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Structures of left n-invertible operators and
their applications

by

Caixing Gu (San Luis Obispo, CA)

Abstract. We study left n-invertible operators introduced in two recent papers. We
show how to construct a left n-inverse as a sum of a left inverse and a nilpotent operator.
We provide refinements for results on products and tensor products of left n-invertible
operators by Duggal and Müller (2013). Our study leads to improvements and different
and often more direct proofs of results of Duggal and Müller (2013) and Sid Ahmed
(2012). We make a conjecture about tensor products of left n-invertible operators and
prove this conjecture in several cases. Finally, applications of these results are given to
left n-invertible elementary operators and essentially left n-invertible operators.

1. Introduction. Let B(X) be the algebra of all bounded operators on
a Banach space X. Let

p(y, x) =
n∑

i,j=0

cijy
ixj .

For S, T ∈ B(X), we define the functional calculus p(S, T ) by

(1) p(S, T ) = p(y, x)|y=S, x=T =

n∑
i,j=0

cijS
iT j

where S is always on the left side of T. Let

βn(y, x) = (yx− 1)n =
n∑
k=0

(−1)n−k
(
n

k

)
ykxk.

Then βn(S, T ) is given by

βn(S, T ) = (yx− 1)n|y=S, x=T =
n∑
k=0

(−1)n−k
(
n

k

)
SkT k.
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Recall that S is a left inverse of T (or T is a right inverse of S) if ST = 1,
that is, β1(S, T ) = ST−1 = 0. As in Sid Ahmed [25] and Duggal and Müller
[17], S is a left n-inverse of T (or T is a right n-inverse of S) if

βn(S, T ) =
n∑
k=0

(−1)n−k
(
n

k

)
SkT k = 0.

Since βn(y, x) divides βm(y, x) for m ≥ n, if S is a left n-inverse of T, then
S is a left m-inverse of T for m ≥ n. This fact also follows from the recursive
formula (2) below. We say that S is a strict left n-inverse of T if S is a left
n-inverse of T but not a left (n− 1)-inverse of T. It is also clear that S is a
left n-inverse of T if and only if T ∗ is a left n-inverse of S∗. Similarly we say
S is an n-inverse of T if S is both a left n-inverse and a right n-inverse of T.
We say T is left n-invertible if T has a left n-inverse, and T is n-invertible
if T has an n-inverse.

The concept of left n-invertible operators is motivated by them-isometries
studied earlier in [2]–[6], [24] on Hilbert spaces and more recently in [9],
[11]–[13], [15], [26] on Hilbert spaces and [7], [8], [10], [16], [22] on Banach
spaces. An operator T on a Hilbert space is an n-isometry if βn(T ∗, T ) = 0,
that is, T ∗ is a left n-inverse of T.

Motivated by [9] and [19], in Section 2 we show that if S is a leftm-inverse
of T and Q is a nilpotent operator of order l commuting with S, then S+Q
is a left n-inverse of T where n = m + l − 1. We also discuss the converse
of this result. In particular we show that a 2-inverse S of T is necessarily of
the form S = T−1 +Q where QT = TQ and Q2 = 0. A further study of this
converse for tensor product operators is carried out in Section 4.

In Section 3 we give different proofs of some results on products and
tensor products of left n-invertible operators by Duggal and Müller [17].
Our approach also yields necessary and sufficient conditions for strict left
n-inverses.

In Section 4, we make the following conjecture: for S1, T1 ∈ B(X) and
S2, T2 ∈ B(Y ), the tensor product S1⊗S2 is a strict left n-inverse of T1⊗T2
if and only if there exist m and l such that m+ l− 1 = n and S1 is a strict
left m-inverse of (1/λ)T1 for some constant λ and S2 is a strict left l-inverse
of λT2. The “if” part belongs to [17] and is also reproved here in Section 3.
We verify this conjecture for n = 1, 2, 3 using a detailed algebraic approach
as in [11], [12] for n-isometries. Furthermore we prove this conjecture under
a general technical assumption, so the conjecture is very promising.

An actual theorem is obtained for the sum of tensor products of left
n-inverses. Namely, we show that for S, T ∈ B(X) and Q ∈ B(Y ), the
tensor sum S⊗I+I⊗Q is a strict left n-inverse of T ⊗I if and only if there
exist m and l such that m+ l−1 = n and S+λI is a strict left m-inverse of
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T for some constant λ and Q− λI is a nilpotent operator of order l. Again
the “if” part has already been proved in Section 2.

In Section 5, we remark that the results from previous sections are also
valid for essentially left n-invertible operators defined in [17]. We also apply
our results to answer the question when elementary operators of length one
or generalized derivations on B(X) are left n-invertible operators. Some
preliminary results on this question were obtained by Sid Ahmed [25] and
more complete results were obtained by Duggal and Müller [17]. Our results
on generalized derivations and elementary operators of length two are new
(see Theorems 24 and 26).

Finally, we acknowledge that some ideas and techniques are borrowed
without explicit mention from the author’s paper [18] and from the author
and Stankus’s paper [19] where related questions and more for n-isometries
and n-symmetric operators are studied. But this paper is self-contained and
will focus on left n-invertible operators. Several informative examples are
given to illustrate the results and to show they are sharp. Moreover, most
results are valid for elements in Banach algebras with identity since our
approach is purely algebraic.

2. Constructing left n-inverses. Recall that for two operators A,B
in B(X), the commutator [A,B] is defined to be

[A,B] = AB −BA.

Two operators A and B are commuting if [A,B] = 0.

The following recursive formula can be proved by definition. We omit
the proof since it is simpler than the proof of the following lemma.

(2) βn(S, T ) = Sβn−1(S, T )T − βn−1(S, T ).

Lemma 1. Assume S,Q ∈ B(X) are commuting and T ∈ B(X). Then

βn(S +Q,T ) =

n∑
k=0

(
n

k

)
Qn−kβk(S, T )Tn−k,(3)

βn(T, S +Q) =

n∑
k=0

(
n

k

)
Tn−kβk(T, S)Qn−k.

Proof. We first give a heuristic argument. Note that

((y + z)x− 1)n = (yx− 1 + zx)n =
n∑
k=0

(
n

k

)
zn−k(yx− 1)kxn−k

The lemma follows by substituting S for y, Q for z and T for x in the above
formula using the functional calculus defined in (1).
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For clarity, we now prove the lemma by induction. For n = 1, note that

Left side of (3) = β1(S +Q,T ) = (S +Q)T − I
= QT + ST − I.

