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Quotients of Banach spaces and surjectively universal spaces
by

PANDELIS DODOS (Athens)

Abstract. We characterize those classes C of separable Banach spaces for which there
exists a separable Banach space Y not containing ¢1 and such that every space in the class
C is a quotient of Y.

1. Introduction. There are two classical universality results in Banach
space theory. The first one, known to Stefan Banach [5], asserts that the
space C(2V), where 2V stands for the Cantor set, is isometrically universal
for all separable Banach spaces; that is, every separable Banach space is
isometric to a subspace of C'(2Y). The second result, also known to Banach,
is “dual” to the previous one and asserts that every separable Banach space
is isometric to a quotient of ¢;.

By now, it is well understood that there are natural classes of separable
Banach spaces for which one can get nothing better than what is quoted
above (see [I, B 16, [31]). For instance, if a separable Banach space Y is
universal for the separable reflexive Banach spaces, then Y must contain an
isomorphic copy of C(2Y), and so it is universal for all separable Banach
spaces. However, there are non-trivial classes of separable Banach spaces
which do admit “smaller” universal spaces (see [2], 111 12}, 13, [15], 23] 241, 27]).

Recently, in [I1], a characterization was obtained of those classes of sep-
arable Banach spaces admitting a universal space which is not universal for
all separable Banach spaces. One of the goals of the present paper is to ob-
tain the corresponding characterization for the “dual” problem concerning
quotients instead of embeddings. To proceed with our discussion it is useful
to introduce the following definition.

DEFINITION 1. We say that a Banach space Y is a surjectively univer-
sal space for a class C of Banach spaces if every space in the class C is a

quotient @ of Y.

2010 Mathematics Subject Classification: Primary 46B03; Secondary 03E15, 05D10.
Key words and phrases: quotients of Banach spaces, Schauder bases, universal spaces.

() If X and Y are Banach spaces, then we say that X is a quotient of Y if there
exists a bounded, linear and onto operator @ : Y — X.
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We can now state the main problem addressed in this paper.

(P) Let C be a class of separable Banach space. When can we find a
separable Banach space Y which is surjectively universal for the
class C and does not contain a copy of ¢17

We notice that if a separable Banach space Y does not contain a copy of 1,
then ¢; is not a quotient of Y (see [2I, Proposition 2.£.7]) and therefore Y
is not surjectively universal for all separable Banach spaces.

To state our results we recall the following (more or less standard) nota-
tion and terminology. We denote by SB the standard Borel space of separable
Banach spaces defined by B. Bossard [7], by NCy, the subset of SB consist-
ing of all X € SB not containing an isomorphic copy of 1, and finally by
¢ne,, Bourgain’s £1 index [8] (these concepts are properly defined in §2).
We show the following.

THEOREM 2. Let C C SB. Then the following are equivalent.

(i) There exists a separable Banach space Y which is surjectively uni-
versal for the class C and does not contain a copy of £1.
(i) sup{¢nc,, (X): X € C} <wi.
(iii) There exists an analytic subset A of NCy, with C C A.

We notice that stronger versions of Theorem [2] are valid provided that
all spaces in the class C have some additional property (see §5).

A basic ingredient of the proof of Theorem [2| (probably of independent
interest) is the construction, for every separable Banach space X, of a Ba-
nach space Ex with special properties. Specifically we show the following.

THEOREM 3. Let X be a separable Banach space. Then there exists a
separable Banach space Ex with the following properties:

(i) (Existence of a Schauder basis) The space Ex has a normalized

monotone Schauder basis (ez ).

(ii) (Existence of a quotient map) There exists a norm-one linear and
onto operator Qx : Ex — X.

(iii) (Subspace structure) If Y is an infinite-dimensional subspace of
Ex and the operator Qx : Y — X is strictly singular, then Y
contains a copy of co.

(iv) (Representability of X)) For every normalized basic sequence (wy;)
in X there exists a subsequence (efk) of (eX) such that (eﬁk) is
equivalent to (wy).

(v) (Uniformity) The set £ C SB x SB defined by

(X,Y)e & & Y isisometric to Ex

s analytic.
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(vi) (Preservation of separability of the dual) E% is separable if and
only if X* is separable.

We notice that there are a large number of related results in the litera-
ture; see, for instance, [9) 14} [15] 19] 23] 24} 32]. The novelty in Theoremis
that, besides functional-analytic tools, its proof is enriched with descriptive
set theory and the combinatorial machinery developed in [3] and [4].

