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Derivations mapping into the socle, III

by

Nadia Boudi (Zitoune) and Peter Šemrl (Ljubljana)

Abstract. Let A be a Banach algebra, and let d : A→ A be a continuous derivation
such that each element in the range of d has a finite spectrum. In a series of papers it has
been proved that such a derivation is an inner derivation implemented by an element from
the socle modulo the radical of A (a precise formulation of this statement can be found
in the Introduction). The aim of this paper is twofold: we extend this result to the case
where d is not necessarily continuous, and we give a complete description of such maps in
the semisimple case.

1. Introduction and statement of the main results. There have
been a lot of results considering derivations whose ranges are small in some
sense. Let us mention the survey papers of Mathieu [9] and Murphy [10],
where one can find conditions which imply that the image of a derivation is
contained in the radical.

It was proved in [1, Theorem 5.2.1] that the range of an inner derivation
such that the spectrum of each element in the range is a singleton is con-
tained in the radical. This motivated Brešar and the second author [5] to
initiate the study of derivations with the property that every element in the
range has finite spectrum. They proved that for every inner derivation acting
on a unital Banach algebra A this property yields the existence of a positive
integer n such that the spectrum of every element in the range has at most
n elements. Under the additional condition that A be semisimple the range
of such an inner derivation is contained in soc(A), the socle of A, and this is
true if and only if the range is contained in the set of algebraic elements of A.

Later Brešar [3] extended this result to all continuous (not necessarily
inner) derivations. And finally, the first author and Mathieu [2] proved that
for such a derivation d there exists a ∈ A such that a+radA ∈ soc(A/radA)
and d(x)− [x, a] ∈ radA for all x ∈ A.

There are two natural questions that remain to be solved. Can we extend
the last result to the case where d is not necessarily continuous? Can we get
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a complete description of such derivations on semisimple Banach algebras?
It is the aim of this paper to answer both of these questions.

All algebras in this paper will be complex Banach algebras. In order to
make our presentation simpler we shall always assume that they are unital.
There is no loss of generality in adding this assumption. Namely, if A is
without unit, then we denote by A[ the unitization A[ = C ⊕ A. We are
interested in derivations d : A → A with the property that there exists a
positive integer n such that every d(x), x ∈ A, has at most n elements in
the spectrum. It is trivial to check that then the derivation d[ : A[ → A[

defined by d[(λ+a) = d(a), λ ∈ C, a ∈ A, has the same property. Using this
observation one can easily extend our main results to the nonunital case.

Let us now fix some notation and recall some definitions.
By ]σ(a) we denote the cardinality of the spectrum of a. A linear map-

ping d : A → A is called a derivation if d(xy) = xd(y) + d(x)y, x, y ∈ A.
Recall that if A is semisimple, then the sum of all the minimal left ideals of
A coincides with the sum of all the minimal right ideals of A, and is called
the socle of A. It will be denoted by soc(A). If A does not have minimal
one-sided ideals, we define soc(A) = {0}. According to the definition, for
every nonzero element a ∈ soc(A) there exist finitely many minimal left
ideals such that a belongs to their sum. The element 0 ∈ soc(A) has rank
zero. We define an element a ∈ soc(A) to be of rank one if it is nonzero and
belongs to some minimal left ideal of A. And finally, an element a ∈ soc(A)
is said to be of rank n > 1 if a belongs to a sum of n minimal left ideals, but
does not belong to a sum of fewer than n minimal left ideals. For equivalent
definitions of rank and structural results for finite rank elements we refer
to [6]. In particular, in the case of n × n matrices or finite-rank operators
the above definition of the rank coincides with the usual one.

We shall first extend the result of Boudi and Mathieu [2] to not neces-
sarily continuous derivations.

Theorem 1.1. Let A be a complex Banach algebra, and let d : A → A
be a derivation. Then the following conditions are equivalent:

(i) ]σ(d(x)) <∞ for every x ∈ A;
(ii) there exists a positive integer n such that ]σ(d(x)) ≤ n for every

x ∈ A;
(iii) d(x) + radA ∈ soc(A/radA) for every x ∈ A;
(iv) there exists a ∈ A and a closed ideal J of A such that a + radA ∈

soc(A/radA), dim(J/radA) < ∞, d(J) ⊂ J , and d(x) − [x, a] ∈ J
for every x ∈ A.

We need some preparation to formulate the main result of our paper.
Let A be a finite-dimensional algebra. Set nA = max{]σ(x) : x ∈ A}. We
are interested in derivations d : A → A with the property that there exists



Derivations mapping into the socle 143

x ∈ A such that d(x) is invertible and ]σ(d(x)) = nA. Every such derivation
d will be called a maximal spectral derivation.