Since by definition β0(S, T ) = I, we have

Right side of (3) =
1∑

k=0

(
1

k

)
Q1−kβk(S, T )T 1−k

= Qβ0(S, T )T + β1(S, T )

= QT + ST − I.
Thus (3) holds for n = 1. Assume now (3) holds for n. By (2) and the
induction hypothesis,

βn+1(S +Q,T ) = (S +Q)βn(S +Q,T )T − βn(S +Q,T )

= (S +Q)

[ n∑
k=0

(
n

k

)
Qn−kβk(S, T )Tn−k

]
T −

[ n∑
k=0

(
n

k

)
Qn−kβk(S, T )Tn−k

]

=

n∑
k=0

(
n

k

)
Qn−kSβk(S, T )TTn−k +

n∑
k=0

(
n

k

)
Qn−k+1βk(S, T )Tn−k+1

−
n∑
k=0

(
n

k

)
Qn−kβk(S, T )Tn−k

=

n∑
k=0

(
n

k

)
Qn−k[Sβk(S, T )T − βk(S, T )]Tn−k

+

n∑
k=0

(
n

k

)
Qn−k+1βk(S, T )Tn−k+1

=

n∑
k=0

(
n

k

)
Qn−kβk+1(S, T )Tn−k +

n∑
k=0

(
n

k

)
Qn+1−kβk(S, T )Tn+1−k

=

n+1∑
k=1

(
n

k − 1

)
Qn+1−kβk(S, T )Tn+1−k +

n∑
k=0

(
n

k

)
Qn+1−kβk(S, T )Tn+1−k

=

n+1∑
k=0

[(
n

k − 1

)
+

(
n

k

)]
Qn+1−kβk(S, T )Tn+1−k

=
n+1∑
k=0

(
n+ 1

k

)
Qn+1−kβk(S, T )Tn+1−k,

where in the third equality we use the assumption that S and Q are com-
muting, in the fifth equality we use (2) again, in the third to last equality
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we re-index the summation, and the last equality follows from the fact that(
n
k−1
)
+
(
n
k

)
=
(
n+1
k

)
and the convention that

(
n
k−1
)

= 0 for k = 0 and
(
n
k

)
= 0

for k = n+ 1. This proves that (3) holds for n+ 1.

Theorem 2. Assume S,Q ∈ B(X) are commuting and Q is a nilpotent
operator of order l.

(a) If S is a left m-inverse of T , then S + Q is a left n-inverse of T
where n = m+ l− 1. Furthermore S +Q is a strict left n-inverse of
T if and only if Ql−1βm−1(S, T )T l−1 6= 0.

(b) If S is a right m-inverse of T , then S +Q is a right n-inverse of T
where n = m + l − 1. Furthermore S + Q is a strict right n-inverse
of T if and only if T l−1βm−1(T, S)Ql−1 6= 0.

(c) If S is an m-inverse of T , then S + Q is an n-inverse of T where
n = m+ l − 1. Furthermore S +Q is a strict n-inverse of T if and
only if either T l−1βm−1(T, S)Ql−1 6= 0 or Ql−1βm−1(S, T )T l−1 6= 0.

Proof. We will prove (a); the proofs of (b) and (c) are similar. Let n =
m+ l − 1. By the previous lemma,

βn(S +Q,T ) =
n∑
k=0

(
n

k

)
Qn−kβk(S, T )Tn−k.

Note that if k ≥ m, then βk(S, T ) = 0, and if k < m, then n− k > n−m =
l − 1 and Qn−k = 0. Therefore βn(S +Q,T ) = 0. Similarly

βn−1(S +Q,T ) =
n−1∑
k=0

(
n− 1

k

)
Qn−1−kβk(S, T )Tn−1−k

=

(
n− 1

m− 1

)
Ql−1βm−1(S, T )T l−1.

Thus S+Q is a strict left n-inverse if and only if Ql−1βm−1(S, T )T l−1 6= 0.

Corollary 3. If S is a left inverse (or a right inverse or an inverse) of
T and Q is a nilpotent operator of order l such that [S,Q] = 0, then S +Q
is a strict left l-inverse (or a strict right l-inverse or a strict l-inverse) of T.

Proof. Note that in this case

βl−1(S +Q,T ) = (l − 1)Ql−1β0(S, T )T l−1

= (l − 1)Ql−1T l−1 6= 0.

Otherwise, Ql−1T l−1 = 0 implies that

Sl−1Ql−1T l−1 = Ql−1Sl−1T l−1 = Ql−1 = 0,

which contradicts Ql−1 6= 0.
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Now we use Theorem 2 to construct examples of left n-inverses. We recall

βn(S, T ) = Sβn−1(S, T )T − βn−1(S, T ).

Lemma 4. If S is a left n-inverse of T, then

Siβn−1(S, T )T i = βn−1(S, T ) for i ≥ 0.

In particular, if S is a strict left n-inverse of T, then βn−1(S, T )T i 6= 0 for
i ≥ 0.

The first example seems to indicate an intimate relation between left
n-inverses of T and the Fredholm index of T. We will construct our examples
on a separable Hilbert space H.

Example 5. Let U be the unilateral shift on H, that is, if {ei : i ≥ 0}
is an orthonormal basis of H, then Uei = ei+1 for i ≥ 0. Let T = Un for
some fixed n ≥ 2, and let S be a left inverse of T defined by

Sei+n = ei for i ≥ 0 and Sei = 0 for 0 ≤ i ≤ n− 1.

Fix l such that 2 ≤ l ≤ n. Let Q be the nilpotent operator of order l defined
by

Qe0+kn = 0, Qei+1+kn = ei+kn for 0 ≤ i ≤ l − 2, k ≥ 0,

Qei+kn = 0 for l ≤ i ≤ n− 1, k ≥ 0.

Then S + Q is a strict left l-inverse of T and S + Q is not invertible. We
need to show that QS = SQ. For notational simplicity, we set l = 2 and
n = 3. Then

Se0 = Se1 = Se2 = 0, Sei+3 = ei for i ≥ 0,

Qe3k = 0, Qe3k+1 = e3k, Qe3k+2 = 0 for k ≥ 0.

Therefore

QSe0 = Q(0) = 0, QSe1 = Q(0) = 0, QSe2 = Q(0) = 0,

SQe0 = S(0) = 0, SQe1 = Se0 = 0, SQe2 = S(0) = 0,

and for k ≥ 1,

QSe3k = Qe3(k−1) = 0, SQe3k = S(0) = 0,

QSe3k+1 = Qe3(k−1)+1 = e3(k−1), SQe3k+1 = Se3k = e3(k−1),

QSe3k+2 = Qe3(k−1)+2 = 0, SQe3k+2 = S(0) = 0.

Let T be a left invertible operator with Fredholm index −n. The above
example suggests the question: Is it always possible to construct a strict
left k-inverse of T for each k ≤ n? The second example is inspired by the
structure of sub-Jordan operators [1].