The paper is organized as follows. In §2 we gather some background
material. In §3 we define the space Ex and prove Theorem [3] The proof of
Theorem [2] (actually of a more detailed version of it) is given in §4. Finally,
in §5 we present some related results and we discuss open problems.

2. Background material. Our general notation and terminology is
standard as can be found, for instance, in [2I] and [20]. By N = {0,1,2,...}
we denote the natural numbers.

We will frequently need to compute the descriptive set-theoretic complex-
ity of various sets and relations. To this end, we will use the “Kuratowski—
Tarski algorithm”. We assume that the reader is familiar with this classical
method. For more details we refer to [20, p. 353].

2.1. Trees. Let A be a non-empty set. We denote by A<N the set of all
finite sequences in A, and by AN the set of all infinite sequences in A (the
empty sequence is denoted by @) and is included in A<N). We view A<N as
a tree equipped with the (strict) partial order C of extension. Two nodes
s,t € A<N are said to be comparable if either s T t or t C s. Otherwise, s
and t are said to be incomparable. A subset of A<N consisting of pairwise
comparable nodes is said to be a chain, while a subset of A<N consisting of
pairwise incomparable nodes is said to be an antichain.

A tree T on A is a subset of A<N which is closed under initial segments.
We denote by Tr(A) the set of all trees on A. Hence

TeTr(Ad) & Vs,te AN (sCtandteT =seT).

The body of a tree T on A is the set {0 € AN : oln € T Vn € N}, denoted
by [T]. A tree T is said to be well-founded if [T] = (). By WF(A) we denote
the set of all well-founded trees on A. For every T € WF(A) we let T" =
{s €T :3t e Twith s C t} € WF(A). By transfinite recursion, we define
the iterated derivatives T¢ (¢ < k1) of T, where & stands for the cardinality
of A. The order o(T') of T is defined to be the least ordinal £ such that
Tt =9.

Let S and T be trees on two non-empty sets Ay and Ay respectively.
A map ¢ : S — T is said to be monotone if for every sg, s1 € S with sg C s1
we have ¥(sg) T (s1). We notice that if there exists a monotone map
Y : S — T and T is well-founded, then S is well-founded and o(S) < o(T).
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2.2. Dyadic subtrees and related combinatorics. Let 2<V be the
Cantor tree, i.e. the set of all finite sequences of 0’s and 1’s. For every
s,t € 2<N we let s At be the C-maximal node w of 2<N with w C s and
wC t. If s, € 2<N are incomparable with respect to C, then we write s < t
provided that (sA%)™0 C s and (sAt)"1 C t. We say that a subset D of 2<N
is a dyadic subtree of 2<N if D can be written in the form {d; : t € 2<} so
that for every to,t; € 2<N we have to C t; (respectively to < t1) if and only if
dy, T dy, (respectively dy, < dy,). It is easy to see that such a representation
of D as {d; : t € 2<N} is unique. When we write D = {d; : t € 2<}, where D
is a dyadic subtree, we will assume that this is the canonical representation
of D described above.

For every dyadic subtree D of we denote by [D]chains the set of all

infinite chains of D. Notice that [D]chains is a G, hence Polish, subspace of
22<N

2<N

. We will need the following partition theorem due to J. Stern (see [30]).

THEOREM 4. Let D be a dyadic subtree of 2<N and X be an analytic
subset of [D)ehains. Then there exists a dyadic subtree S of 2<N with S C D
and such that either [S]chains C X 07 [S]chains N X = 0.

2.3. Separable Banach spaces with non-separable dual. We will
need a structural result concerning separable Banach spaces with non-separ-
able dual. To state this result and to facilitate future references to it, it is
convenient to introduce the following definition.

DEFINITION 5. Let X be a Banach space and (x¢),co<n be a sequence
in X indexed by the Cantor tree. We say that (x¢),co<n is topologically
equivalent to the basis of James tree if the following conditions are satisfied:

(1) The sequence (x¢);cq<n is semi-normalized.
(2) For every infinite antichain A of 2<N the sequence (z¢)ic is weakly
null.
(3) For every o € 2" the sequence (To)p) i3 weak™ convergent to an
element z** € X**\ X. Moreover, if 0,7 € 2 with ¢ # 7, then
The archetypical example of such a sequence is the standard Schauder
basis of the space JT (see [17]). There are also classical Banach spaces
having a natural Schauder basis which is topologically equivalent to the
basis of James tree; the space C(2V) is an example. We isolate, for future
use, the following fact.

