed disc in C, and let ε > 0. Then there
is a classical Swiss cheese D = (∆,D) such that∑

D∈D
r(D) < ε,

and R(XD) has no non-zero bounded point derivations.

The first known example of a non-trivial, normal uniform algebra was
due to McKissick, [16]. In fact, he proved the following.

Proposition 1.10. For any closed disc ∆ and any ε > 0, there is a
Swiss cheese D = (∆,D) such that∑

D∈D
r(D) < ε,

and R(XD) is normal.

This construction was simplified somewhat by Körner in [15]. In [18]
O’Farrell showed that in the above we could further insist that 0 ∈ XD

and that R(X) have a bounded point derivation of infinite order at 0. The
constructions of McKissick, Körner and O’Farrell appeared not to produce
classical Swiss cheese sets. McKissick’s result, along with what we would
now call a system of Cole extensions (see, for example, [7]) was a crucial
tool in Cole’s ([5]) solution to the famous “peak point problem”.

The first author of the present paper has made use of Swiss cheese con-
structions to produce a variety of examples of plane sets X such that the
uniform algebra R(X) has interesting, specified properties. In [8] he used
McKissick’s example, together with a system of Cole extensions, to con-
struct a non-trivial, strongly regular uniform algebra (see that paper for the
definition). In [9] the first author used a Swiss cheese construction to obtain
a compact plane set X such that R(X) has no non-trivial Jensen measures
(see that paper for the definition) but is not normal. In [10] the same author
used a Swiss cheese construction to produce a counterexample to the conjec-
ture (of Morris, in [17]) that a uniform algebra with no non-zero, bounded
point derivations would have to be weakly amenable (see [6, Section 2.8]). In
[12] the second author of the present paper showed that the uniform algebra
produced could, in addition, be normal, by using a Swiss-cheese-like method
of removing discs from a compact 2-cell; more details may be found in [13].

1.3.1. An issue in the literature. Constructions using non-classical Swiss
cheeses (including the non-classical Swiss cheese constructions listed above)
often rely upon the following result, which appears on pages 28 and 29 of [3].

Proposition 1.11. Let D = (∆, {D1, . . . , Dn}) be a finite Swiss cheese.
Then ∂XD consists of a finite number of arcs of the circles ∂∆ and ∂Di.
If we orient the arcs in ∂∆ ∩ ∂XD positively and those of each ∂Di ∩ ∂XD
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negatively, this turns ∂XD into a contour such that the following holds. If
D is an open neighbourhood of XD and f is analytic on D, then

1.
�

∂XD

f(z) dz = 0;

2. f(ζ) =
1

2πi

�

∂XD

f(z)
z − ζ

dz (ζ ∈ int(XD)).

However, the proof of this given in [3] is a sketch, which appears some-
what difficult to make rigorous, and we are not aware of any other proof
of the result in print. This being the case, it may be helpful to have other
methods available that do not depend on this result. Theorem 2.1 of the cur-
rent paper will provide an alternative means of proving the non-triviality of
R(X) for a large class of non-classical Swiss cheese sets X.

We shall also show that in many cases of Swiss cheeses D constructed
so that R(XD) has particular properties, we may assume that D is clas-
sical without losing the relevant properties. In the following subsection we
show that this will mean that we have natural, essential uniform algebras
with a variety of specified properties on a fixed compact space, namely the
Sierpiński carpet.

1.4. The Sierpiński carpet. The Sierpiński carpet is a well known
fractal, which has been widely studied in topology, the theory of dynamical
systems and complex analysis (see [2]). It is defined as follows. We let Q
be the compact 2-cell (rectangle) with corners at 0, 1, i and 1 + i and, for
z ∈ C and l ∈ ]0,∞[, we define U(z, l) to be the open 2-cell with corners at
z, z + l, z + li and z + l + li. The Sierpiński carpet, S, is the set

S = Q \
⋃

k∈N,m,n∈{0,...3k−1}

U(3−k((3m+ 1) + (3n+ 1)i), 3−k).