Example 6. Let S be a strict left m-inverse (or a strict right m-inverse
or a strict m-inverse) of T . Let Sl and Tl be two operators on the direct sum
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of l copies of H,

Sl =


S 0 · · · 0

0 S
. . .

...
...

. . .
. . . 0

0 · · · 0 S

 , Ql =


0 cI · · · 0

0 0
. . .

...
...

. . .
. . . cI

0 · · · 0 0

 ,

Tl =


T 0 · · · 0

0 T
. . .

...
...

. . .
. . . 0

0 · · · 0 T


where c 6= 0 is a constant. Then Sl +Ql is a strict left n-inverse (or a strict
right n-inverse or a strict n-inverse) of Tl where n = m + l − 1. Again the
claim follows by a direct computation:

βn−1(Sl +Ql, Tl) =

(
n− 1

m− 1

)
Ql−1l βm−1(Sl, Tl)T

l−1
l

= cl−1
(
n− 1

m− 1

)


0 0 · · · βm−1(S, T )T l−1

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0

 6= 0

since by Lemma 4, βm−1(S, T )T l−1 6= 0.

If S is a strict left m-inverse of T and Q is a nilpotent operator of order l,
the next example shows that when m > 1, it is possible that S + Q is not
a strict left n-inverse with n = m + l − 1. So the results in Theorem 2 and
Corollary 3 are sharp.

Example 7. Let S1, T1, Q1 ∈ B(H) and

S =

[
S1 0

0 I

]
, Q =

[
0 0

0 Q1

]
, T =

[
T1 0

0 I

]
where S1 a strict left m-inverse of T1 and Q1 nilpotent operator of order l.
It is easy to see that S a strict left m-inverse of T . Note also that I +Q1 is
a strict l-inverse of I. Since for any k > 0,

βk(S +Q,T ) =

[
βk(S1, T1) 0

0 βk(I +Q1, I)

]
,

S +Q is a strict left n-inverse of T with n = max {m, l}. But max {m, l} <
m+ l − 1 for m > 1.
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We now attempt to study the converse of Theorem 2. That is, to what
extent does a left n-inverse S of T arise as a sum of a left l-inverse of T and
a nilpotent operator? We first observe that if S is a left n-inverse of T and
if in addition ST = TS, then βn(T, S) = βn(S, T ) = 0, thus S is also a right
n-inverse of T. That is, S is an n-inverse of T . This leads to the following
proposition which can be viewed as a partial converse of Theorem 2(c).

Proposition 8. If S is an n-inverse of T and ST = TS, then T is
invertible and S = T−1 +Q where Qn = 0 and QT = TQ.

Proof. It is clear that if T has an n-inverse S, then T is invertible. To
prove the proposition, define Q as

Q = S − T−1 or S = T−1 +Q.

Since by assumption ST = TS and TT−1 = T−1T, we have QT = TQ. Now
by Lemma 1,

0 = βn(T−1 +Q,T ) =

n∑
k=0

(
n

k

)
Qn−kβk(T

−1, T )Tn−k

=

(
n

0

)
Qn−0β0(T

−1, T )Tn−0 = QnTn

since βk(T
−1, T ) = 0 for k ≥ 1. Thus Qn = 0 since T is invertible.

We next show that the condition ST = TS is not needed when n = 2.

Proposition 9. S is a 2-inverse of T if and only if ST = TS and
either S is a left 2-inverse of T , or S is a right 2-inverse of T.

Proof. By definition, S being a 2-inverse of T implies that

(4) S2T 2 − 2ST + I = 0, T 2S2 − 2TS + I = 0.

Therefore

(5) S(2T − ST 2) = I, (2T − T 2S)S = I.

So both 2T −ST 2 and 2T −T 2S are the inverses of S. Thus ST 2 = T 2S and
S2T 2 = T 2S2. Now substituting S2T 2 = T 2S2 into (4), we get ST = TS.

The following example shows that the above result cannot extend to
n ≥ 3.

Example 10. For any two constants a 6= 0 and b 6= 0, let

S =

[
1 0

a 1

]
, T =

[
1 b

0 1

]
.

A direct computation shows that S is a strict 3-inverse of T. But

ST =

[
1 b

a ab+ 1

]
6= TS =

[
1 + ab b

a 1

]
.
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So S 6= T−1 +Q for any nilpotent Q such that Q3 = 0 and QT−1 = T−1Q.
Nevertheless

S = I +Q1 where I =

[
1 0

0 1

]
and Q1 =

[
0 0

a 0

]
.

Furthermore I is a strict 2-inverse of T , Q2
1 = 0 and Q1 · I = I ·Q1.

By combining the previous two results, we get the following corollary
which gives a complete characterization of a 2-inverse S of T.

Corollary 11. If T ∈ B(X) has a 2-inverse S, then S = T−1 + Q
where Q2 = 0 and QT−1 = T−1Q.

By Corollary 11, the matrix

T =

[
λ 0

0 µ

]
, λ 6= 0, µ 6= 0, λ 6= µ,

does not have a strict 2-inverse since the only Q such that QT = TQ is a
multiple of the identity, which is not nilpotent. A direct calculation shows
that T has neither a strict left 2-inverse nor a strict right 2-inverse.

When X is a finite-dimensional vector space, if S is a left inverse of T,
then in fact S is an inverse of T. Thus we ask: if S is a left n-inverse of T
on a finite-dimensional vector space, is S automatically an n-inverse of T?

3. Products and tensor products of left n-invertible operators.
In this section we first discuss the product of left n-inverses.

Lemma 12. Assume S1, S2, T1, T2 ∈ B(X) and [S1, S2] = [T1, T2] =
[T1, S2] = 0. Then

βn(S1S2, T1T2) =
n∑
k=0

(
n

k

)
Sn−k1 βk(S1, T1)T

n−k
1 βn−k(S2, T2)(6)

=
n∑
k=0

(
n

k

)
βk(S1, T1)S

k
2βn−k(S2, T2)T

k
2 .

Proof. We first give a heuristic argument. Note that

(y1y2x1x2 − 1)n = ([y1x1 − 1] + y1[y2x2 − 1]x1)
n

=

n∑
k=0

(
n

k

)
yn−k1 (y1x1 − 1)kxn−k1 (y2x2 − 1)n−k.

The lemma follows by substituting S1 for y1, T1 for x1, S2 for y2 and T2 for
x2 in the above formula using the functional calculus defined in (1).