FacT 6. Let X be a Banach space and (z+);co<n be a sequence in X
which is topologically equivalent to the basis of James tree. Then for every
dyadic subtree D = {d; : t € 2<N} of 2<N the sequence (24,)ico<n is also
topologically equivalent to the basis of James tree.
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We notice that if a Banach space X contains a sequence (x¢);,cq<n which is
topologically equivalent to the basis of James tree, then X* is not separable.
The following theorem establishes the converse for separable Banach spaces
not containing a copy of ¢ (see [3, Theorem 40] or [4, Theorem 17]).

THEOREM 7. Let X be a separable Banach space not containing a copy
of €1 and with non-separable dual. Then X contains a sequence (xt)yco<n
which is topologically equivalent to the basis of James tree.

2.4. Co-analytic ranks. Let (X,Y) be a standard Borel space; that
is, X is a set, X is a o-algebra on X and the measurable space (X, X)) is
Borel isomorphic to the reals. A subset A of X is said to be analytic if there
exists a Borel map f : N¥ — X with f(NY) = A. A subset of X is said to be
co-analytic if its complement is analytic. Now let B be a co-analytic subset
of X. A map ¢ : B — w; is said to be a co-analytic rank on B if there
exist relations <y and <j; in X x X which are analytic and co-analytic
respectively and such that for every y € B we have

z€Band ¢(x) <d(y) & z<xy & <7y

For our purposes, the most important property of co-analytic ranks is that
they satisfy boundedness. This means that if ¢ : B — w; is a co-analytic rank
on a co-analytic set B and A C B is analytic, then sup{¢(z) : x € A} < wy.
For a proof as well as for a thorough presentation of rank theory we refer to
[201 §34].

2.5. The standard Borel space of separable Banach spaces. Let

F(C(2Y)) be the set of all closed subsets of C(2Y) and X be the Effros-Borel
structure on F(C(2Y)); that is, X is the o-algebra generated by the sets

{(FeF(C2Y): FNU # 0}
where U ranges over all open subsets of C(2V). Consider the set
SB = {X € F(C(2Y)) : X is a linear subspace}.

It is easy to see that SB equipped with the relative Effros—Borel structure
is a standard Borel space (see [7] for more details). The space SB is referred
to in the literature as the standard Borel space of separable Banach spaces.
We will need the following consequence of the Kuratowski-Ryll-Nardzewski
selection theorem (see |20, Theorem 12.13]).

PROPOSITION 8. There exists a sequence S, : SB — C(2Y) (n € N) of
Borel maps such that for every X € SB with X # {0} we have S,,(X) € Sx
and the sequence (S,(X)) is norm dense in Sx, where Sx stands for the
unit sphere of X.
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2.6. The class NCz and Bourgain’s indices. Let Z be a Banach
space with a Schauder basis @ We fix a normalized Schauder basis (z)
of Z. If Z is one of the classical sequence spaces ¢y and ¢, (1 < p < 00),
then we let (z,,) be the standard unit vector basis. We consider the set

NCz = {X € SB: X does not contain an isomorphic copy of Z}.

Let 6 > 1 and let Y be an arbitrary separable Banach space. Following
Bourgain [§], we introduce a tree T(Y, Z, (z,),d) on Y defined by the rule
)k _o € T(Y, Z,(20),8) < (yn)k_, is d-equivalent to (z,)*_.

In particular, if Z is the space ¢1, then for every § > 1 and every finite

sequence (y,)*_, in Y we have (yn)f_, € T(Y, 41, (2n),0) if and only if for
every ag,...,ar € R,

1 k k k
5D lan| < Hzanyn <6 lan).
n=0 n=0 n=0

We notice that Y € NCy if and only if for every § > 1 the tree T(Y, Z, (2,),0)
is well-founded. We set ¢nc,(Y) = wy if Y ¢ NCyz, while if Y € NCz we
define

(1) onc, (Y) =sup{o(T(Y, Z, (2,),9)) : 6 > 1}.
In [§], Bourgain proved that for every Banach space Z with a Schauder basis

and every Y € SB we have Y € NCy if and only if ¢nc,(Y) < wi. We need
the following refinement of this result (see [7, Theorem 4.4]).

THEOREM 9. Let Z be a Banach space with a Schauder basis. Then the

set NCz is co-analytic and the map ¢nc, : NCz — wq is a co-analytic rank
on NCy.

We will also need the following quantitative strengthening of the classical
fact that £; has the lifting property.

LEMMA 10. Let X and Y be separable Banach spaces and assume that
X is a quotient of Y. Then ¢nc,, (X) < éne,, (V).