Figure 1 shows an approximation of the Sierpiński carpet.

Fig. 1. The Sierpiński carpet

In this paper we consider how Swiss cheeses relate to plane homeomorphs
of the Sierpiński carpet. Our first examples come as consequences of the
following result of Whyburn ([24]), which may be found as [2, Theorem 7.2].
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Proposition 1.12. Let ∆ = {z ∈ C : |z| ≤ 1}, let (Di)i∈N be a sequence
of pairwise disjoint Jordan domains whose closures lie in the interior of ∆,
and let

X := ∆ \
⋃
i∈N

Di.

Then X is homeomorphic to the Sierpiński carpet if and only if X has empty
interior, ∂Di ∩ ∂Dj = ∅ for i 6= j, and diam(Di)→ 0 as i→∞.

This gives us the following corollary.

Corollary 1.13. Let X be a classical Swiss cheese set with empty in-
terior in C. Then X is homeomorphic to the Sierpiński carpet.

Thus, for any classical Swiss cheese set X with empty interior we may
consider R(X) to be a uniform algebra on the Sierpiński carpet. Each of
these algebras is natural and, by Theorem 1.8, each is essential. We now
consider how a well known topological property of the Sierpiński carpet
relates to uniform algebras.

Definition 1.14. Let T be a non-empty topological space and U ∈
P(P(T )) be an open cover of T . We say an open cover V is a refinement
of U if, for each V ∈ V, there exists U ∈ U with V ⊆ U . We define the
topological dimension of T to be the smallest non-negative integer n (if it
exists) such that every open cover of T has a refinement V such that each
x ∈ T is in at most n + 1 elements of V. If no such integer exists, then we
say the toplogical dimension is infinite.

For subsets of Rn the following, which is [14, Theorem IV 3], holds.

Proposition 1.15. A subset X of Rn has topological dimension strictly
less than n if and only if X has empty interior in Rn.

Definition 1.16. A compact plane set X is a universal plane curve if
it has topological dimension 1, and whenever Y is a compact plane set with
topological dimension less than or equal to 1, then there is a subset Y ′ of X
which is homeomorphic to Y .

The following was proven by Sierpiński in [21] (see also [1, p. 433]).

Proposition 1.17. The Sierpiński carpet is a universal plane curve.

The remainder of this paper deals with a technique for finding classical
Swiss cheese sets (and thus homeomorphs of the Sierpiński carpet) as subsets
of plane sets that are built using Swiss cheeses, such as those discussed in
our survey.
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2. Classicalisation of Swiss cheeses. For a Swiss cheese D = (∆,D),
we define δ(D) = r(∆)−

∑
D∈D r(D). Note that δ(D) > −∞ if and only if∑

D∈D r(D) <∞. We shall prove the following theorem.

Theorem 2.1. For every Swiss cheese D with δ(D) > 0, there is a
classical Swiss cheese D′ with XD′ ⊆ XD and δ(D′) ≥ δ(D).

Now, most of the examples mentioned in the survey section of this paper
allow us to make a free choice of ∆, and to specify that

∑
D∈D r(D) be

arbitrarily small. Hence, those plane sets may be taken to contain a classical
Swiss cheese set as a subset. This is important because, if X and Y are
compact plane sets with Y ⊆ X, then many properties of R(X) are shared
by R(Y ). We give some examples in the following proposition, which is
elementary, is probably well known, and appears as [13, Lemma 2.1.1].

Proposition 2.2. Let X and Y be compact plane sets with Y ⊆ X.
Then:

(i) if R(X) is trivial then so is R(Y );
(ii) if R(X) does not have any non-zero bounded point derivations, then

neither does R(Y );
(iii) if R(X) is normal, then so is R(Y ).

In order to prove Theorem 2.1 we shall need the following collection of
facts. The proofs are elementary and may be found in [13].

Proposition 2.3.