For clarity, we now prove the lemma by induction. For n = 1, note that

Left side of (6) = β1(S1S2, T1T2) = S1S2T1T2 − I.
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Since by definition β0(S1, T1) = β0(S2, T2) = I,

Right side of (6) =
1∑

k=0

(
1

k

)
S1−k
1 βk(S1, T1)T

1−k
1 β1−k(S2, T2)

= S1β0(S1, T1)T1β1(S2, T2) + β1(S1, T1)β0(S2, T2)

= S1T1(S2T2 − I) + (S1T1 − I)

= S1T1S2T2 − S1T1 + S1T1 − I = S1T1S2T2 − I
= S1S2T1T2 − I,

where in the last equality we use the assumption that T1 and S2 are com-
muting. Thus (6) holds for n = 1. Assume now (6) holds for n. By (2) and
the induction hypothesis,

βn+1(S1S2, T1T2) = S1S2βn(S1S2, T1T2)T1T2 − βn(S1S2, T1T2)

= S1S2βn(S1S2, T1T2)T1T2 − S1βn(S1S2, T1T2)T1

+ S1βn(S1S2, T1T2)T1 − βn(S1S2, T1T2)

= S1

[ n∑
k=0

(
n

k

)
Sn−k1 βk(S1, T1)T

n−k
1 [S2βn−k(S2, T2)T2 − βn−k(S2, T2)]

]
T1

+

n∑
k=0

(
n

k

)
Sn−k1 [S1βk(S1, T1)T1 − βk(S1, T1)]Tn−k1 βn−k(S2, T2)

= S1

[ n∑
k=0

(
n

k

)
Sn−k1 βk(S1, T1)T

n−k
1 βn+1−k(S2, T2)

]
T1

+

n∑
k=0

(
n

k

)
Sn−k1 βk+1(S1, T1)T

n−k
1 βn−k(S2, T2)

=

n∑
k=0

(
n

k

)
Sn−k+1
1 βk(S1, T1)T

n−k+1
1 βn+1−k(S2, T2)

+

n+1∑
k=1

(
n

k − 1

)
Sn+1−k
1 βk(S1, T1)T

n+1−k
1 βn+1−k(S2, T2)

=
n+1∑
k=0

[(
n

k

)
+

(
n

k − 1

)]
Sn+1−k
1 βk(S1, T1)T

n+1−k
1 βn+1−k(S2, T2)

=

n+1∑
k=0

(
n+ 1

k

)
Sn+1−k
1 βk(S1, T1)T

n+1−k
1 βn+1−k(S2, T2),

where in the third and the fifth equalities we use the assumption that
[S1, S2] = [T1, T2] = [T1, S2] = 0, in the fourth equality we use (2), and
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the remaining equalities follow from rewriting the summation and the com-
binatorial fact that

(
n
k−1
)

+
(
n
k

)
=
(
n+1
k

)
and the convention that

(
n
k−1
)

= 0

for k = 0 and
(
n
k

)
= 0 for k = n+ 1. This proves that (6) holds for n+ 1.

Part of the following theorem belongs to Duggal and Müller [17] (see the
remark after this theorem).

Theorem 13. Assume S1, S2, T1, T2 ∈ B(X) and [S1, S2] = [T1, T2] =
[T1, S2] = 0.

(a) If S1 is a left m-inverse of T1 and S2 is a left l-inverse of T2, then
S1S2 is a left n-inverse of T1T2 with n = m + l − 1. Furthermore
S1S2 is a strict left n-inverse of T1T2 if and only if

βm−1(S1, T1)βl−1(S2, T2) 6= 0.

(b) If S1 is a right m-inverse of T1 and S2 is a right l-inverse of T2,
then S1S2 is a right n-inverse of T1T2 with n = m + l − 1. Fur-
thermore S1S2 is a strict right n-inverse of T1T2 if and only if
βl−1(T2, S2)βm−1(T1, S1) 6= 0.

(c) If S1 is a m-inverse of T1 and S2 is a l-inverse of T2, then S1S2 is
a n-inverse of T1T2 with n = m+ l−1. Furthermore S1S2 is a strict
n-inverse of T1T2 if and only if either βm−1(S1, T1)βl−1(S2, T2) 6= 0
or βl−1(T2, S2)βm−1(T1, S1) 6= 0.

Proof. The proof is straightforward by using Lemma 12 and similar to
the proof of Theorem 2. We will only prove (a). Let n = m + l − 1. Since
βk(S1, T1) = 0 for k ≥ m and βn−k(S2, T2) = 0 for k < m, we have

βn(S1S2, T1T2) =
n∑
k=0

(
n

k

)
Sn−k1 βk(S1, T1)T

k
1 βn−k(S2, T2) = 0.

Furthermore, by Lemma 4, Sl−11 βm−1(S1, T1)T
l−1
1 =βm−1(S1, T1), so we have

βn−1(S1S2, T1T2) =

n−1∑
k=0

(
n− 1

k

)
Sn−1−k1 βk(S1, T1)T

n−1−k
1 βn−1−k(S2, T2)

=

(
n− 1

m− 1

)
Sl−11 βm−1(S1, T1)T

l−1
1 βl−1(S2, T2)

=

(
n− 1

m− 1

)
βm−1(S1, T1)βl−1(S2, T2).

This completes the proof of the theorem.

Remark 14. In fact the condition [T1, S2] = 0 is not needed in the first
half of the above theorem as shown by [17, Corollary 2.6].

The following result can also be easily seen by definition; we still state
it for completeness.
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Corollary 15. Assume S1, S2, T1, T2∈B(X) and [S1, S2]=[T1, T2] = 0.
If S1 is a left inverse (or a right inverse or an inverse) of T1 and S2 is a
strict left l-inverse (or a right inverse or an inverse) of T2, then S1S2 is a
strict left l-inverse (or a right inverse or an inverse) of T1T2.

Again if m > 1 and l > 1, then βm−1(S1, T1)βl−1(S2, T2) could be zero.
An example is given in [17, p. 121]. Here we give a more transparent example
by using the direct sum. Let

S1 =

[
A1 0

0 I

]
, S2 =

[
I 0

0 A2

]
, T1 =

[
B1 0

0 I

]
, T2 =

[
I 0

0 B2

]
,

where A1, B1 ∈ B(H), A1 is a strict left m-inverse of B1 and A2 is a strict
left l-inverse of B2. Since for any k > 0,

βk(S1S2, T1T2) =

[
βk(A1, B1) 0

0 βk(A2, B2)

]
,

S1S2 is a strict left n-inverse of T1T2 with n = max{m, l}. But n=max{m, l}
< m+ l − 1 if m > 1 and l > 1.

