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Products of Lipschitz-free spaces and applications

by

Pedro Levit Kaufmann (São José dos Campos)

Abstract. We show that, given a Banach space X, the Lipschitz-free space over X,
denoted by F(X), is isomorphic to (

∑∞
n=1 F(X))`1 . Some applications are presented, in-

cluding a nonlinear version of Pełczyński’s decomposition method for Lipschitz-free spaces
and the identification up to isomorphism between F(Rn) and the Lipschitz-free space over
any compact metric space which is locally bi-Lipschitz embeddable into Rn and which con-
tains a subset that is Lipschitz equivalent to the unit ball of Rn. We also show that F(M)
is isomorphic to F(c0) for all separable metric spaces M which are absolute Lipschitz
retracts and contain a subset which is Lipschitz equivalent to the unit ball of c0. This
class includes all C(K) spaces with K infinite compact metric (Dutrieux and Ferenczi
(2006) already proved that F(C(K)) is isomorphic to F(c0) for those K using a different
method).

1. Introduction. Let (M,d, 0) be a pointed metric space (that is, a
distinguished point 0 in M , called a base point, is chosen), and consider the
Banach space Lip0(M) of all real-valued Lipschitz functions on M which
vanish at 0, equipped with the norm

‖f‖Lip := inf
x,y∈M,x6=y

|f(x)− f(y)|
d(x, y)

.

On the closed unit ball of Lip0(M), the topology of pointwise convergence
is compact, so Lip0(M) admits a canonical predual, which is called the
Lipschitz-free space over M and denoted by F(M). This space is the clo-
sure in Lip0(M)∗ of span{δx : x ∈M}, where δx is the evaluation functional
defined by δx(f) = f(x). It is readily verified that δ : x 7→ δx is an isometry
from M into F(M). Given 0′ ∈M , it is clear that T : Lip0(M)→ Lip0′(M)
defined by T (f) := f−f(0′) is a weak∗-to-weak∗ continuous isometric isomor-
phism, thus the choice of different base points yields isometrically isomorphic
Lipschitz-free spaces. We refer to [15] for a study of Lipschitz function spaces,
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and to [15] and [5] for an introduction to Lipschitz-free spaces and their basic
properties.

One of the main properties of Lipschitz-free spaces is that they permit
one to interpret Lipschitz maps between metric spaces from the linear point
of view:

Proposition 1.1. LetM and N be pointed metric spaces, let δM and δN
be the isometries that assign to each x ∈M (respectively, x ∈ N) the corre-
sponding evaluation functional δMx on F(M) (respectively, δNx on F(N)), and
suppose that L :M → N is a Lipschitz function such that L(0M ) = 0N . Then
there is a unique linear map L̂ : F(M)→ F(N) such that L̂ ◦ δM = δN ◦ L,
that is, the following diagram commutes:

M

δM

��

L // N

δN

��
F(M)

L̂ // F(N)

Moreover, ‖L̂‖ = ‖L‖Lip.

In particular, if M and N are Lipschitz equivalent (that is, there is a bi-
Lipschitz bijection betweenM and N) then F(M) and F(N) are isomorphic.
The converse is not true, even ifM and N are assumed to be Banach spaces:
if K is an infinite compact metric space, then F(C(K)) is isomorphic to
F(c0), even though C(K) is not Lipschitz equivalent to c0 in general (recall
that if C(K) is uniformly homeomorphic to c0, then it is isomorphic to c0;
see [8]). This first counterexample for the Banach space case was presented
by Dutrieux and Ferenczi [3].

Despite the simplicity of the definition of Lipschitz-free spaces, many
fundamental questions about their structure remain unanswered. Godard [4]
characterized the metric spaces M such that F(M) is isometrically isomor-
phic to a subspace of L1 as exactly those that are isometrically embeddable
into R-trees (that is, connected graphs with no cycles, with the graph dis-
tance); on the other hand, Naor and Schechtman [13] have shown that F(Z2)
(thus also F(R2)) is not isomorphic to any subspace of L1. This prompts the
natural question of characterizing the metric spaces M such that F(M) is
(nonisometrically) isomorphic to L1. Godefroy and Kalton [5] showed that
a Banach space X has the bounded approximation property if and only if
F(X) does, and recently Hájek and Pernecká [7] proved that F(Rn) admits
a Schauder basis, refining a result from [10], and raised the natural (and
still unanswered) question of whether F(F ) admits a Schauder basis for any
given closed subset F ⊂ Rn. Nor is it known to this author whether F(Rn)
is isomorphic to F(Rm) for distinct m,n ≥ 2.
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In this context, we continue the exploration of what could be considered
basic properties of Lipschitz-free spaces and their relation to the underlying
metric spaces. We will show, for instance, that for any given Banach spaceX,
F(X) is isomorphic to (