Let us give a complete description of maximal spectral derivations on
finite-dimensional semisimple algebras. We first consider the case where A =
Mn and recall that every derivation on Mn is inner and nMn = n. Here, Mn

denotes the algebra of all n×n complex matrices. Thus, d(X) = XT −TX,
X ∈ Mn, for some T ∈ Mn. Note that if d is an inner derivation induced
by T , then d is induced by T − λI for every λ ∈ C. We have to characterize
matrices T ∈ Mn with the property that X 7→ [X,T ] = XT − TX is
a maximal spectral derivation. By the previous remark, there is no loss of
generality in assuming that rankT = min{rank(T−λI) : λ ∈ C}. So, assume
from now on that this condition is fulfilled. Obviously, we need to have
rankT ≥ n/2 if we want the inner derivation induced by T to be a maximal
spectral derivation since otherwise rank [X,T ] ≤ rankXT + rankTX < n.
As we shall see later (Lemma 2.2) this condition is not only necessary but
also sufficient for T to induce a maximal spectral derivation.

If we write A = A1⊕· · ·⊕Ak we mean that the algebra A is a direct sum of
ideals A1, . . . , Ak and all operations are defined componentwise. Of course,
all subalgebras A1, . . . , Ak are unital. Indeed, as A is unital we have 1 =
e1 + · · ·+ek with ej ∈ Aj for j = 1, . . . , k. Clearly, each ej is a unit of Aj and
{e1, . . . , ek} is a set of pairwise orthogonal central idempotents. If d : A→ A
is a derivation, then each of the subalgebras A1, . . . , Ak is invariant under d.
Indeed, we have d(1) = 0, and therefore d(ej) = ejd(ej) + d(ej)ej ∈ Aj
implies that d(ej) = 0. For xj ∈ Aj we have d(xj) = d(xjej) = d(xj)ej ∈ Aj .
Denote by dj , j = 1, . . . , k, the restriction of d to Aj .

We shall show that all dj ’s are maximal spectral derivations if and only
if d is a maximal spectral derivation. Suppose that each dj is a maxi-
mal spectral derivation. Let n = max{]σ(x) : x ∈ A}, and let nj =
max{]σ(xj , Aj) : xj ∈ Aj}, j = 1, . . . , k. Obviously we have n ≤ n1+· · ·+nk.
For each j = 1, . . . , k, we can find xj ∈ Aj such that d(xj) is invert-
ible in Aj and ]σ(d(xj)) = nj . Replacing xj by λjxj for suitable nonzero
scalars λ1, . . . , λk, we may assume that the spectra of d1(x1), . . . , dk(xk)
are pairwise disjoint. If x = x1 + · · · + xk, then d(x) is invertible and
n1 + · · · + nk ≤ ]σ(d(x)) ≤ n ≤ n1 + · · · + nk. We have thereby proved
that d is maximal spectral. The converse is easy.

Now, if A is a finite-dimensional semisimple algebra, then by the Wed-
derburn theorem it is isomorphic to a direct sum of matrix algebras. Hence,
a derivation on A (we identify A with the direct sum of matrix algebras)
is a maximal spectral derivation if and only if it is a direct sum of in-
ner derivations induced by nj × nj matrices Tj having the property that
min{rank(Tj − λI) : λ ∈ C} ≥ nj/2.
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Assume that a semisimple Banach algebra A can be decomposed into a
direct sum of ideals as A = A1⊕A2 with A1 finite-dimensional. The radical of
an ideal of an algebra is equal to the intersection of this ideal and the radical
of the algebra. It follows that bothA1 andA2 are semisimple. Assume further
that d1 : A1 → A1 is a maximal spectral derivation (by the above remark we
completely understand the structure of such maps) and that d2 : A2 → A2

is an inner derivation induced by a ∈ soc(A2) of rank k. Then each d2(x2),
x2 ∈ A2, is of rank at most 2k, and consequently ]σ(d2(x2)) ≤ 2k + 1 for
every x2 ∈ A2 [6]. Set n1 = max{]σ(x1, A1) : x1 ∈ A1} and let d : A → A
be a direct sum of d1 and d2. Then, clearly, ]σ(d(x)) ≤ n1 + 2k + 1, x ∈ A.

Now we are ready to formulate our main result.

Theorem 1.2. Let A be a complex semisimple Banach algebra, and let
d be a derivation on A. Suppose that max{]σ(d(x)) : x ∈ A} = n. Then
either

• A is finite-dimensional and d is maximal spectral, or
• n is odd, n = 2k + 1 for some integer k ≥ 0, and d is an inner

derivation induced by an element a ∈ soc(A) of rank k, or
• A is a direct sum of ideals A1 and A2 with A1 finite-dimensional and
n = n1 + (2k + 1), where k ≥ 0 and n1 = max{]σ(x1, A1) : x1 ∈ A1}
> 0. Moreover, d|A1

is maximal spectral, and d|A2
is an inner deriva-

tion induced by an element a ∈ soc(A2) of rank k.

In the next section we shall prove some preliminary results. Then we shall
deal with not necessarily continuous derivations with the property that every
element in the range has a finite spectrum. The last section will be devoted
to the proof of the main theorem.