Let X and Y be two Banach spaces, and let X ⊗ Y denote the tensor
product Banach space with an appropriate norm. Again for our approach
which is mostly algebraic, the norm seems irrelevant as long as it has the
property that if A ∈ B(X) and B ∈ B(Y ), then A⊗ B ∈ B(X ⊗ Y ). More
precise results for tensor products of operators are obtained by applying
Theorems 2 and 13 to tensor products of operators. We will first prove a
lemma which is similar to one of the several equivalent conditions for a
strict left n-inverse in [17, Theorem 2.10]. See also a similar result for an
m-isometry in [18, Proposition 3].

Lemma 16. If S is a strict left m-inverse of T, then for any n ≥ m,
the list of operators {Sn−kβk(S, T )Tn−k : k = 0, 1, . . . ,m− 1} or the list of
operators {βk(S, T )Tn−k : k = 0, 1, . . . ,m−1} is linearly independent. If Q is
a nilpotent operator of order l, then the list of operators {I,Q,Q2, . . . , Ql−1}
is linearly independent.

Proof. We will prove {βk(S, T )Tn−k : k = 0, 1, . . . ,m − 1} is linearly
independent. Assume for some constants ak,

m−1∑
k=0

akβk(S, T )Tn−k = 0.

Then multiplying the above equation on the left by S and on the right by
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T and subtracting the resulting two equations, we obtain

m−1∑
k=0

akSβk(S, T )TTn−k −
m−1∑
k=0

akβk(S, T )Tn−k

=
m−1∑
k=0

ak[Sβk(S, T )T − βk(S, T )]Tn−k =
m−1∑
k=0

ak[βk+1(S, T )]Tn−k = 0.

Applying the procedure m− 2 more times, we get

m−1∑
k=0

akβk+j(S, T )Tn−k = 0, j = 1, . . . ,m− 1.

Set j = m − 1; then a0 = 0 since by Lemma 4, βm−1(S, T )Tn 6= 0. Now
setting j = m− 2, we find a1 = 0 and so on. Therefore all ak are zero.

We also state the following simple fact as a lemma. For f ∈ X and
g∗ ∈ X∗ (the dual space of X), 〈f, g∗〉 = g∗(f).

Lemma 17. Let Ai ∈ B(X) and Bi ∈ B(Y ) for i = 1, . . . , n. If A1⊗B1+
· · · + An ⊗ Bn = 0 and {A1, . . . , An} is linearly independent, then Bi = 0
all i.

Proof. Without loss of generality, assume B1 6= 0. Then there exist y ∈ Y
and y ∈ Y ∗ such that y∗(B1y) 6= 0. Let x ∈ X and x∗ ∈ X∗. Then

〈[A1 ⊗B1 + · · ·+An ⊗Bn](x⊗ y), x∗ ⊗ y∗〉 = x∗
( n∑
i=1

y∗(Biy)Aix
)

= 0.

Since x and x∗ are arbitrary,
∑n

i=1 y
∗(Biy)Ai = 0, contradicting the linear

independence of {A1, . . . , An}.

Theorem 18. Assume S, T ∈ B(X) and Q ∈ B(Y ). Then any two of
statements (a)–(c) imply the third, where:

(a) S is a strict left m-inverse of T.
(b) Q is a nilpotent operator of order l.
(c) S⊗ I + I ⊗Q is a strict left n-inverse of T ⊗ I where n = m+ l− 1.

Proof. We first show (a) and (b) imply (c). Indeed, by Theorem 2, we
only need to note that

βn−1(S ⊗ I + I ⊗Q,T ⊗ I) = βm−1(S, T )T l−1 ⊗Ql−1 6= 0,

since by Lemma 4, βm−1(S, T )T l−1 6= 0.
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We next show (a) and (c) imply (b). By Lemma 1 and (a),

βn(S ⊗ I + I ⊗Q,T ⊗ I) =
n∑
k=0

(
n

k

)
βk(S, T )Tn−k ⊗Qn−k

=

m−1∑
k=0

(
n

k

)
βk(S, T )Tn−k ⊗Qn−k = 0.

Now by Lemma 16, {βk(S, T )Tn−k : k = 0, 1, . . . ,m−1} is linearly indepen-
dent, so Qn−k = 0 for 0 ≤ k ≤ m− 1. Therefore Ql = 0 for l = n− (m− 1).
Also Ql−1 6= 0, since otherwise S⊗I+I⊗Q will not be a strict left n-inverse
of T ⊗ I.

Finally, we prove that (b) and (c) imply (a). Again by Lemma 1 and (b),

βn(S ⊗ I + I ⊗Q,T ⊗ I) =

n∑
k=0

(
n

k

)
βk(S, T )Tn−k ⊗Qn−k

=

n∑
k=n−(l−1)

(
n

k

)
βk(S, T )Tn−k ⊗Qn−k = 0.

By the linear independence of {Qn−k : n− (l− 1) ≤ k ≤ n} and Lemma 17,

βk(S, T )Tn−k = 0 for n− (l − 1) ≤ k ≤ n.
In particular, letting k = n, n−1, we see that βn(S, T ) = 0 and βn−1(S, T )T
= 0. But by Lemma 4,

βn−1(S, T ) = Sβn−1(S, T )T.

Thus βn−1(S, T ) = 0. By Lemma 4 again and the fact βn−2(S, T )T 2 = 0
(k = n− 2), we have

βn−2(S, T ) = Sβn−2(S, T )T = S2βn−2(S, T )T 2 = 0.

Continuing this process until k = n − (l − 1), we obtain βm(S, T ) = 0 for
m = n − (l − 1). Also βm−1(S, T ) 6= 0, since otherwise S ⊗ I + I ⊗ Q will
not be a strict left n-inverse of T ⊗ I.

Now we state a theorem for tensor products of left n-inverses which essen-
tially puts together Theorems 2.11, 2.12 and 2.13 from Duggal and Müller [17].
The proof is similar to the proof of the above theorem by using Lemma 12
instead of Lemma 1, but it is short, so we include it for completeness.

Theorem 19 ([17]). Assume S1, T1 ∈ B(X) and S2, T2 ∈ B(Y ). Then
any two of statements (a)–(c) imply the third, where:

(a) S1 is a strict left m-inverse of T1.
(b) S2 is a strict left l-inverse of T2.
(c) S1 ⊗ S2 is a strict left n-inverse of T1 ⊗ T2 where n = m+ l − 1.
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Proof. We first show (a) and (b) imply (c). Indeed, by Theorem 13, we
only need to note that

βn−1(S1 ⊗ S2, T1 ⊗ T2) = βm−1(S1, T1)⊗ βl−1(S2, T2) 6= 0.

We next show (a) and (c) imply (b). By Lemma 12 and (a),

βn(S1 ⊗ S2, T1 ⊗ T2) =
n∑
k=0

(
n

k

)
Sn−k1 βk(S1, T1)T

n−k
1 ⊗ βn−k(S2, T2)

=

m−1∑
k=0

(
n

k

)
Sn−k1 βk(S1, T1)T

n−k
1 ⊗ βn−k(S2, T2) = 0.