∑∞
n=1F(X))`1 (Theorem 3.1). This provides in par-

ticular a kind of nonlinear version of Pełczyński’s decomposition method
(Corollary 3.2), which in turn can be used to obtain the above mentioned
example by Dutrieux and Ferenczi of non-Lipschitz equivalent Banach spaces
sharing the same Lipschitz-free space. In fact, we show that F(M) is isomor-
phic to F(c0) for a wider class of metric spaces (Corollary 3.4). We will also
show that, for compact metric spaces M which are locally bi-Lipschitz em-
beddable in Rn, F(M) admits a complemented copy in F(Rn); when more-
over the euclidean ball BRn is bi-Lipschitz embeddable in M , F(M) and
F(Rn) are actually isomorphic (Theorem 3.7). The class of metric spaces
satisfying both properties includes all n-dimensional compact Riemannian
manifolds. We also show that, as a consequence of the construction in the
proof of Theorem 3.1, the Lipschitz-free spaces over any Banach space and
over its unit ball are isomorphic; this provides in particular a partial an-
swer to Hájek and Pernecká’s aforementioned question (see the remark after
Corollary 3.5).

1.1. Notation. We say that two metric spacesM and N are C-Lipschitz
equivalent, for some constant C > 0, if there is a bi-Lipschitz onto map
ϕ : M → N satisfying ‖ϕ‖Lip‖ϕ−1‖Lip ≤ C. Hence M and N are Lipschitz
equivalent if they are C-Lipschitz equivalent for some C > 0; in that case we
also writeM L∼ N . Given two Banach spacesX and Y , we writeX ∼= Y when
X and Y are isometrically isomorphic,X

c
↪→ Y when there is a complemented

(isomorphic) copy of X in Y , and X ' Y when X and Y are isomorphic. If
X and Y are isomorphic, the Banach–Mazur distance between X and Y is
defined by

dBM(X,Y ) := inf{‖T‖ · ‖T−1‖ : T is an isomorphism from X onto Y }.
‖T‖ · ‖T−1‖ is called the (linear) distortion of T . When dBM(X,Y ) ≤ C for
some C > 0, we say that X is isomorphic to Y with distortion bounded by C.

Ext0(F,M) denotes the set of linear extension operators for Lipschitz
functions, and Extpt0 (F,M) is the set of pointwise-to-pointwise continuous
elements of Ext0(F,M) (see Subsection 2.1).

1.2. Structure of this work. In Section 2, we present some back-
ground results on linear extension operators for Lipschitz functions and
some ways to decompose the Lipschitz-free space over a metric space using
metric quotients. In Section 3 we show that, for every Banach space X,
F(X) ' (

∑∞
n=1F(X))`1 , and derive some consequences. In Section 4 we

show that, for every Banach space X, dBM(F(X),F(X)⊕1 F(X)) ≤ 4.
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2. Linear extensions of Lipschitz functions and the Lipschitz-
free space over metric quotients

2.1. Linear extensions of Lipschitz functions. Given a pointed met-
ric space (M,d, 0) and a subset F containing 0, let Ext0(F,M) denote the
set of all extensions E : Lip0(F )→ Lip0(M) which are linear and continuous
(E being an extension means that E(f)|F = f for all f ∈ Lip0(F )). It is
immediate to see that if we choose another base point 0′ contained in F , for
each element E ∈ Ext0(F,M) there is a corresponding E′ ∈ Ext0′(F,M),
defined by E′(f) := E(f − f(0′)) + f(0′), which satisfies ‖E′‖ = ‖E‖, so
generally it is not important which base point is chosen. Recall that there
are always continuous but not necessarily linear extensions from Lip0(F ) to
Lip0(M); for example the infimum convolution

E(f)(x) := inf
y∈F
{f(y) + ‖f‖Lipd(x, y)}

is such an extension, and it is an isometry, although in most cases it fails to
be linear. It is possible, though, to have Ext0(F,M) = ∅; Brudnyi and Brud-
nyi [2, Theorem 2.18] provide an example of a two-dimensional Riemannian
manifold M , equipped with its geodesic metric, which admits a subset F
satisfying that condition.