2. Preliminary results. We shall start with some linear algebra re-
sults. We shall suppose throughout that X is a complex vector space and
T : X → X a linear operator. Let r be a positive integer. We say that T has
property Pr if there exist x1, . . . , xr ∈ X such that

{x1, . . . , xr, Tx1, . . . , Txr}

is linearly independent. Let λ ∈ C be any scalar. Note that T has property
Pr if and only if T − λI has property Pr. It is well-known (and easy to
verify) that T has property P1 if and only if T is not a scalar operator, that
is, T 6∈ CI. Our first goal is to prove the following lemma.

Lemma 2.1. Let r be a positive integer and assume that dimX ≥ 2r. If

min{rank(T − λI) : λ ∈ C} ≥ r,

then T has property Pr.
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Proof. We shall first consider the case where rankT = r. Then we can
choose a linearly independent set {u1, . . . , ur} ⊂ X such that

X = KerT ⊕ span{u1, . . . , ur}.
The proof of this special case will be completed once we show inductively
that for every k = 0, . . . , r there exist v1, . . . , vk ∈ X such that Tvj = Tuj ,
j ≤ k, and

{v1, . . . , vk, T v1, . . . , T vk, Tuk+1, . . . , Tur}
is linearly independent.

In the case k = 0 we have to show that {Tu1, . . . , Tur} is linearly in-
dependent. This is true since these vectors form a basis of TX. So, assume
that the assertion holds for some k < r and we want to prove it for k+ 1. If

uk+1 6∈ span{v1, . . . , vk, T v1, . . . , T vk, Tuk+1, . . . , Tur}
set vk+1 = uk+1 to complete the induction step. In the remaining case we
use the induction hypothesis to conclude that

X = KerT ⊕ span{v1, . . . , vk, uk+1, . . . , ur}.
Let P : X → X be the idempotent operator whose range is KerT and whose
null space is span{v1, . . . , vk, uk+1, . . . , ur}. If {PTu1, . . . , PTur} is linearly
independent, then from

uk+1 ∈ span{v1, . . . , vk, T v1, . . . , T vk, Tuk+1, . . . , Tur}
and Puk+1 = Pv1 = · · · = Pvk = 0 we get uk+1 ∈ span{v1, . . . , vk}, a
contradiction. Hence, {PTu1, . . . , PTur} is linearly dependent, and since
KerT is at least r-dimensional we can find z ∈ KerT such that z does not
belong to the linear span of PTu1, . . . , PTur. Set vk+1 = uk+1 + z. In order
to complete the induction step we have to prove that

{v1, . . . , vk, vk+1, T v1, . . . , T vk, T vk+1 = Tuk+1, Tuk+2, . . . , Tur}
is linearly independent. So, let λ1, . . . , λk+1, µ1, . . . , µr be scalars such that

λ1v1 + · · ·+ λk+1vk+1 + µ1Tu1 + · · ·+ µrTur = 0.

Applying P to both sides of this equation we conclude that λk+1 = 0. It
follows that all the λ’s and µ’s are zero, as desired.

The next case we shall treat is that there exists u ∈ X such that

{u, Tu, T 2u, . . . , T 2r−1u}
is linearly independent. The choice x1 = u, x2 = T 2u, . . . , xr = T 2r−2u
completes the proof in this special case.

We shall now prove our statement by induction on r. We already know
that the assertion is true when r = 1. So, assume that the conclusion of
our theorem holds for r − 1 ≥ 1 and we want to prove it for r. As T is
not a scalar operator we can find x ∈ X such that x and Tx are linearly
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independent. If Y = span{x, Tx, . . . , T 2r−2x} is not invariant under T , then
{x, Tx, . . . , T 2r−2x, T 2r−1x} is linearly independent, and we are done by the
previous case. So, we may assume that Y is invariant under T and also
min{rank(T − λI) : λ ∈ C} > r. Using a Jordan canonical form of the
restriction of T to Y we can further find a two-dimensional subspace X1 ⊂ Y
that is invariant under T and the restriction of T to X1 is not a scalar
operator. Let X = X1⊕X2. With respect to this direct sum decomposition
T has a matrix representation

T =

(
T1 T3

0 T2

)
.

As T1 is not a scalar operator it has property P1. If we show that T2 has
property Pr−1 then one can easily verify that T has the desired property Pr.
We know that dimX2 ≥ 2(r − 1). From

rank(T − λI) ≤ rank(T2 − λI) + 2, λ ∈ C,
we conclude that

min{rank(T2 − λI) : λ ∈ C} ≥ r − 1.

Thus the fact that T2 has property Pr−1 follows from the inductive hypoth-
esis.

Lemma 2.2. Let n be a positive integer, and let T be an n× n complex
matrix. Then the inner derivation implemented by T , (S 7→ [T, S], S ∈Mn)
is maximal spectral if and only if min{rank(T − λI) : λ ∈ C} ≥ n/2.