Now by Lemma 16, {Sn−k1 βk(S1, T1)T
n−k
1 : k = 0, 1, . . . ,m − 1} is linearly

independent, so βn−k(S2, T2) = 0 for 0 ≤ k ≤ m−1. Therefore βl(S2, T2) = 0
for l = n− (m− 1). Also βl−1(S2, T2) 6= 0, since otherwise S1 ⊗ S2 will not
be a strict left n-inverse of T1 ⊗ T2.

By symmetry, (b) and (c) also imply (a).

We remark that there are also right n-inverses and n-inverses versions of
the above two theorems.

4. A promising conjecture. Can we improve Theorems 18 and 19?
We make the following conjecture which, if confirmed, completely charac-
terizes when a tensor product of two operators is a left n-inverse. A related
conjecture for tensor products of n-isometries on Hilbert spaces has been
proved by the author in [18, Theorem 7]; in fact, the proof of Proposition 23
below is adapted from the n-isometries case.

Conjecture 20. The tensor product S1 ⊗ S2 is a strict left n-inverse
of T1⊗T2 if and only if there exist m and l such that m+ l− 1 = n and S1
is a strict left m-inverse of (1/λ)T1 for some constant λ and S2 is a strict
left l-inverse of λT2.

We now prove the conjecture for n = 1, 2, 3. The proof is by a careful
algebra argument and is similar in nature to the proof for n-isometries for
n = 1, 2, 3 [11, Theorems 3.2 and 4.2]. It seems that the only fact used is
Lemma 17. Note we use I to denote the identity on both X and Y.

Proposition 21. The above conjecture is true for n = 1, 2, 3.

Proof. We first deal with the case n = 2. Assume

(7) S2
1T

2
1 ⊗ S2

2T
2
2 − 2S1T1 ⊗ S2T2 + I ⊗ I = 0.

Case 1: S1T1 = aI for some constant a. That is, S1 is a strict left
1-inverse of (1/a)T1. Then

(8) S2
1T

2
1 = S1(S1T1)T1 = S1(aI)T1 = aS1T1 = a2I.
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Therefore equation (7) becomes

a2I ⊗ S2
2T

2
2 − 2aI ⊗ S2T2 + I ⊗ I = I ⊗ (a2S2

2T
2
2 − 2aS2T2 + I) = 0.

So a2S2
2T

2
2 − 2aS2T2 + I = 0 and S2 is a left 2-inverse of aT2. Strictness

follows from Theorem 19.

Case 2: S2
1T

2
1 = aI + bS1T1. Then

(aI + bS1T1)⊗ S2
2T

2
2 − 2S1T1 ⊗ S2T2 + I ⊗ I

= I ⊗ aS2
2T

2
2 + S1T1 ⊗ bS2

2T
2
2 − 2S1T1 ⊗ S2T2 + I ⊗ I

= I ⊗ (aS2
2T

2
2 + I) + S1T1 ⊗ (bS2

2T
2
2 − 2S2T2) = 0.

Therefore
aS2

2T
2
2 + I = 0 and bS2

2T
2
2 − 2S2T2 = 0

Clearly a 6= 0, b 6= 0. The two equations above yield S2T2 = − b
2aI. By

symmetry, this reduces to Case 1.
Now we deal with the case n = 3. To ease notation we let

Ai = Si1T
i
1, Bi = Si2T

i
2, i = 1, 2, 3.

Then S1 ⊗ S2 being a strict left 3-inverse of T1 ⊗ T2 means

(9) A3 ⊗B3 − 3A2 ⊗B2 + 3A1 ⊗B1 − I ⊗ I = 0.

Case 1: A1 = aI. That is, S1 is a strict left 1-inverse of (1/a)T1. Fur-
thermore, as in (8), A2 = a2I and A3 = a3I. Thus equation (9) becomes

I ⊗ (a3B3 − 3a2B2 + 3aB1 − I) = 0.

Hence S2 is a left 3-inverse of aT2.

Case 2: A2 = aI+ bA1, and I and A1 are linearly independent. We also
assume I and B1 are linearly independent. Otherwise by symmetry, this
reduces to Case 1. As in (8),

A3 = aA1 + bA2 = aA1 + b(aI + bA1) = abI + (a+ b2)A1.

Plugging the formulas for A2 and A3 into (9) and rearranging the terms, we
obtain

I ⊗ (abB3 − 3aB2 − I) +A1 ⊗ [(a+ b2)B3 − 3bB2 + 3B1] = 0.

Therefore

abB3 − 3aB2 − I = 0,(10)

(a+ b2)B3 − 3bB2 + 3B1 = 0.(11)

Write (10) as a(bB3 − 3B2) = I and plug this into (11) to obtain

(a+ b2)B3 − 3bB2 + 3B1 = aB3 + b(bB3 − 3B2) + 3B1(12)

= aB3 +
b

a
I + 3B1 = 0.
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Multiplying (12) by b and subtracting (10) gives

(13) 3aB2 + 3bB1 +

(
b2

a
+ 1

)
I = 0.

Multiply (13) on the left by S2 and on the right by T2 to get

(14) 3aB3 + 3bB2 +

(
b2

a
+ 1

)
B1 = 0.

Now (14) minus 3 times (12) gives

(15) 3bB2 +

(
b2

a
+ 1− 9

)
B1 − 3

b

a
I = 0.

Finally, multiplying (13) by b/a and subtracting (15) yields(
3
b2

a
− b2

a
+ 8

)
B1 +

[
b

a

(
b2

a
+ 1

)
+ 3

b

a

]
= 0.

Since I and B1 are linearly independent, we have

2
b2

a
+ 8 = 0 and

b

a

(
b2

a
+ 1

)
+ 3

b

a
= 0.

The two equations above reduce to b2 = −4a. Set λ = 2/b. Then b = 2/λ
and a = −b2/4 = −1/λ2. Therefore

A2 − aI − bA1 = A2 −
2

λ
A1 +

1

λ2
I

=
1

λ2
(λ2A2 − 2λA1 + I) = 0.

That is, S1 is a left 2-inverse of λT1. Now by Theorem 19, S2 is a left 2-inverse
of (1/λ)T2. The proof is complete.

Is there an analogous conjecture related to Theorem 18? In fact in this
case we have a theorem. The proof uses the approximate point spectrum
σap(Q) of an operator Q instead of the algebraic approach as in the previous
proposition.