We will be particularly interested in the subsetExtpt0 (F,M) ofExt0(F,M)
consisting of the pointwise-to-pointwise continuous elements. The fact that
on bounded sets of Lip0(F ) the weak∗ and the pointwise topologies coincide
implies that any element of Ext0(F,M) is weak∗-to-weak∗ continuous if and
only if it belongs to Extpt0 (F,M). Therefore, any E ∈ Extpt0 (F,M) admits
a preadjoint P : F(M) → F(F ), which is a (continuous) canonical projec-
tion, in the sense that P (µ) = µ|F for all finitely supported µ ∈ F(M).
In particular, F(F ) is complemented in F(M). Conversely, given a contin-
uous projection P : F(M) → F(F ) such that P (µ) = µ|F for all finitely
supported µ ∈ F(M), we have P ∗ ∈ Extpt0 (F,M).

Even when M is a Banach space and F is a closed linear subspace, we
might not get this complementability condition. Consider, for example, c0
and let X be a subspace of c0 which fails to have the bounded approxi-
mation property. As mentioned in the introduction, a Banach space Y has
the bounded approximation property if and only if F(Y ) does. Since this
property is inherited by complemented subspaces, F(X) cannot be isomor-
phic to a complemented subspace of F(c0). One can still ask whether or not
Ext0(X, c0) is empty.

On the other hand, we have the following positive example:

Proposition 2.1 (Lee and Naor [12]). There exists C > 0 such that,
for each n ∈ N and each subset F of Rn containing 0, there exists E in
Extpt0 (F,Rn) satisfying ‖E‖ ≤ C

√
n.
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Actually, the fact that the extension operator E constructed by Lee and
Naor is pointwise-to-pointwise continuous was pointed out by Lancien and
Pernecká [10, Proposition 2.3], who used it to study approximation properties
of free spaces over subsets of finite-dimensional Banach spaces.

2.2. Metric quotients and Lipschitz-free spaces. We turn our at-
tention to a special kind of metric quotient. Given a pointed metric space
(M,d, 0) and a subset F ofM containing 0, let ∼ be the equivalence relation
which collapses F to a point (that is, the equivalence classes are either sin-
gletons or F ). We define the metric quotient of M by F , denoted by M/F ,
as the pointed metric space (M/∼, d̃, [0]), where d̃ is defined by

(2.1) d̃([x], [y]) = min{d(x, y), d(x, F ) + d(y, F )}.

The space Lip[0](M/F ) can be interpreted as the closed linear subspace of
Lip0(M) consisting of all of its functions which are null in F . Depending on
how F is placed in M , we can have the following decomposition for F(M):

Lemma 2.2. Let (M,d, 0) be a pointed metric space and F be a subset
containing 0, and suppose that there exists E ∈ Extpt0 (F,M). Then

F(M) ' F(F )⊕1 F(M/F ),

with distortion bounded by (‖E‖+ 1)2.

Proof. Define Φ : Lip0(F ) ⊕∞ Lip0(M/F ) → Lip0(M) by Φ(f, g)
.
=

E(f) + g. It is straightforward that Φ is an onto isomorphism with ‖Φ‖ ≤
‖E‖ + 1, that Φ is pointwise-to-pointwise continuous and that its inverse
Φ−1 : h 7→ (h|F , h−E(h|F )) has norm also bounded by ‖E‖+1. It follows that
Φ is the adjoint of an isomorphism Ψ between F(M) and F(F )⊕1 F(M/F )
satisfying the desired distortion bound.

3. Products of Lipschitz-free spaces. In this section we will show
that F(X) ' (

∑∞
n=1F(X))`1 for any Banach space X, and derive some con-

sequences. To this end we will use the following construction by Kalton [9].
Let (M,d, 0) be a pointed metric space, denote by Br the closed ball centered
at 0 and with radius r > 0 and consider, for each k ∈ Z, the linear operator
Tk : F(M)→ F(B2k+1 \B2k−1) defined by

Tkδx :=


0 if x ∈ B2k−1 ,

(log2 d(x, 0)− k + 1)δx if x ∈ B2k \B2k−1 ,

(k + 1− log2 d(x, 0))δx if x ∈ B2k+1 \B2k ,

0 if x 6∈ B2k+1 .

Lemma 4.2 from [9] says that for each γ ∈ F(M) we have γ =
∑

k∈Z Tkγ
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unconditionally and

(3.1)
∑
k∈Z
‖Tkγ‖F ≤ 72‖γ‖F .

Lemma 4.1 of [9] states that, given r1, . . . , rn, s1, . . . , sn ∈ Z with r1 < s1 <
r2 < · · · < sn and γk ∈ F(B2sk \ B2rk ), if θ := mink=1,...,n−1{rk+1 − sk},
then

(3.2) ‖γ1 + · · ·+ γn‖F ≥
2θ − 1

2θ + 1

n∑
k=1

‖γk‖F .

Theorem 3.1. Let X be a Banach space. Then

F(X) '
( ∞∑
n=1

F(X)
)
`1
.