(a) Let F be a non-empty, nested collection of open discs in C such that
sup{r(E) : E ∈ F} <∞. Then

⋃
F is an open disc, E, and there is

a nested increasing sequence (Dn)n∈N ⊆ F such that
⋃
n∈NDn = E.

Furthermore, if we order F by inclusion, then

r(E) = lim
n→∞

r(Dn) = lim
D∈F

r(D) = sup
D∈F

r(D).

(b) Let F be a non-empty, nested collection of closed discs in C. Then
∆ :=

⋂
F is a closed disc or a singleton and there is a nested decreas-

ing sequence (Dn)n∈N ⊆ F such that
⋂
n∈NDn = ∆. Furthermore, if

we order F by reverse inclusion, then

r(∆) = lim
n→∞

r(Dn) = lim
D∈F

r(D) = inf
D∈F

r(D).

Definition 2.4. Let D = (∆,D) be a Swiss cheese. We define

D̃ = D ∪ {C \∆}.

Now let E = (H, E) be a second Swiss cheese, and let f : D̃→ Ẽ. We define
G(f) = f−1({C\H})∩D. We say that f is an allocation map if the following
hold:
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(A1) for each U ∈ D̃, U ⊆ f(U);
(A2) ∑

D∈G(f)

r(D) ≥ r(∆)− r(H);

(A3) for each E ∈ E , ∑
D∈f−1(E)

r(D) ≥ r(E).

If there is an allocation map from D̃ to Ẽ we say that E is above D.

Note that these axioms imply that f is surjective. In particular, since
there is no disc D with C \∆ ⊆ D we have f(C \∆) = C \H.

Thus, if E is above D, then (A1) implies that H ⊆ ∆. The following
properties of allocation maps are elementary consequences of the definition.
Full details of the proofs may be found in [13].

Proposition 2.5.

(i) Let D1 = (∆1,D1), D2 = (∆2,D2) and D3 = (∆3,D3) be Swiss
cheeses and let

f : D̃1 → D̃2, g : D̃2 → D̃3

be allocation maps. Then g ◦ f is an allocation map from D̃1 to D̃3.
(ii) Let D = (∆,D) be a Swiss cheese. Then the identity map from D̃ to

itself is an allocation map. Suppose further that
∑

D∈D r(D) < ∞.
Then the identity map is the unique allocation map from D̃ to itself.

(iii) Suppose that D = (∆,D) and E = (H, E) are Swiss cheeses such
that E is above D. Then XE ⊆ XD.

(iv) Let D = (∆,D) and E = (H, E) be Swiss cheeses such that E is
above D. Then

δ(E) ≥ δ(D).

We note that parts (i) and (ii) of the preceding proposition show that
taking Swiss cheeses as objects and allocation maps as morphisms gives a
(small) category. Thus, we may consider subcategories such as the category
of Swiss cheeses, D, such that δ(D) > 0 and allocation maps. Now fix a
Swiss cheese D, and let S(D) be the collection of all pairs (E, f) such that
E is a Swiss cheese and f : D̃ → Ẽ is an allocation map. Note that, for all
(E, f) ∈ S(D), E is above D. We define a binary relation, ≥, on S(D) by
saying (E′, f ′) ≥ (E, f) if there is an allocation map g : Ẽ → Ẽ′ such that
g ◦ f = f ′. Note that, since f is onto, any such g is unique.

Lemma 2.6. Let D be a Swiss cheese such that δ(D) > −∞. Then the
binary relation ≥ defined above is a partial order on S(D).
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Proof. First, we show that ≥ is reflexive. Let (E, f) ∈ S(D). By Proposi-
tion 2.5 the identity map id : Ẽ→ Ẽ is an allocation map. Clearly, id ◦f = f
and so (E, f) ≥ (E, f).