Proof. The “only if” part is obvious; we shall prove the “if” part.
If n = 2k, then min{rank(T − λI) : λ ∈ C} ≥ k, and if n = 2k + 1, then

min{rank(T − λI) : λ ∈ C} ≥ k + 1. In both cases we use Lemma 2.1 to
conclude that there exist k vectors ζ1, . . . , ζk ∈ Cn such that

{ζ1, . . . , ζk, T ζ1, . . . , T ζk}
is linearly independent. In the case where n = 2k+ 1 we also choose ζ ∈ Cn

such that
{ζ1, . . . , ζk, T ζ1, . . . , T ζk, ζ}

is a basis in Cn. Let S ∈Mn be the matrix satisfying

Sζj = 0, STζj = jζj , 1 ≤ j ≤ k,
and let Sζ = 0 when n = 2k + 1. Then (TS − ST )ζj = −jζj and (TS −
ST )Tζj = jTζj−ST 2ζj , j = 1, . . . , k. Note that the image of S is contained
in the linear span of ζ1, . . . , ζk. It is now easy to see that in the case where
n = 2k we have σ(TS−ST ) = {−1, . . . ,−k, 1, . . . , k}. Since 0 6∈ σ(TS−ST ),
the matrix TS − ST is invertible, and so this completes the proof of our
lemma in the case where n is even.
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For the remainder of the proof, we suppose that n = 2k + 1 is odd. We
use the fact that

rank(TS − ST ) ≤ 2 rankS = 2k

to conclude that σ(TS − ST ) = {−1, . . . ,−k, 1, . . . , k, 0}.
In order to complete the proof we only need to show that there exists

R ∈M2k+1 such that TR−RT is invertible. Indeed, assume for the moment
that we have already proved this. Then T (S+λR)− (S+λR)T is invertible
for all but at most 2k + 1 complex numbers λ. Moreover, by the continuity
of the spectrum, ]σ(T (S + λR)− (S + λR)T ) = n for all complex numbers
λ that are close enough to 0. It follows that X 7→ TX − XT is maximal
spectral, as desired.

Hence, in the remainder of the proof we suppose that n = 2k+1, T ∈Mn

and min{rank(T − λI) : λ ∈ C} ≥ k + 1. We must find R ∈ Mn such that
TR−RT is invertible. Set Y = span{ζ1, . . . , ζk, T ζ1, . . . , T ζk} and write

Tζ = µζ +
k∑
j=1

(µ′jζj + hjTζj), µ, µ′j , hj ∈ C.

We claim that we can suppose with no loss of generality that µ′j+hjµ 6= 0
for some j ∈ {1, . . . , k}. Suppose first that there exists j ∈ {1, . . . , n} such
that T 2ζj 6∈ Y . A straightforward computation shows that replacing ζ by
ζ + λTζj for a convenient λ ∈ C, we may suppose that µ′j + hjµ 6= 0.
Suppose now that TY ⊆ Y and let us replace T by T −µI. Then TCn ⊂ Y .
Since rankT ≥ k + 1, we have TCn ∩ span{ζ1, . . . , ζk} 6= {0}. Replacing,
if necessary, one of the ζj ’s by a suitable linear combination of ζ1, . . . , ζk,
we may assume without loss of generality that there exists j ∈ {1, . . . , k}
such that ζj ∈ TCn. Write ζj = Tζ ′ for some vector ζ ′ ∈ Cn. Observe that
replacing ζ by ζ + λζ ′, for a suitable λ ∈ C, we can suppose that µ′j 6= 0.
This proves the claim.

Hence, we may assume that µ′k +hkµ 6= 0. Replacing ζ by ζ+y, where y
is a suitable linear combination of {ζ1, . . . , ζk−1}, we may also suppose that

Tζ = µζ + µ′kζk + hkTζk + y′, y′ ∈ span{ζ1, . . . , ζk−1}.
Write

T 2ζk =
k∑
j=1

νjζj +
k∑
j=1

ν ′jTζj + τζ, τ, νj , ν
′
j ∈ C.

Fix any α ∈ C such that −α2(µ′k + hkµ) + ατ 6= 0. Let R ∈ Mn be the
matrix satisfying

Rζ = ζk, Rζj = 0, 1 ≤ j ≤ k,
RTζj = ζj , 1 ≤ j ≤ k − 1, RTζk = ζk + αζ.
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Observe that RCn ⊂ span{ζ1, . . . , ζk, ζ}. Then we have

RT 2ζk = (τ + ν ′k)ζk + αν ′kζ + y′′, y′′ ∈ span{ζ1, . . . , ζk−1}.

The corresponding matrix representation of TR − RT with respect to the
basis

{ζ1, . . . , ζk, T ζk, ζ, T ζ1, . . . , T ζk−1}

has the upper block triangular form B1 ∗ ∗
0 M(α) ∗
0 0 B2

 ,

where B1 = diag(−1, . . . ,−1), B2 = diag(1, . . . , 1) and

M(α) =

 −1 αµ′k − τ − ν ′k −µ− hk
0 αhk + 1 1
−α α(µ− ν ′k) −αhk

 .

Obviously,
detM(α) = −α2(µ′k + hkµ) + ατ,

and therefore TR−RT is an invertible matrix, as desired.