Proof. Note that S : (
∑

k∈ZF(B2k+1 \ B2k−1))`1 3 (γk) 7→
∑

k∈Z γk ∈
F(X) is linear, continuous and onto, and from (3.1) we infer that T :
F(X) 3 γ 7→ (Tkγ) ∈ (

∑
k∈ZF(B2k+1 \ B2k−1))`1 is a well defined one-to-

one continuous linear operator. Thus T ◦ S is a continuous projection from
(
∑

k∈ZF(B2k+1 \B2k−1))`1 onto the isomorphic copy T (F(X)) of F(X).
Denote M :=

⋃
k∈Z(B22k+1 \ B22k), and consider E ∈ Ext0(M ∪ {0}, X)

which extends each element of Lip0(M ∪{0}) linearly on each radial segment
[22k−1, 22k]x, k ∈ Z, x ∈ SX . One readily verifies that E is indeed bounded
(with ‖E‖ ≤ 6) after writing down the expression for E(f)(x), where f ∈
Lip0(M ∪ {0}) and x ∈ [22k−1, 22k]SX , which reads

E(f)(x) =
‖x‖ − 22k−1

22k−1
f

(
22k

x

‖x‖

)
+

22k − ‖x‖
22k−1

f

(
22k−1

x

‖x‖

)
.

Clearly E is also pointwise-to-pointwise continuous, thus it is the adjoint of
some bounded projection P : F(X) → F(M ∪ {0}) satisfying P (µ) = µ|M
for all finitely supported µ ∈ F(X). Note that F(M ∪ {0}) ∼= F(M),
since 0 ∈ M . Now by (3.2), the natural identification Id : F(M) →
(
∑

k∈ZF(B22k+1 \ B22k))`1 is an isomorphism. So there is a complemented
copy of (

∑
k∈ZF(B22k+1 \B22k))`1 in F(X).

Note that, by Proposition 1.1, rescalings of any metric space give rise
to isometrically isomorphic Lipschitz-free spaces. Thus all spaces F(B22k+1 \
B22k), k ∈ Z, are isometrically isomorphic to F(B2 \ B1) and all spaces
F(B2k+1 \B2k−1), k ∈ Z, are isometrically isomorphic to F(B4 \B1), which
in turn is isomorphic to F(B2 \B1). It follows that

F(X)
c
↪→
( ∞∑
j=1

F(B2 \B1)
)
`1

and
( ∞∑
j=1

F(B2 \B1)
)
`1

c
↪→ F(X).

Since (
∑∞

j=1F(B2 \ B1))`1 is isomorphic to its `1-sum, by the standard
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Pełczyński decomposition method (see [14]) we have

(3.3) F(X) '
( ∞∑
j=1

F(B2 \B1)
)
`1
,

and the conclusion follows immediately.

Recall that a subset F of a metric space M is called a Lipschitz retract
of M if there is a Lipschitz map from M onto F which coincides with the
identity on F ; in case such a map exists, it is called a Lipschitz retraction. As
a direct consequence of Theorem 3.1 and Proposition 1.1, we get the following
nonlinear version of Pełczyński’s decomposition method for Lipschitz-free
spaces.

Corollary 3.2. Let X be a Banach space andM be a metric space, and
suppose that X andM admit Lipschitz retracts N1 and N2, respectively, such
that X is Lipschitz equivalent to N2 and M is Lipschitz equivalent to N1.
Then F(X) ' F(M).

Proof. F(X) is isomorphic to F(N2), which in turn is a complemented
subspace of F(M). Analogously, F(M) is isomorphic to a complemented sub-
space of F(X). The conclusion follows by applying the standard Pełczyński
decomposition method.

Corollary 3.3. Let X be a Banach space. Then

F(X) ' F(B1).

Proof. Since B1 is a Lipschitz retract of X, it follows that F(X) contains
a complemented copy of F(B1). In the proof of Theorem 3.1 we have shown
that F(X) is isomorphic to (

∑
k∈ZF(B22k+1 \B22k))`1 , which is clearly iso-

morphic to (
∑

k<0F(B22k+1 \B22k))`1 since all summands are isometrically
isomorphic. Let N :=

⋃
k<0(B22k+1 \B22k). Again by (3.2), (

∑
k<0F(B22k+1 \

B22k))`1 is isomorphic to F(N), which is complemented in F(B1) since there
is a pointwise-to-pointwise continuous element in Ext0(N∪{0}, B1). The con-
clusion follows by an application of Pełczyński’s decomposition method.