Now, we show that ≥ is transitive. Let (E1, f1), (E2, f2), (E3, f3) ∈ S(D)
be such that (E2, f2) ≥ (E1, f1) and (E3, f3) ≥ (E2, f2). Then there are
allocation maps, g1,2 : Ẽ1 → Ẽ2 such that g1,2 ◦ f1 = f2, and g2,3 : Ẽ2 → Ẽ3

such that g2,3 ◦f2 = f3. Set g1,3 = g2,3 ◦g1,2. Then, by part (i) of Proposition
2.5, g1,3 is an allocation map from Ẽ1 to Ẽ3. Also,

g1,3 ◦ f1 = (g2,3 ◦ g1,2) ◦ f1 = g2,3 ◦ (g1,2 ◦ f1) = g2,3 ◦ f2 = f3,

and so (E3, f3) ≥ (E1, f1).
Finally, we show that ≥ is antisymmetric. Let (E1, f1), (E2, f2) ∈ S(D)

be such that (E2, f2) ≥ (E1, f1) and (E1, f1) ≥ (E2, f2). Then there are
allocation maps, g1,2 : Ẽ1 → Ẽ2 such that g1,2 ◦ f1 = f2, and g2,1 : Ẽ2 → Ẽ1

such that g2,1 ◦ f2 = f1. Set

g = g2,1 ◦ g1,2 : Ẽ1 → Ẽ1.

Then, by part (i) of Proposition 2.5, g is an allocation map. Since E is
above D, δ(E1) > −∞ and so, by part (ii) of Proposition 2.5, g is the
identity map on Ẽ1. Now, let U ∈ Ẽ1. It follows easily that

U ⊆ g1,2(U) ⊆ g2,1(g1,2(U)) = g(U) = U,

so g1,2(U) = U . Similarly, if U ∈ Ẽ2, then g2,1(U) = U . Thus (E1, f1) =
(E2, f2).

Lemma 2.7. Let D be a Swiss cheese such that δ(D) > 0, and let C be
a chain in (S(D),≥). Then C has an upper bound in (S(D),≥).

Proof. For i ∈ C we write i = (Ei, fi) and Ei = (Hi, Ei), and for j ∈ C
with j ≥ i, we let

gi,j : Ẽi → Ẽj

be the unique (as discussed above) allocation map such that gi,j ◦ fi = fj .
From uniqueness, it follows easily that

(1) gi,k = gj,k ◦ gi,j (i ≤ j ≤ k ∈ C).
Note that {Hi : i ∈ C} is a nested decreasing collection of closed discs

and, for each D ∈ D, {fi(D) : i ∈ C} is a nested increasing collection of
open plane sets.

By part (iv) of Proposition 2.5, we have

(2) r(Hi) ≥ δ(Ei) ≥ δ(D) > 0.

Let H =
⋂
i∈C Hi. By part (b) of Proposition 2.3, H is a compact disc or

singleton with
r(H) = lim

i∈C
r(Hi).
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By (2), r(H) > 0, so H is a compact disc. Now we define a map as follows:

f : D̃→ P(C), U 7→
⋃
i∈C

fi(U).

First, we note that

f(C \∆) =
⋃
i∈C

(C \Hi) = C \
⋂
i∈C

Hi = C \H.

Note also that, if D ∈ D, then exactly one of the following two cases holds:

(i) There exists i ∈ C such that fi(D) = C \Hi. In this case, for j ≥ i,
we have fj(D) = gi,j(C \ Hi) = C \ Hj , since fj = gi,j ◦ fi. Thus
f(D) = C \H.

(ii) For each i ∈ C, fi(D) ∈ Ei. In this case, {fi(D) : i ∈ C} is a collection
of open discs with fi(D) ⊆ fj(D) if i ≤ j. Also, for each i ∈ C, we
have (since fi satisfies (A3))

(3) r(fi(D)) ≤
∑

D∈f−1
i (fi(D))

r(D) ≤
∑
D∈D

r(D) <∞.

Thus, by part (a) of Proposition 2.3, f(D) =
⋃
i∈C fi(D) is an open

disc with r(f(D)) = limi∈C r(fi(D)).