For a vector space X and a linear operator T on X, we denote by σp(T )
the set of eigenvalues of T . Recall that an algebra A of linear operators on X
is called dense if for every positive integer n, every n-tuple of linearly inde-
pendent vectors (x1, . . . , xn) of X and every n-tuple of vectors (y1, . . . , yn)
of X there exists an operator T ∈ A such that Txj = yj for j = 1, . . . , n.

Lemma 2.3. Let X be a complex vector space, and let A be a dense
algebra of linear operators on X. Let T be a linear operator on X, and let
n be a positive integer. Suppose that max{]σp(TS − ST ) : S ∈ A} = n. If
dimX ≥ n+ 1, then n is odd, n = 2k+ 1. Moreover, min rank(T −λI) = k.

Proof. We first show that for every x1, . . . , xn+1 ∈ X the set

{x1, . . . , xn+1, Tx1, . . . , Txn+1}

is linearly dependent. Indeed, if this were not true, we would be able to
find S ∈ A such that Sxj = 0 and STxj = jxj , j = 1, . . . , n + 1. Then
(TS − ST )xj = −jxj , contradicting our assumption on the cardinality of
the point spectrum of TS − ST .

Let r be the largest positive integer such that there exist x1, . . . , xr ∈ X
with the property that

{x1, . . . , xr, Tx1, . . . , Txr}
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is linearly independent. Set

Y = span{x1, . . . , xr, Tx1, . . . , Txr}.
Choose S ∈ A such that Sxj = 0, STxj = jxj , j = 1, . . . , r. If T 2xj ∈ Y
for some j, we have ST 2xj ∈ span{x1, . . . , xr}. Suppose that there exists j
such that T 2xj 6∈ Y . With no loss of generality, we may suppose that the
set

{x1, . . . , xr, Tx1, . . . , Txr, T
2x1, . . . , T

2xs}
is linearly independent (s ≤ r) and that for every j = s + 1, . . . , r, we
have T 2xj ∈ Y + span{T 2x1, . . . , T

2xs}. Then S can be chosen so that
ST 2xj = 0, 1 ≤ j ≤ s. For each j, 1 ≤ j ≤ r, we have

(TS − ST )xj = −jxj , (TS − ST )Txj = jTxj + uj , uj ∈ span{x1, . . . , xr}.
Thus, Y is invariant under TS − ST . If we consider the matrix represen-
tation of TS − ST with respect to {x1, . . . , xr, Tx1, . . . , Txr}, we see that
{1, . . . , r,−1, . . . ,−r} ⊂ σp(TS − ST ). Consequently, 2r ≤ n.

We are now ready to prove our statement. Suppose first that n is odd,
that is, n = 2k + 1 for some nonnegative integer k. If min rank(T − λI)
≥ k+ 1, Lemma 2.1 implies that there exist k+ 1 vectors x1, . . . , xk+1 such
that the set

{x1, . . . , xk+1, Tx1, . . . , Txk+1}
is linearly independent. The above argument shows that there exists S ∈ A
such that ]σp(TS − ST ) ≥ 2k + 2, a contradiction. Thus min rank(T − λI)
≤ k. Of course we must have min rank(T − λI) = k.

In order to complete the proof we have to show that n cannot be even.
Assume on the contrary that n = 2k, where k ∈ N. If min rank(T −λI) ≥ k,
Lemma 2.1 implies that there exist k vectors x1, . . . , xk such that the set
{x1, . . . , xk, Tx1, . . . , Txk} is linearly independent. Since dimX ≥ 2k + 1,
the above argument shows that there exists S ∈ A such that ]σp(TS−ST ) ≥
2k+ 1. This contradiction implies min rank(T − λI) ≤ k− 1. It follows that
]σp(TS − ST ) ≤ 2k − 1. Consequently, this case cannot occur.

By combining Lemmas 2.2 and 2.3, we obtain the following

Observation 2.4. Let n be a positive integer, and let A be an n × n
complex matrix. Suppose that the inner derivation X 7→ [X,A], X ∈ Mn,
is not maximal spectral. Then there exists an integer k ≥ 0 such that
max{]σ([X,A]) : X ∈ Mn} = 2k + 1 and min rank{A − λI : λ ∈ C} = k.
Furthermore, 0 belongs to σ([X,A]) for every X ∈Mn.

3. The case where d is not necessarily continuous. Let A be a
Banach algebra, and let d : A → A be a derivation. According to [13],
the set ∆ of primitive ideals which are not invariant under d is at most
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finite, and each primitive ideal in ∆ has finite codimension. Recall that the
noncommutative Singer–Wermer conjecture states that ∆ is actually empty
[13, 14]. If d is continuous, then every primitive ideal is invariant under
d [12], and derivations on semisimple Banach algebras are continuous [8].
Using the result of [13], we shall show that if ]σ(d(x)) is finite for every
x ∈ A, then d maps A into the socle modulo the radical.