A metric space is said to be an absolute Lipschitz retract if it is a Lipschitz
retract of every metric space containing it. Given any metric space M , the
space Cu(M) of real-valued bounded and uniformly continuous functions
on M , equipped with the uniform norm, is an example of a Banach space
which is an absolute Lipschitz retract (see e.g. [1, Theorem 1.6]). This class
includes all C(K) spaces for K a compact metric space, in particular it
includes c0. Since all separable metric spaces are bi-Lipschitz embeddable in
c0 (see [1, Theorem 7.11]), we obtain the following class of metric spaces M
with F(M) ' F(c0):
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Corollary 3.4. Let M be a separable metric space containing a Lip-
schitz retract which is Lipschitz equivalent to the unit ball of c0, and suppose
that M is an absolute Lipschitz retract. Then F(M) ' F(c0). In particular,
if K is an infinite compact metric space, then F(C(K)) ' F(c0).

Proof. It is straightforward by Proposition 1.1 and Corollary 3.3 that
there is a complemented copy of F(c0) in F(M). The space M is Lipschitz
equivalent to some subset F of c0, and F is an absolute Lipschitz retract since
this property is preserved by Lipschitz equivalences. Thus F is a Lipschitz
retract of c0, and again by Proposition 1.1 this implies that F(F ) (and thus
F(M)) admits a complemented copy in F(c0). The conclusion follows from
Theorem 3.1 and an application of Pełczyński’s decomposition method.

Corollary 3.5. Let F be a subset of Rn with nonempty interior. Then
F(F ) ' F(Rn).

Proof. By Proposition 2.1, there is a complemented copy of F(F ) in
F(Rn). Taking any closed ballB ⊂ F , it is easy to see that there is a Lipschitz
retraction from F onto B; thus by Proposition 1.1 and Corollary 3.3 there
is also a complemented copy of F(Rn) in F(F ). The result follows from
Theorem 3.1 and an application of Pełczyński’s decomposition method.

Remark. As mentioned in the introduction, Hájek and Pernecká [7]
have shown that F(Rn) admits a Schauder basis, and raised the natural
question of whether the same holds true for F(F ), where F is any closed
subset of Rn. Note that, by Corollary 3.5, the problem is reduced to the case
where F has empty interior.

In order to study Lipschitz-free spaces of locally euclidean metric spaces,
alongside the corollaries of Theorem 3.1, the following result becomes handy:

Theorem 3.6 (Lang and Plaut [11]). Let M be a compact metric space
such that each point of M admits a neighborhood which is bi-Lipschitz em-
beddable in Rn. Then M is bi-Lipschitz embeddable in Rn.

Theorem 3.7. Let M be a compact metric space such that each x ∈ M
admits a neighborhood which is bi-Lipschitz embeddable in Rn. Then there is
a complemented copy of F(M) in F(Rn).

If moreover the unit ball of Rn is bi-Lipschitz embeddable into M , then
F(M) ' F(Rn). In particular, the Lipschitz-free space over any n-dimen-
sional compact Riemannian manifold equipped with its geodesic metric is
isomorphic to F(Rn).

Proof. The first part follows directly from Lang and Plaut’s result and
the fact that the Lipschitz-free space over any subset of Rn admits a com-
plemented copy in F(Rn).
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For the second part, note that the closed unit ball of Rn is an absolute
Lipschitz retract, and recall that that property is preserved by Lipschitz
equivalences. The result then follows from Corollary 3.5, Theorem 3.1 and
an application of Pełczyński’s decomposition method.

Remark. Note that the compactness condition in Theorem 3.7 is nec-
essary, even if we have uniformity of the embeddings into Rn. For example,
Z× R is locally isometric to line segments, but F(Z× R) is not isomorphic
to a subspace of F(R) ∼= L1, by Naor and Schechtman’s result mentioned in
the introduction.

4. F(X) ' F(X)2 with low distortion. Let X be a Banach space.
By Theorem 3.1, F(X) ' F(X)2. In this section we will show that we have
the uniform bound dBM(F(X),F(X) ⊕1 F(X)) ≤ 4; we will do this via an
elementary construction based on the metric properties of X.

We start by recalling some definitions and results on quotient metric
spaces which are of a more general kind than the ones presented in Section 2.
For details, we refer to Weaver’s book [15]. Let (M,d) be a complete metric
space, and let ∼ be an equivalence relation on M . The element of M/∼
containing x ∈M will be denoted by either x̃ or [x]∼. Define a pseudometric d̃
on M/∼ by

d̃(x̃, ỹ) := inf
n∑
j=1

d(xj , yj),(4.1)

where the infimum is taken over all n ∈ N and all x1, . . . , xn, y1, . . . , yn
satisfying x ∼ x1, yj ∼ xj+1 (j = 1, . . . , n − 1), yn ∼ y. This pseudometric
can be roughly interpreted in the following way: it is the length of the shortest
discrete path from x to y when we are allowed to teleport between equivalent
elements. An equivalent way to define d̃, which will be useful for further
constructions, is the following:

(4.2) d̃(x̃, ỹ) = sup |f(x)− f(y)|,
where the supremum is taken over all 1-Lipschitz f : M → R which are
constant on each z̃ ∈ M̃ .