Hence,
E := {f(U) : U ∈ D} \ {C \H}

is a collection of open discs.
Set E = (H, E). By the above, E is a Swiss cheese. By definition,

f(D̃) = Ẽ. We claim that f (considered as map into Ẽ) is an allocation
map. That f satisfies (A1) is trivial.

To show that f satisfies (A2), note that, by the argument for case (i)
above, ⋃

i∈C
(f−1
i (C \Hi)) ⊆ f−1(C \H),

i.e.
Gi ⊆ G(f) (i ∈ C).

Thus, since r(H) = limi∈C r(Hi), and each fi satisfies (A2), we have

r(H) = lim inf
i∈C

r(Hi) ≥ lim inf
i∈C

(
r(∆)−

∑
D∈G(fi)

r(D)
)

(4)

≥ r(∆)−
∑

D∈G(f)

r(D).

Hence, f satisfies (A2).
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To show that f satisfies (A3), let E ∈ E , and let U ∈ D be such that
f(U) = E. Let i, j ∈ C with j ≥ i, and let D ∈ D be such that fi(U) = fi(D).
Then, since fj = gi,j ◦fi, we have fj(D) = fj(U), and so f(D) = f(U) = E.
Thus, ⋃

i∈C
f−1
i (fi(U)) ⊆ f−1(f(U)) = f−1(E).

Since r(E) = limi∈C r(fi(U)), and each fi satisfies (A3), we have

r(E) = lim sup
i∈C

r(fi(U)) ≤ lim sup
i∈C

( ∑
D∈f−1

i (fi(U))

r(D)
)

(5)

≤
∑

D∈f−1(E)

r(D).

Thus f satisfies (A3), and so is an allocation map.
We claim that (E, f) is the upper bound we require. To see this, let

i = (Ei, fi) ∈ C, define Ii = {j ∈ C : j ≥ i}, and take U ∈ Ẽi. Then,
there exists V ∈ D̃ such that U = fi(V ). Now let j ∈ C with j ≥ i. Then
gi,j(U) = fj(V ). Thus we have⋃

j∈Ii

gi,j(U) =
⋃
j∈C

fj(V ) = f(V ) ∈ Ẽ.

Hence, we can define a map

gi : Ẽi → Ẽ, U 7→
⋃
j∈Ii

gi,j(U),

and we have gi ◦ fi = f .
It remains to show that gi is an allocation map. To see this, note that it

follows from the equation (1) that Ii is a chain in S(Ei), and so the proof
that f is an allocation map also shows that gi is. The result follows.

Proof of Theorem 2.1. By Proposition 2.5 (part (ii)) and Lemmas 2.6
and 2.7, (S(D),≥) is a non-empty, partially ordered set such that every
chain has an upper bound. Hence, we may apply Zorn’s lemma to obtain
a maximal element (E, f) of (S(D),≥). By part (iii) of Proposition 2.5, we
have XE ⊆ XD. Since E is above D, δ(E) ≥ δ(D) > 0.

It remains to show that E is a classical Swiss cheese. Towards a con-
tradiction, we assume otherwise. Then we must have at least one of the
following cases.

Case 1: There exist E,E′ ∈ E such that E ∩ E′ 6= ∅. In this case there
exists an open disc E′′ with E ∪ E′ ⊆ E′′ and r(E′′) ≤ r(E) + r(E′), as
in Figure 2. Let E ′ = (E \ {E,E′}) ∪ {E′′} and E′ = (H, E ′) and define
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E′

E′′

E

Fig. 2. E, E′ and E′′

g : Ẽ→ Ẽ′ by

g(U) =
{
E′′ if U ∈ {E,E′},
U otherwise.

Then it is easy to check that g is an allocation map. By part (i) of Proposition
2.5, g ◦ f is an allocation map, and so (E′, f ◦ g) ∈ S(D) with (E′, f ◦ g) >
(E, f).