In the proof we shall need the following well-known facts. If A is a com-
plex Banach algebra and x ∈ A, then σ(x+ radA) = σ(x). Assume that A
is semisimple. If for an x ∈ A we have dimxAx < ∞, then x ∈ soc(A). If
J ⊂ A is a finite-dimensional ideal, then there exists a closed ideal L ⊂ A
such that A = J ⊕ L. Indeed, denote the unit of J by e. We shall verify
that e belongs to the centre of A. As ex, xe ∈ J for every x ∈ A, we have
ex = (ex)e = e(xe) = xe. Set L = {x − ex : x ∈ A}. Clearly, L is a closed
ideal and A = J ⊕ L.

Lemma 3.1. Let A be a complex Banach algebra, and let d : A → A be
a derivation. Then there exists a closed ideal J of A such that radA ⊂ J ,
dim J/radA <∞ and d(J) ⊂ J .

Proof. Suppose first that for every primitive ideal P of A, d(P ) ⊂ P . In
this case set J = radA. Clearly, d(J) ⊂ J and we are done.

So, assume now that there exists a primitive ideal P of A which is not
invariant under d. It follows from [13] that there exist a finite number of
primitive ideals which are not invariant under d. Let P1, . . . , Pr be those
exceptional primitive ideals. Set

Γ = {P ∈ Prim(A) : P 6= P1, . . . , Pr} and J =
⋂
P∈Γ

P.

Here, Prim(A) denotes the set of all primitive ideals of A. Of course, if
Γ = ∅ we have J = A. Clearly, J is a closed ideal of A and d(J) ⊂ J . Let
us consider the linear map

ϕ : J → A/P1 × · · · ×A/Pr, a 7→ (a+ P1, . . . , a+ Pr).

Then Kerϕ = radA. Thus the induced map ϕ : J/radA→ A/P1×· · ·×A/Pr
is injective. Since the algebras A/Pi are finite-dimensional [13], so is the
algebra J/radA.

Using this, we can now prove our first theorem.

Proof of Theorem 1.1. Suppose that (i) is true and we want to show (iv).
It follows from Lemma 3.1 that there exists a closed ideal J of A such that
radA ⊂ J , dimJ/radA < ∞ and d(J) ⊂ J . Observe that the algebra A/J
is semisimple. Indeed, as J/radA is finite-dimensional, there exists a closed
ideal L ⊂ A/radA such that (J/radA)⊕L = A/radA. We know that A/J is
isomorphic to (A/radA)/(J/radA), and thus A/J is isomorphic to L, which
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is semisimple because each ideal of a semisimple algebra is semisimple. Set
A/J = A and let d be the induced derivation on A. Then d is continuous [8].
For every x ∈ A, we have σ(d(x + J)) ⊂ σ(d(x)), thus σ(d(x)) is finite for
all x ∈ A. It follows from [2, Theorem 2.4] that there exists a ∈ A such that
a+J ∈ socA and d(x) = [a+J, x] for every x ∈ A. Thus d(x)− [a, x] ∈ J for
every x ∈ A. On the other hand, since a+ J ∈ socA and dim J/radA <∞,
we have a+ radA ∈ soc(A/radA).

Next assume (iv). Since J/radA ⊂ soc(A/radA) we have (iv)⇒(iii)⇒(i).
Clearly, (ii)⇒(i). Let us show that (iv)⇒(ii). Suppose (iv). We use the fact
that the ideal J/radA is finite-dimensional once more to get a closed ideal
L of A/radA such that

(J/radA)⊕ L = A/radA.

Set a = a1+a2, where a1+radA ∈ J/radA and a2+radA ∈ L. Observe that
a2+radA ∈ soc(A/radA). For every x ∈ A, d(x)+radA = y+[a2, x]+radA
for some y ∈ J . Thus, σ(d(x) + radA) ⊂ σ([a2, x]) ∪ σ(y + radA). On the
other hand, using [5] once again, we see that there exists m ∈ N such that
]σ([a2, x]) ≤ m for every x ∈ A. Further, we know that ]σ(y + radA) ≤
dim(J/radA) + 1 for every y ∈ J . Thus, (ii) holds.

4. Proof of the main result. Let A be a complex Banach alge-
bra. Recall that every primitive ideal is prime. In the case that Prim(A)
is nonempty, we shall often use the following result [11, Theorem 2.2.9]:
σ(x) =

⋃
P∈Prim(A) σ(x+ P ), x ∈ A.

Proof of Theorem 1.2. It follows from [2, Theorem 2.4] that there exists
b ∈ soc(A) such that d is the inner derivation implemented by b. If d(A) 6⊂ P
for some primitive ideal P , then b 6∈ P . The fact that b ∈ soc(A) implies
that this can happen for at most finitely many primitive ideals P [5, Proposi-
tion 2.2].

Let {P1, . . . , Pr} be the set of primitive ideals of A such that d(A) 6⊂ Pj ,
j = 1, . . . , r. Observe that Pk 6⊂ Pj for k 6= j, 1 ≤ k, j ≤ r. Indeed, otherwise
we have soc(A/Pk) ⊂ Pj/Pk. Here we have used the fact that x + Pk ∈
soc(A/Pk) if and only if πk(x) is a finite rank operator in πk(A), where πk
is an irreducible representation of A whose kernel is Pk, together with the
fact that every nonzero ideal of πk(A) contains all finite rank operators from
πk(A). It follows that b ∈ Pj . This contradicts our assumption on b.