On M we define yet another equivalence relation ≈ which identifies
all x, y ∈ M satisfying d̃(x̃, ỹ) = 0, and on M/≈ we define the metric
˜̃
d(˜̃x, ˜̃y) = d̃(x̃, ỹ). We define M∼, the metric quotient (or just quotient) of M
with respect to ∼, as the completion ofM/≈. Note that, for a given complete
metric space (M,d, 0) and an equivalence relation ∼ on M , by (4.2) there
is a canonical isometric isomorphism between Lip˜̃0(M∼) and the closed sub-
space of Lip0(M) consisting of all functions that are constant in each class
x̃ ∈M/∼.



222 P. L. Kaufmann

We recall some definitions concerning path metric spaces. Let (M,d) be
a pseudometric space, and let ϕ : I →M be a curve (that is, I is an interval
and ϕ is continuous). The length of ϕ is `(ϕ) :=sup{

∑n
j=1 d(ϕ(xj−1), ϕ(xj))},

where the supremum is taken over n ∈ N and xj ∈ I, x0 < · · · < xn. (M,d)
is said to be a path metric space if d is a metric and d(x, y) = inf{`(ϕ) : ϕ is
a curve in M having endpoints x and y}. A minimizing geodesic in a path
metric space is any curve ϕ : I →M such that d(ϕ(t), ϕ(s)) = |t− s| for all
t, s ∈ I; (M,d) is said to be geodesic if any two elements of M are joined by
a minimizing geodesic.

Proposition 4.1. Let (M,d) be a path metric space. Then each metric
quotient of M is a path metric space.

Proof. Fix an equivalence relation ∼ on M . Let x, y ∈ M , and for each
k ∈ N consider pairs (xk1, yk1 ), . . . , (xknk

, yknk
) of elements of M such that

x ∼ xk1, ykj ∼ xkj+1 (j = 1, . . . , nk − 1), yknk
∼ y

and
∑nk

j=1 d(x
k
j , y

k
j )

k→ d̃(x̃, ỹ). Since (M,d) is a path metric space, there
exist, for each k ∈ N and j = 1, . . . , nk, curves ϕkj with endpoints xkj and ykj ,
respectively, and such that

nk∑
j=1

`(ϕkj ) < d̃(x̃, ỹ) + 1/k.

Concatenating these we get a curve ϕ̃k in M/∼ with endpoints x̃ and ỹ sat-
isfying `(ϕ̃k) < d̃(x̃, ỹ)+1/k. Since for any curve ϕ̃ inM/∼ with endpoints x̃
and ỹ we have d̃(x̃, ỹ) ≤ `(ϕ̃), it follows that

d̃(x̃, ỹ) = inf{`(ϕ̃) : ϕ̃ is a curve in M/∼ having endpoints x̃ and ỹ},
and then clearly the same holds for M/≈ and thus for M∼.

Remark. In Proposition 4.1 we cannot substitute path metric space by
geodesic metric space:

Proposition 4.2. There is a geodesic metric space M which admits a
metric quotient that is not a geodesic path metric space.

Proof. Let ej be the standard unit vectors of `1 and consider the metric
subspace of `1 defined byM :=

⋃∞
j=1[0, 1]ej . Let F :=

⋃∞
j=1{ej} and suppose

that ∼ is the equivalence relation which collapses F to a point. Note that,
in this case, M/∼ = M∼, the M∼-distance between 0̃ and ẽ1 = F is 1, and
there are minimizing geodesics with endpoints 0̃ and ẽ1 going through each
segment [0, 1]ej .

Let

Fj :=

[
1

4
+

1

22+j
,
3

4
− 1

22+j

]
ej
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be interpreted as subsets ofM , and consider onM the equivalence relation ≡
that collapses each Fj to a point, and the respective quotient metric space
(M/≡, d) (again, in this case we have M≡ = M/≡). Then d([0̃]≡, [ẽ1]≡)
= 1/2 and there are curves ϕj in M/≡ with endpoints [0̃]≡ and [ẽ1]≡ with
`(ϕj)

j→ 1/2, even though there is no minimizing geodesic in M/≡ with
endpoints [0̃]≡ and [ẽ1]≡.

Lemma 4.3. LetM be a path metric space, N a metric space, f :M → N
and C > 0. Then f is C-Lipschitz if and only if it is locally C-Lipschitz.