Theorem 22. Assume S, T ∈ B(X) and Q ∈ B(Y ). The tensor sum
S ⊗ I + I ⊗Q is a strict left n-inverse of T ⊗ I if and only if there exist m
and l such that m+ l− 1 = n and S + λI is a strict left m-inverse of T for
some constant λ and Q− λI is a nilpotent operator of order l.

Proof. The “if” part is proved in Theorem 18. We will prove the “only
if” part. Let λ be any number in σap(Q). That is, there is yi ∈ Y of unit
norm such that (Q − λI)yi → 0 as i → ∞. Let y∗i ∈ Y ∗ be such that
〈yi, y∗i 〉 = y∗i (yi) = 1. It is clear that for any j ≥ 0,

(16) 〈Qjyi, y∗i 〉 → λj as i→∞.
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Then for any x ∈ X and x∗ ∈ X∗, by Lemma 1,

0 = 〈βn(S ⊗ I + I ⊗Q,T ⊗ I)(x⊗ yi), x∗ ⊗ y∗i 〉

=

〈[ n∑
k=0

(
n

k

)
βk(S, T )Tn−k ⊗Qn−k

]
(x⊗ yi), x∗ ⊗ y∗i

〉

=

n∑
k=0

(
n

k

)
〈βk(S, T )Tn−kx, x∗〉〈Qn−kyi, y∗i 〉.

Taking the limit by using (16), we obtain

n∑
k=0

(
n

k

)
〈βk(S, T )Tn−kx, x∗〉λn−k =

〈 n∑
k=0

(
n

k

)
λn−kβk(S, T )Tn−kx, x∗

〉
= 〈βn(S + λI, T )x, x∗〉 = 0,

where we have used Lemma 1 in a reverse way. Therefore S + λI is a left
n-inverse of T . Let m ≤ n be such that S+λI is a strict left m-inverse of T .
Note that

(S + λI)⊗ I + I ⊗ (Q− λI) = S ⊗ I + I ⊗Q.

Set l = n−(m−1); by Theorem 18, Q−λI a nilpotent operator of order l.

We remark that the n-isometries version of the above result for tensor
products of operators on Hilbert spaces is more involved and is proved to be
almost true by the author in [18, Theorem 12]. The above approach leads
to the confirmation of Conjecture 20 in a very general case. We need to
make the following technical definition. For S, T ∈ B(X), we say S and T
are not orthogonal if there exist λ ∈ σap(T ), µ ∈ σap(S∗), xi ∈ X, x∗i ∈ X∗
such that ‖xi‖ = ‖x∗i ‖ = 1, (T − λI)xi → 0 and (S∗ − µI)x∗i → 0 but
〈xi, x∗i 〉 = x∗i (xi) 9 0 as i → ∞. By passing to a subsequence we can
assume x∗i (xi)→ α 6= 0.

Proposition 23. Let S1, T1 ∈ B(X) and S2, T2 ∈ B(Y ). Assume either
S1 and T1 are not orthogonal, or S2 and T2 are not orthogonal. Then S1⊗S2
is a strict left n-inverse of T1 ⊗ T2 if and only if there exist m and l such
that m + l − 1 = n and S1 is a strict left m-inverse of (1/α)T1 for some
constant α and S2 is a strict left l-inverse of αT2.

Proof. Assume S1 ⊗ S2 is a strict left n-inverse of T1 ⊗ T2, and S1 and
T1 are not orthogonal. Let λ ∈ σap(T1), µ ∈ σap(S∗1), xi ∈ X, x∗i ∈ X∗

be such that ‖xi‖ = ‖x∗i ‖ = 1, (T1 − λI)xi → 0, (S∗1 − µI)x∗i → 0 and
〈xi, x∗i 〉 = x∗i (xi) → α 6= 0 as i → ∞. Note that λ 6= 0 since if S1 ⊗ S2 is
a strict left n-inverse of T1 ⊗ T2, then T1 ⊗ T2 is left invertible, so both T1
and T2 are left invertible. Similarly µ 6= 0 since both S1 and S2 are right
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invertible. Then for any y ∈ Y and y∗ ∈ Y ∗,

0 = 〈βn(S1 ⊗ S2, T1 ⊗ T2)xi ⊗ y, x∗i ⊗ y∗〉

=
n∑
k=0

(−1)n−k
(
n

k

)
〈[Sk1T k1 ⊗ Sk2T k2 ]xi ⊗ y, x∗i ⊗ y∗〉

=
n∑
k=0

(−1)n−k
(
n

k

)
〈T k1 xi, S∗k1 x∗i 〉〈Sk2T k2 y, y∗〉.

By letting i→∞ and noting that (T k1 −λkI)xi → 0 and (S∗k1 −µkI)x∗i → 0,
we obtain

lim
i→∞
〈T k1 xi, S∗k1 x∗i 〉 = lim

i→∞
〈λkxi, µkx∗i 〉 = λkµk lim

i→∞
x∗i (xi) = λkµkα.

Therefore

0 =
n∑
k=0

(−1)n−k
(
n

k

)
λkµkα〈Sk2T k2 y, y∗〉

= α

〈 n∑
k=0

(−1)n−k
(
n

k

)
Sk2 (λµT2)

ky, y∗
〉

= α〈βn(S2, λµT2)y, y
∗〉.

Hence βn(S2, λµT2) = 0 and S2 is a left n-inverse of λµT2. Let l ≤ n be such
that S2 is a strict left l-inverse of λµT2. Set m = n− (l−1); by Theorem 19,
S1 is a strict left m-inverse of (1/λµ)T1.

One can replace the condition that S1 and T1 are not orthogonal by the
condition [S1, T1] = 0. In this case, Sk1T

k
1 = (S1T1)

k. Let λ ∈ σap(S1T1),
xi ∈ X, x∗i ∈ X∗ be such that ‖xi‖ = ‖x∗i ‖ = 1, (S1T1 − λI)xi → 0 and
〈xi, x∗i 〉 = 1. Noting that λ 6= 0, the rest of the proof is similar.

5. Essential left n-inverses and left n-invertible elementary op-
erators. This last section really consists of a few remarks. In Duggal and
Müller [17], S is said to be an essential left n-inverse of T if

βn(S, T ) =

n∑
k=0

(−1)n−k
(
n

k

)
SkT k = K

for some compact operator K ∈ K(X). Furthermore it is shown in [17] that
by using a construction known in the literature as the Sadovskĭı/Buoni,
Harte, Wickstead construction [23, p. 159], one can represent the Calkin
algebra B(X)/K(X) as an algebra of operators on a suitable Banach space
and thus all the previous results on left n-invertible operators transfer to
corresponding results on essentially left n-invertible operators.
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As mentioned in the introduction, an alternative approach is to work on
a Banach algebra B with identity. Let s and t be two elements in B. We say
s is a left n-inverse of t if

βn(s, t) =

n∑
k=0

(−1)n−k
(
n

k

)
sktk = 0.