Proof. Clearly we may assume that Y does not contain a copy of 1. We
fix a quotient map @ : Y — X. There exists a constant C > 1 such that

(a) QI <C,
(b) for every x € X there exists y € Y with Q(y) =z and ||y|| < C||z]|.

For every z € X we select y, € Y such that Q(y,) = x and ||yz|| < C||z].
We define a map 1 : XN — Y<N ag follows. We set ¢(0) = 0. If s =

(?) Throughout the paper when we say that a Banach space X has a Schauder basis
or the bounded approximation property, then we implicitly assume that X is infinite-
dimensional.
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(zn)k_y € X<N\ {0}, then we set
b(s) = (You im0

We notice that the map 1 is monotone. Denote by (z,) the standard unit
vector basis of ¢1.

CrAam 11. For every 6 > 1 if s € T(X, 01, (zn),0), then 1(s) € T(Y, 41,
(zn),C9).

Granting Claim we can complete the proof of the lemma. Indeed, by
Claim [11] for every 6 > 1 the map 1 is monotone from T(X, {1, (z5),d) into
T(Y, (1, (zn),Cd). Hence

O(T(X7 b, (Zn), 6)) < O(T(}/v t, (Zn)a 05))
This clearly implies that ¢nc,, (X) < éne,, (Y).

It remains to prove Claim Let s = (w,)k_, € T(X,¢1,(2n),0) and
ag, - - -,a; € R. Then

Q(aoyzy + -+ + arYz,,) = aozo + - + apxy.
Hence, by (a), we get

1 k k k k
n=0 n=0 n=0 n=0

Observe that ||z,|| < § for every n € {0,...,k}. Therefore,

k k k &
n=0 n=0 n=0 n=0

Since the coefficients ag, ..., ar € R were arbitrary, inequalities and
imply that ¥(s) = (ys,)E_g € T(Y, 41, (2,),CS). This completes the proof
of Claim [[1] and of the lemma. m

2.7. Separable spaces with the B.A.P. and Lusky’s theorem. By
the results in [I8] and [26], a separable Banach space X has the bounded
approximation property (for short B.A.P.) if and only if X is isomorphic
to a complemented subspace of a Banach space Y with a Schauder basis.
W. Lusky found an effective way to produce the space Y. To state his
result we need, first, to recall the definition of the space Cy due to W. B.
Johnson. Let (F},) be a sequence of finite-dimensional spaces dense in the
Banach—Mazur distance in the class of all finite-dimensional spaces. We set

(4) Co= (D ok)

neN 0
and we notice that Cy is hereditarily ¢g (i.e. every infinite-dimensional sub-
space of Cjy contains a copy of ¢p). We can now state Lusky’s theorem

(see [22]).



178 P. Dodos

THEOREM 12. Let X be a separable Banach space with the bounded ap-
prozimation property. Then X @& Cy has a Schauder basis.

Theorem [12] will be used in the following parameterized form.

LEMMA 13. Let Z be a mz’m’mal@ Banach space not containing a copy
of co. Let A be an analytic subset of NCz N NCy,. Then there exists a
(possibly empty) subset D of NCz N NCy, with the following properties.

(i) The set D is analytic.
(ii) EveryY € D has a Schauder basis.
(iii) For every X € A with the bounded approximation property there
exists Y € D such that X s isomorphic to a complemented subspace
of Y.

Proof. The result is essentially known, and so we will be rather sketchy.
First we consider the set B C SB defined by

X € B & X has the bounded approximation property.

Using the characterization of B.A.P. mentioned above, it is easy to check
that the set B is analytic. Next, consider the set C C SB x SB defined by

(X,Y) €eC < Y is isomorphic to X & Cp.

It is also easy to see that C is analytic (see [2] for more details). Define
D C SB by the rule

YeD & IX [X e AnBand (X,Y) €(]
and notice that D is analytic. By Theorem the set D is as desired. =

2.8. Amalgamated spaces. A recurrent theme in the proof of var-
ious universality results found in the literature (a theme that goes back
to the classical results of A. Pelczyniski [25]) is the use at a certain point
of a “gluing” procedure. A number of different “gluing” procedures have
been proposed by several authors. We will need the following result (see [2]
Theorem T71]).

THEOREM 14. Let 1 < p < oo and C be an analytic subset of SB such
that every Y € C has a Schauder basis. Then there exists a Banach space V
with a Schauder basis that contains a complemented copy of every space in
the class C.