Proof. To prove the nontrivial implication, fix δ > 0, let x, y ∈ M and
let ϕ : I →M be a curve with endpoints x and y satisfying

`(ϕ) < dM (x, y) + δ.

For each t ∈ I, by hypothesis there exists εt > 0 such that f |ϕ(]t−εt,t+εt[)
is C-Lipschitz. Since I is compact, there are t1 < · · · < tn such that⋃∞
j=1]tj − εtj , tj + εtj [ ⊃ I. We can then easily find ϕ-consecutive points

z1, . . . , zm in ϕ(I) satisfying

dN (f(x), f(y)) ≤ dN (f(x), f(z1))+dN (f(z1), f(z2))+· · ·+dN (f(zm), f(y))
≤ C(dM (x, z1) + dM (z1, z2) + · · ·+ dM (zm, y))

≤ C(dM (x, y) + δ).

Since δ was arbitrary, the conclusion follows.

Let (X, ‖ · ‖) be a Banach space. We now construct a pair XL and XR of
metric quotients of X which have properties useful for studying products of
Lip0(X) (see Proposition 4.6). Let α, β : [0,∞)→ [0,∞) be the continuous
functions defined in each [2m, 2m+1], m ∈ Z, by

α(t) :=

{
t− 2m−1 if 2m ≤ t ≤ 2m−1 + 2m,

2m if 2m−1 + 2m ≤ t ≤ 2m+1,

β(t) :=

{
2m−1 if 2m ≤ t ≤ 2m−1 + 2m,

t− 2m if 2m−1 + 2m ≤ t ≤ 2m+1.

Consider the equivalence relations ∼L and ∼R on X defined by

x ∼L y ⇔ x = y or (x = λy with λ > 0, and α is constant in [‖x‖, ‖y‖]),
x ∼R y ⇔ x = y or (x = λy with λ > 0, and β is constant in [‖x‖, ‖y‖]),

and denote by XL = (XL, dL) and XR = (XR, dR) the corresponding quo-
tient metric spaces.

To prove the next lemma we use Hopf–Rinow’s Theorem which states that
in a complete and locally compact path metric space, each pair of points are
joined by a minimizing geodesic (see e.g. [6]).
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Fig. 1. This is whatXL looks like. The represented radial segments are collapsed to points.
XR looks the same, up to a factor two rescaling.

Lemma 4.4. XL and XR are geodesic.

Proof. For any x, y ∈ X, the metric space (spanX{x, y}/∼R, dR) sat-
isfies the assumptions of Hopf–Rinow’s Theorem, thus there is a minimiz-
ing geodesic γ in (spanX{x, y}/∼R, dR) (thus also in XR) with endpoints x̃
and ỹ. The same argument holds for XL.

Lemma 4.5. There exist onto bi-Lipschitz mappings L : X → XL and R :
X → XR with ‖L‖Lip ≤ 1, ‖L−1‖Lip ≤ 4/3, ‖R‖Lip ≤ 3/2 and ‖R−1‖Lip ≤ 1.

Proof. Denote Cm := B2m+1 \ B2m , N ∈ N, and for each x ∈ X \ {0}
let mx ∈ Z be such that ‖x‖ ∈ Cmx . Define a bicontinuous mapping R :
X \ {0} → XR \ {0̃} by

R(x) :=

((
1

2
+

2mx

‖x‖

)
x

)∼R

.

What R does is to squeeze each crown Cm to the thinner crown R(Cm) =
(B2m+1 \ B2m+2m−1)∼R . For x ∈ X \ {0}, let Vx be a neighborhood of x
such that, for each y ∈ Vx, ‖x − y‖ ≤ 2mx−1 and dR(R(x), R(y)) ≤ 2mx−2.
This implies that, for any y ∈ Vx, we have |mx −my| ≤ 1, the line segment
with endpoints x and y intersects at most two crowns Cm and a minimizing
geodesic with endpointsR(x) andR(y) intersects at most two crowns R(Cm).
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We shall show that

‖x− y‖ ≤ dR(R(x), R(y)) ≤ 3
2‖x− y‖, x ∈ X \ {0}, y ∈ Vx.

The fact that X and XR are geodesic will allow us then to assert, by Lemma
4.3, that the above inequality holds without the restriction y ∈ Vx, and thus
that R is bi-Lipschitz, ‖R‖Lip ≤ 3/2 and ‖R−1‖Lip ≤ 1.