All results, except possibly Theorem 22 and Proposition 23 where the ap-
proximate point spectrum and adjoint operators are used for the proofs,
seem to hold because of the purely algebraic approach. For the small cases
n = 1, 2, 3 in Theorem 22, an algebraic proof without using adjoint operators
can also be given as in Proposition 21.

Now we introduce elementary operators. Let S1 ∈ B(X), S2 ∈ B(Y ).
The left multiplication operator LS1 and the right multiplication RS2 are
defined by

LS1(W ) = S1W, RS2(W ) = WS2, W ∈ B(Y,X).

The elementary operator τS1S2 of length one and the generalized derivation
δS1S2 on B(Y,X) are defined by

τS1S2(W ) = S1WS2, δS1S2(W ) = S1W −WS2, W ∈ B(Y,X).

Note that τS1S2 = LS1RS2 , δS1S2 = LS1−RS2 and [LS1 , RS2 ] = 0. Elementary
operators such as τS1S2 and δS1S2 have been studied extensively in the past
several decades: see for example the recent book [14] and also [11], [12], [15],
[17], [18], [25] for works related to our paper. We will study left n-invertible
operator τS1S2 on B(Y,X) and refer to Duggal and Müller [17] for the study
of left n-invertible operators τS1S2 on an operator ideal J of B(Y,X) where
by using the approach of [20], one can represent J as a tensor product
Banach space. For S1, T1 ∈ B(X) and S2, T2 ∈ B(Y ), note that

βn(LS1 , LT1) = Lβn(S1,T1) and βn(RS2 , RT2) = Rβn(T2,S2).

Therefore LS1 is a left n-inverse of LT1 on B(Y,X) if and only if S1 is a
left n-inverse of T1 on X, while RS2 is a left n-inverse of RT2 on B(Y,X) if
and only if S2 is a right n-inverse of T2 on Y . Here are a couple of sample
results.

Theorem 24. Let S, T ∈ B(X) and Q ∈ B(Y ). Then δSQ is a strict
left n-inverse of LT on B(Y,X) if and only if there exist m and l such that
m + l − 1 = n and S + λIX is a strict left m-inverse of T on X for some
constant λ and Q− λIY is a nilpotent operator on Y of order l.

Proposition 25. Let S1, T1 ∈ B(X) and S2, T2 ∈ B(Y ). For n = 1, 2, 3,
τS1S2 is a strict left n-inverse of τT1T2 on B(Y,X) if and only if there exist
m and l such that m+ l− 1 = n and S1 is a strict left m-inverse of (1/α)T1
on X for some constant α and S2 is a strict right l-inverse of αT2 on Y.
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Finally we state the following theorem for elementary operators of length
two which in a way combines Theorems 2 and 13. We state the theorem in
a slightly different way to avoid too many notations; we give a short and
direct proof for clarity.

Theorem 26. Let A1, A2 ∈ B(X) and B1, B2 ∈ B(Y ). Assume [A1, A2]
= [B1, B2] = 0. Assume also A1 is a left m-invertible operator, B1 is a right
j-invertible operator and either A2 or B2 is a nilpotent operator of order l.
Then the operator ∆ on B(Y,X) defined by

∆(W ) = A1WB1 +A2WB2, W ∈ B(Y,X),

is a left n-invertible operator with n = m+ j + l − 2.

Proof. Let n1 = m + j − 1. We first prove τA1B1 is a left n1-invertible
operator. By the assumption, let C1 be a left m-inverse of A1 and D1 be a
right j-inverse of B1. We show that τC1D1 is a left n1-inverse of τA1B1 . By
Lemma 12 with S1 = LC1 , S2 = RD1 , T1 = LA1 and T2 = RB1 , for any
W ∈ B(Y,X),

(17) βn1(τC1D1 , τA1B1)(W ) = βn1(LC1RD1 , LA1RB1)(W )

=

n1∑
k=0

(
n1
k

)
Ln1−k
C1

βk(LC1 , LA1)Ln1−k
A1

βn1−k(RD1 , RB1)(W )

=

n1∑
k=0

(
n1
k

)
Cn1−k
1 βk(C1, A1)A

n1−k
1 Wβn1−k(D1, B1) = 0,

since βk(C1, A1) = 0 if k ≥ m and βn1−k(D1, B1) = 0 if k < m = n1−(j−1)
(or n1 − k > j − 1).

Now we show that τC1D1 is in fact a left n-inverse of ∆ on B(Y,X). By
Lemma 1 with T = τC1D1 , S = τA1B1 and Q = τA2B2 , for any W ∈ B(Y,X),

βn(τC1D1 , ∆)(W ) = βn(τC1D1 , τA1B1 + τA2B2)(W )

=

( n∑
k=0

(
n

k

)
τn−kC1D1

βk(τC1D1 , τA1B1)τn−kA2B2

)
(W )

=
n∑
k=0

(
n

k

)
τn−kC1D1

βk(τC1D1 , τA1B1)(An−k2 WBn−k
2 ) = 0,

since if k ≥ n1, then βk(τC1D1 , τA1B1)(An−k2 WBn−k
2 ) = 0 by (17) (with W

being An−k2 WBn−k
2 ), and if k < n1 = n − (l − 1) (or n − k > l − 1) then

An−k2 = 0 or Bn−k
2 = 0 by the assumption that either A2 or B2 is a nilpotent

operator of order l and thus

βk(τC1D1 , τA1B1)(An−k2 WBn−k
2 ) = βk(τC1D1 , τA1B1)(0) = 0.

The proof is complete.



210 C. Gu

Acknowledgements. We thank the referees for helpful suggestions to
improve the presentation of the paper.

References

[1] J. Agler, Sub-Jordan operators: Bishop’s theorem, spectral inclusion, and spectral
sets, J. Operator Theory 7 (1982), 373–395.

[2] J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112 (1990),
1–14.

[3] J. Agler, W. Helton and M. Stankus, Classification of hereditary matrices, Linear
Algebra Appl. 274 (1998), 125–160.

[4] J. Agler and M. Stankus, m-isometric transformations of Hilbert space, I, Integral
Equations Operator Theory 21 (1995), 383–429.

[5] J. Agler and M. Stankus, m-isometric transformations of Hilbert space, II, Integral
Equations Operator Theory 23 (1995), 1–48.

[6] J. Agler and M. Stankus, m-isometric transformations of Hilbert space, III, Integral
Equations Operator Theory 24 (1996), 379–421.

[7] F. Bayart, m-isometries on Banach spaces, Math. Nachr. 284 (2011), 2141–2147.
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