Let π1, . . . , πr be irreducible representations of A on Banach spaces
X1, . . . , Xr, respectively, such that Kerπj = Pj for all j. For each j, set
nj = max{]σ(d(x) + Pj) : x ∈ A} and let dj denote the induced derivation
on A/Pj . For 1 ≤ j ≤ r, choose xj ∈ A such that ]σ(d(xj) + Pj) = nj .
In the case that dim(A/Pj) < ∞ and dj is maximal spectral, we further
suppose that 0 6∈ σ(d(xj) + Pj). Replacing each xj by αjxj for a suitable
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αj ∈ C, we can assume that σ(d(xk)+Pk)∩σ(d(xj)+Pj) ⊂ {0}, k 6= j. Now
observe that each element of σ(πjd(xj)) is an eigenvalue, since πjd(xj) is a
finite rank operator. Moreover, σ(d(xj) + Pj) = σ(πjd(xj)). For each j, let
λj1, . . . , λ

j
nj be the eigenvalues of πjd(xj), and let ζj1 , . . . , ζ

j
nj be associated

eigenvectors. Using the extended Jacobson density theorem [7, p. 283], we
can find x ∈ A such that πj(x)uj = πj(xj)uj for each 1 ≤ j ≤ r and each
uj ∈ span{ζjt , πj(b)ζ

j
t : t = 1, . . . , nj}. Then we have

πj(d(x))ζjt = πj(bx− xb)ζjt = πj(bxj − xjb)ζjt = λjtζ
j
t .

Hence, σ(d(xj) + Pj) ⊂ σ(d(x) + Pj) for each j ∈ {1, . . . , r}. In fact, since
nj = max{]σ(d(z) + Pj) : z ∈ A}, we have σ(d(xj) + Pj) = σ(d(x) + Pj) for
each j ∈ {1, . . . , r}. We may suppose that for 1 ≤ j ≤ t, dim(A/Pj) < ∞
and dj is maximal spectral, and for t + 1 ≤ j ≤ r either dim(A/Pj) < ∞
and dj is not maximal spectral, or A/Pj is infinite-dimensional. Of course,
we can have t = 0. Using Observation 2.4 we see that 0 ∈ σ(d(y) + P ) for
every primitive ideal P different from P1, . . . , Pt. We have

σ(d(y)) =
⋃

P∈Prim(A)

σ(d(y) + P )

for every y ∈ A. Recall that n = max{]σ(d(y)) : y ∈ A}. Observe that
]σ(d(x)) = n.

We distinguish three cases.

(a) If r 6= t, then ]σ(d(x)) = n1 + · · ·+ nt + nt+1 +
∑r

j=t+2 nj − 1.
(b) If r = t and there exists P ∈ Prim(A) such that d(A) ⊂ P , then

]σ(d(x)) = n1 + · · ·+ nt + 1.
(c) If r = t and Prim(A) = {P1, . . . , Pt}, then ]σ(d(x)) = n1 + · · ·+ nt.

In the case where t < r we fix j such that t + 1 ≤ j ≤ r. According to
Lemma 2.3 and Observation 2.4, nj = 2kj +1, where kj = min{rank(πj(b)−
λI) : λ ∈ C}.

Suppose first that dim(A/Pj) <∞. Then the algebra A/Pj is simple and
unital. The intersection

⋂
P 6=Pj

P + Pj is a nonzero ideal of A/Pj . Indeed,
each P + Pj , P 6= Pj , is an ideal of A/Pj , and therefore it is either equal
to A/Pj , or it is zero. In the latter case we would have P ⊂ Pj . But this
is impossible because Pk 6⊂ Pj , k = 1, . . . , r, k 6= j, and d(A) ⊂ P for all
P ∈ Prim(A) \ {P1, . . . , Pr}. It follows that

⋂
P 6=Pj

P + Pj = A. Choose
ej ∈

⋂
P 6=Pj

P such that ej + Pj is the unit element of A/Pj . Moreover,
choose λj ∈ C such that rankπj(b− λjej) = kj . Put bj = (b− λj)ej .

Next suppose that dim(A/Pj) = ∞. Then dj is the inner derivation
implemented by b+Pj and b+Pj ∈ soc(A/Pj). Since soc(A/Pj) ⊂

⋂
P 6=Pj

P

+ Pj , there exists bj ∈
⋂
P 6=Pj

P such that bj + Pj = b+ Pj .
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Now put a =
∑r

k=t+1 bk. Then for each t + 1 ≤ j ≤ r, πj(a) = πj(bj).
Let

Γ = {P ∈ Prim(A) : P 6= Pt+1, . . . , Pr}.
Then a ∈

⋂
P∈Γ P . Using [6], we infer that rank(a) =

∑r
j=t+1 kj .

Set

Γ ′ = {P ∈ Prim(A) : P 6= P1, . . . , Pt} and A1 =
⋂
P∈Γ ′

P.