Moreover, if W is an infinite-dimensional subspace of V', then either

(i) W contains a copy of £y, or
(ii) there exist Yy, ..., Yy, in the class C such that W is isomorphic to a
subspace of Yo ® -+ DY,

(®) We recall that an infinite-dimensional Banach space Z is said to be minimal if
every infinite-dimensional subspace of Z contains an isomorphic copy of Z; e.g. the classical
sequence spaces ¢ and £, (1 < p < co) are minimal spaces.
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The space V obtained above is called in [2] the p-amalgamation space of
the class C. The reader can find in [2, §8] an extensive study of its properties.

3. Quotients of Banach spaces

3.1. Definitions. We start with the following.

DEFINITION 15. Let X be a separable Banach space and (z,) be a se-
quence (with possible repetitions) which is norm dense in the unit sphere Sx.
We denote by Ex the completion of ¢op(N) under the norm

m
(5) 2]l :sup{HZz(n)xn X:meN}.

n=0
Let (eX) denote the standard Hamel basis of cgo(N) regarded as a sequence
in Ex. If X = {0}, then by convention we set Ex = c.

The construction of the space Ex is somehow “classical” and its motiva-
tion can be traced back to the proof of the fact that every separable Banach
space is a quotient of ¢; (see [2I, p. 108]). A similar construction was pre-
sented by G. Schechtman in [29] for different, though related, purposes.

We isolate two elementary properties of the space Ex. First, we observe
that the sequence (e; ) defines a normalized monotone Schauder basis of Ey.
It is also easy to see that the map Ex > eX +— z,, € X extends to a norm-one
linear operator. This operator will be denoted as follows.

DEFINITION 16. We denote by Qx : Ex — X the (unique) bounded

linear operator satisfying Qx (eX) = x,, for every n € N.

Let us make two comments about the above definitions. Let (y,) be a
basic sequence in a Banach space Y and assume that the map

span{y, :n € N} >y, — z, € X

extends to a bounded linear operator. Then it is easy to see that there
exists a constant C' > 1 such that the sequence (e ) is C-dominated @
by (yn). In other words, among all basic sequences (y,) such that the map
span{yn : n € N} 3 y,, — x,, € X extends to a bounded linear operator, the
sequence (eX) is minimal with respect to domination.

Notice also that the space Ex depends on the choice of the sequence (zy,).
For our purposes, however, the dependence is not important, as can be

seen from the following simple observation. Let (d,,) be another norm dense

(*) We recall that if (v,) and (y) are two basic sequences in two Banach spaces V
and Y respectively, then (v,) is said to be C-dominated by (y») if for every k € N and
every ao,...,ar € R we have || 22:0 anvnllv < C|| Zizo anynlly-
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sequence in Sx and let E’ be the completion of co(N) under the norm

2l = sup { || - 2(n)de
n=0

Then it is easy to check that Ex embeds isomorphically into E’ and vice
versa. Actually, it is possible to modify the construction to obtain a different
space sharing most of the properties of E'xy and not depending on the choice
of the dense sequence. We could not find, however, any application of this
construction, and since it is involved and conceptually less natural to grasp
we prefer not to bother the reader with it.

The rest of the section is organized as follows. In §3.2 we present some
preliminary tools needed for the proof of Theorem 3] The proof itself is given
in §3.3, while in §3.4 we present some of its consequences. Finally, in §3.5
we make some comments.

X:mEN}.

3.2. Preliminary tools. We start by introducing a few pieces of nota-
tion that will be used only in this section. Let F' and G be two non-empty
finite subsets of N. We write F' < G if max F' < minG. Let (e;) be a basic
sequence in a Banach space E and let v € span{e, : n € N}. There exists a
(unique) sequence (a,) of reals such that v = Y anen. The support of the
vector v, denoted by supp(v), is defined to be the set {n € N : a,, # 0}. The
range of v, denoted by range(v), is the minimal interval of N that contains
supp(v).

In what follows, X will be a separable Banach space and (z,) will be
the sequence in X which is used to define the space Ex. The following
propositions will be basic tools for the analysis of EFx.

PROPOSITION 17. Let (v) be a semi-normalized block sequence of (e )
and assume that ||Qx (vi)||x < 2% for every k € N. Then (vy,) is equivalent
to the standard unit vector basis of cg.