H

E

H′

Fig. 3. E, H and H ′

Case 2: There exists E ∈ E such that E 6⊆ int(H). Assume that this
case holds and Case 1 does not. By the condition on the sum of the radii,
int(H) 6⊆ E. Then there exists a compact disc H ′ such that D ⊆ C \H ′ and
r(H ′) ≥ r(H)− r(E) as in Figure 3. Let E ′ = E \ {E} and E′ = (H ′, E ′) and
define g : Ẽ→ Ẽ′ by

g(U) =
{

C \H ′ if U ∈ {E,C \H},
U otherwise.

Then it is easy to check that g is an allocation map. By part (i) of Proposition
2.5, g ◦ f is an allocation map, and so (E′, f ◦ g) ∈ S(D) with (E′, f ◦ g) >
(E, f).
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In either case we have a contradiction to the maximality of (E, f). The
result follows.

We are grateful to Prof. J. K. Langley for pointing out to us that the
method we use to combine discs in Case 1 has previously appeared in the
literature in the setting of finite unions of open discs. Zhang implicitly uses
this method on page 50 of [25].

Theorem 2.1 has the following purely topological corollary.

Corollary 2.8. Let D be a Swiss cheese such that δ(D) > 0 and XD

has empty interior in C. Then XD is a universal plane curve.

Proof. By Theorem 2.1 there is a classical Swiss cheese set Y with
Y ⊆ XD. By Corollary 1.13, Y is homeomorphic to the Sierpiński carpet S.
Let E be a compact plane set with topological dimension less than or equal
to 1. Then by Proposition 1.17 there is a plane set E′ homeomorphic to E
with E′ ⊆ Y ⊆ XD.

Note, in particular, that for any two such Swiss cheese sets, each may be
continuously embedded in the other.

We are now able to use known examples of non-classical Swiss cheeses
X such that R(X) has particular properties to construct new examples
using classical Swiss cheeses (in particular, to produce examples of essential
uniform algebras on the Sierpiński carpet). We give the following example.

Example 2.9. There is a classical Swiss cheese set X such that R(X)
is normal.

Proof. By Proposition 1.10, there is a Swiss cheese D = (∆,D) such
that

δ(D) > 0

and R(XD) is normal. By Theorem 2.1, there is a classical Swiss cheese set
X with X ⊆ XD. By Proposition 2.2, R(X) is normal.

We note that, by Propositions 1.9 and 2.2, we could in addition insist
that R(X) have no non-zero bounded point derivations.

We do not yet know whether the techniques in this paper can be adapted
so that they preserve the existence of point derivations, or of other deriva-
tions into the dual of R(X). Proofs of the existence of such derivations often
use Proposition 1.11 (see, for example, [10]). If one wishes to avoid using
that result, other “work-arounds” can typically be found (see, for example,
Theorem 3.3.8 of [13]).

3. Open questions. We finish with some open questions.

Question 3.1. Let X be a compact plane set such that R(X) 6= C(X).
Does it follow that X has a subset S homeomorphic to the Sierpiński carpet?



Swiss cheeses 305

Question 3.2. Let X be a compact plane set such that R(X) 6= C(X).
Does it follow that X has a subset S homeomorphic to the Sierpiński carpet
such that R(S) 6= C(X)?

Question 3.3. Let X be a plane set such that R(X) 6= C(X). Does it
follow that X has a subset which is a classical Swiss cheese set?

Question 3.4. Let X be a compact plane set such that there exists a
non-trivial, natural uniform algebra on X. Does it follow that X has a subset
homeomorphic to the Sierpiński carpet?

Question 3.5. Let X be a compact metric space such that there exists
a non-trivial, natural uniform algebra on X. Does it follow that X has a
subset homeomorphic to the Sierpiński carpet?

We note that a positive answer to Question 3.4 would imply a negative
answer to the following—a famous problem due to Gel′fand.

Question 3.6. Is there a non-trivial, natural uniform algebra on the
interval [0, 1]?
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