Indeed, let x, y ∈ X \ Bm with ‖x − y‖ ≤ 2m−1 and dR(R(x), R(y))
≤ 2m−2. Assume without loss of generality that ‖x‖ ≤ ‖y‖. Then one of the
following conditions is true:

1. mx = my, and dR(R(x), R(y)) = ‖R(x)−R(y)‖;
2. mx < my;
3. mx = my, and there is a minimizing geodesic with endpoints R(x)

and R(y) passing through R(Cmx−1).

If (1) is true, then 1/2 + 2mx/‖y‖ ≤ 1/2 + 2mx/‖x‖, and

(4.3)
(
1

2
+

2mx

‖y‖

)
‖x− y‖ ≤ ‖R(x)−R(y)‖ ≤

(
1

2
+

2mx

‖x‖

)
‖x− y‖,

thus

(4.4) ‖x− y‖ ≤ dR(R(x), R(y)) ≤ 3
2‖x− y‖.

If (2) is true, suppose that ‖x‖ < 2mx+1 (if ‖x‖ = 2mx+1, then x and y
satisfy (1)) and let z be the intersection point of the line segment [x, y] and
S2mx+1 . Then the pairs x, z and z, y satisfy (1), and by (4.4) we have

dR(R(x), R(y)) ≤ dR(R(x), R(z)) + dR(R(z), R(y))

≤ 3
2(‖x− z‖+ ‖z − y‖) =

3
2‖x− y‖.

Similarly, let z̃ be the intersection of R(S2mx+1) with a minimizing geodesic
with endpoints R(x) and R(y). Then we have dR(R(x), z̃) = ‖R(x)− z̃‖ and
dR(z̃, R(y)) = ‖z̃ −R(y)‖, and thus by (4.4),

‖x− y‖ ≤ ‖x−R−1(z̃)‖+ ‖R−1(z̃)− y‖ ≤ dR(R(x), z̃) + dR(z̃, R(y))

= dR(R(x), R(y)).

For the remaining case (3), we can obtain the desired inequalities by
taking a convenient point on a minimizing geodesic with endpoints R(x)
and R(y) and reducing the problem to case (2).

The Lipschitz equivalence between X and XL is given by the mapping
L : X \ {0} → XL \ {0̃} defined by

L(x) :=

((
1

2
+

2mx−1

‖x‖

)
x

)∼L

,

which squeezes each Cm to the thinner crown L(Cm) = (B2m+2m−1 \B2m)
∼L .

To show this and obtain the Lipschitz constants, simply follow the same steps
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taken for R. The only difference will appear when getting to (4.3), which will
read (

1

2
+

2mx−1

‖y‖

)
‖x− y‖ ≤ ‖L(x)− L(y)‖ ≤

(
1

2
+

2mx−1

‖x‖

)
‖x− y‖,

and thus (4.4) will read
3
4‖x− y‖ ≤ dL(L(x), L(y)) ≤ ‖x− y‖.

Following analogous steps, we get the conclusion.

We are now ready to prove the main result of this section:

Proposition 4.6. Let X be a Banach space. Then

dBM(F(X),F(X)⊕1 F(X)) ≤ 4.

Proof. Recall that, by (4.2), Lip0(XL) ∼= YL and Lip0(XR) ∼= YR, where
YL and YR are the closed subspaces of Lip0(X) defined by

YL := {f ∈ Lip0(X) : f is constant in each equivalence class of XL},
YR := {f ∈ Lip0(X) : f is constant in each equivalence class of XR}.

Let Φ : YL ⊕∞ YR → Lip0(X) be defined by Φ(f, g) := f + g. Then Φ is
linear with norm ‖Φ‖ ≤ 2. Moreover, Φ admits an inverse defined by

(Φ−1h)(x) =

(
α(‖h(x)‖)
‖h(x)‖

h(x),
β(‖h(x)‖)
‖h(x)‖

h(x)

)
.

Since x 7→ α(‖x‖)
‖x‖ x and x 7→ β(‖x‖)

‖x‖ x are 1-Lipschitz, it follows that ‖Φ−1‖≤1.
Now Lemma 4.5 yields an isomorphism Ψ from Lip0(X) ⊕∞ Lip0(X) onto
YL ⊕∞ YR satisfying ‖Ψ‖ · ‖Ψ−1‖ ≤ 4

3 .
3
2 = 2. Then Φ ◦ Ψ is an isomorphism

from Lip0(X)⊕∞Lip0(X) onto Lip0(X) satisfying ‖Φ◦Ψ‖ ·‖(Φ◦Ψ)−1‖ ≤ 4.
Since Φ and Ψ are pointwise-to-pointwise continuous, Φ ◦ Ψ induces an
isomorphism T : F(X) → F(X) ⊕1 F(X) satisfying T ∗ = Φ ◦ Ψ and
‖T‖ · ‖T−1‖ ≤ 4.
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