Then A1 is a finite-dimensional ideal of A isomorphic to A/P1⊕ · · ·⊕A/Pt.
Let e be the unit element of A1. Then e is a central idempotent of A. Set
A2 = A(1 − e) =

⋂t
j=1 Pj . We denote by dj , j = 1, 2, the restriction of d

to Aj . Then d(x) +Pj = d1(xe) +Pj for all 1 ≤ j ≤ t, and therefore, d1(xe)
is an invertible element of A1. Moreover, ]σ(d1(xe)) =

∑t
j=1 nj . Thus, d1 is

maximal spectral. In the case (c) we are done.
So, from now on we may suppose that A2 6= {0}. We fix y ∈ A2. Observe

that d(y) + P = [b, y] + P = [a, y] + P for every P ∈ Γ ′. Since A2 is
semisimple and [b − a, y] ∈ P for every P ∈ Γ ′, we infer that [b − a, y] = 0
and so d(y) = [a, y].

Next we claim that σ(d(y), A2) = σ(d(y), A). Note that σ(d(y), A)\{0} =
σ(d(y), A2) \ {0}. Furthermore, 0 ∈ σ(d(y), A). It remains to show that
0 ∈ σ(d(y), A2). Let P be a primitive ideal of A different from P1, . . . , Pt.
Notice that (

⋂t
j=1 Pj + P )/P is a nonzero ideal of A/P and is isomor-

phic to
⋂t
j=1 Pj/(

⋂t
j=1 Pj ∩ P ). Moreover,

⋂t
j=1 Pj ∩ P is a primitive ideal

of
⋂t
j=1 Pj = A2. Since 0 ∈ σ(d(y) + P,A/P ), we have 0 ∈ σ(d(y) + P,⋂t

j=1 Pj + P ) and so 0 ∈ σ(d(y) +
⋂t
j=1 Pj ∩ P,

⋂t
j=1 Pj). Thus 0 belongs to

σ(d(y), A2) and the claim is proved.
Thus, in the case (b) we have the third possibility from the conclusion

of our theorem with k = 0.
It remains to consider the case (a). Set n′ = max{]σ(d(y)) : y ∈ A2}.

Since σ(d(y)) =
⋃
P∈Γ ′ σ(d(y) + P ), y ∈ A2, and x − xe + P = x + P for

every P ∈ Γ ′, we have n′ = ]σ(d(x − xe)). Hence, n′ = 2(
∑r

j=t+1 kj) + 1
= 2 rank(a) + 1. This completes the proof.

Let A be an associative algebra. The Lie product of A is defined by
[x, y] = xy− yx. Let J be an ideal of A. According to [4], a Lie ideal L of A
is said to be embraced by J if

[J,A] ⊆ L ⊆ {x ∈ A : [x,A] ⊆ [J,A]}.
In the case that A is a semisimple Banach algebra, recall that the socle of A
is the largest ideal with finite spectrum. Using [2] and [5] we can show that
there exists a largest Lie ideal L of A such that every element of L has finite
spectrum. In particular, we shall show that the Lie ideal L is embraced by
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the socle of A. Set

Z ′(A) = {x ∈ Z(A) : ]σ(x) <∞}.
It follows from the fact that primitive complex Banach algebras are central
that Z ′(A) is a vector subspace of Z(A).

Corollary 4.1. Let A be a complex unital semisimple Banach algebra.
Then soc(A)+Z ′(A) coincides with the largest spectrum finite Lie ideal of A.

Proof. It is obvious that soc(A) + Z ′(A) is a Lie ideal of A. We first
show that every element in soc(A) + Z ′(A) has finite spectrum. Let 0 6=
x ∈ soc(A), and let u ∈ Z ′(A). According to [5, Proposition 2.2], there exist
a finite number of primitive ideals P1, . . . , Pr such that x ∈ P for every
P 6∈ {P1, . . . , Pr}. Set Γ = {P ∈ Prim(A) : P 6= P1, . . . , Pr}. Then we have

σ(x+ u) =
( r⋃
j=1

σ(x+ u+ Pj)
)
∪
( ⋃
P∈Γ

σ(u+ P )
)
.

But
⋃
P∈Γ σ(u + P ) ⊆ σ(u) and for each j ∈ {1, . . . , r}, there exists λ ∈ C

such that σ(x + u + Pj) = σ(x + λ + Pj). Thus ]σ(x + u) < ∞. Now let L
be a Lie ideal of A such that ]σ(a) < ∞ for every a ∈ L. Fix an element
a ∈ L. Then ]σ([a, x]) <∞ for every x ∈ A. It follows from [2, 5] that there
exists u ∈ Z(A) such that a + u ∈ soc(A). In particular, ]σ(a + u) < ∞.
For every P ∈ Prim(A), set u + P = λP + P, λP ∈ C. Then σ(a + u) =⋃
P∈Prim(A) σ(a+λP +P ). But

⋃
P∈Prim(A) σ(a+P ) = σ(a) and ]σ(a) <∞,

thus the set {λP : P ∈ Prim(A)} = σ(u) is finite. This completes the proof.
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