Proof. We select a constant C' > 0 such that ||vx||g, < C for every
k€ N. Let F = {ko < --- < k;} be a finite subset of N. We will show that

J
Z. Ex
i=0

This will finish the proof. To this end we argue as follows. First we set
(a) G; =supp(vk;) and m; = minG; for every i € {0,...,5}.
Let (an) be the unique sequence of reals such that

(b) ap=0ifn¢ GoU---UGj,
(¢) vk = D nea, aneX for every i € {0,...,j}.
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Notice that for every [ € {0,...,j} and m € N with m € range(vy,) we have

m
(6) H Z AnTn X
n=my

We select p € N such that

J P
- : Ex Z X
=0 n=0

and we distinguish the following cases.

< HvszEX <C.

CASE 1: p € range(vk,). Using @, we see that

J P
(Sl - 55 ol <0
i=0 X n=mo

CASE 2: p € range(vy,) for some | € {1,...,j}. Using our hypotheses
on the sequence (vx) and inequality (6]), we get

J
H ka = HZ Z anTn + Z anTn
=0 =0 neG; n=my
Jf e

l

<S5

=0 neq;

,_.

= ||QX(Uk lx + H Z anan <2+C.

=0 n=m;

CaseE 3: p ¢ range(vy,) for every i € {0,...,j}. In this case there
exists [ € {0,...,75} such that range(vg,) < {p} if i € {0,...,1}, while
{p} < range(vy,) otherwise. Using this observation we see that

[l =15 5 ]

=0 neG;
The above cases are exhaustive, and so the proof is complete. m

< ZHQX k)l x < 2.

PROPOSITION 18. Let (vg) be a bounded block sequence of (eX). If
(Qx (vg)) is weakly null, then (vg) is also weakly null.

For the proof of Proposition we will need the following “uncondi-
tional” version of Mazur’s theorem.

LEMMA 19. Let (vg) be a weakly null sequence in a Banach space V.
Then for every e > 0 there exist kg < --- < kj in N and Ao, ..., A; in Ry

with Zgzo Xi =1 and such that
max{)\;: 0<i<j} <e
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and

max{HZ)\ivkiH : F C {O,...,j}} <e.
1€l

Proof. Clearly we may assume that V' = span{v; : £ € N}, and so we
may also assume that V is a subspace of C(2Y). Therefore, each vy is a
continuous function on 2V and the norm of V is the usual || - || norm.
By Lebesgue’s dominated convergence theorem, a sequence (f;,) in C'(2V) is
weakly null if and only if (f;) is bounded and pointwise convergent to 0.
Hence, setting yi = |vg| for every k € N, we see that the sequence (yy) is
weakly null. Therefore, using Mazur’s theorem, we find kg < --- < kj in N
and Ao, ..., A; in Ry with Zg:() X; = 1 and such that

max{\;: 0<i<j} <e

and || ZLO iUk, ||oo < €. Noticing that

max { H Z AiVk;
i€EF

completes the proof. m

<e

[e.9]

J
=0

We proceed to the proof of Proposition [18|

Proof of Proposition [18§ We argue by contradiction. So, assume that
(Qx (vg)) is weakly null while (vg) is not. We select C' > 1 such that
lvgl|Ex < C for every k € N. By passing to a subsequence of (vy) if neces-
sary, we find e* € E% and 0 > 0 such that e*(v;) > § for every k € N. This
implies that

(a) ||z||lEx = ¢ for every z in conv{vy : k € N}.

We apply Lemmato the weakly null sequence (Qx (vx)) and € = 4- (4C)~!
to find kg < -+ < kj in N and A, ..., \; in Ry with }°7_; X =1 and such
that

(7) max{\; : 0 <i < j} <6/4C

and

(8) max { H > AiQx(vi,)
i€F

Since ||vk||gy < C for every k € N, inequality implies that
(b) || Nivk, || Ex < /4 for every i € {0,...,j}.
We define

’X:Fg{o,...,j}}gé/w.

J
w = Z vk, € conv{vy : k € N}.
=0

We will show that ||w||g, < §/2, which contradicts property (a) above.
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To this end we argue as in the proof of Proposition First we set
(c) G; =supp(vy;) and m; = min G; for every i € {0,...,j}
and we let (a,) be the unique sequence of reals such that

(d) apn=0ifn ¢ GoU---UGj,
() Aivk, = D eq, aneX for every i € {0,...,j}.

Using (b), we see that if I € {0, ..., } and m € N with m € range(vy, ), then

9) | i ananX <INk |2, < 6/4.

n=mj

We select p € N such that

P
lwllex = H Z Qnln
n=0

and, as in the proof of Proposition we consider the following three cases.

X

CASE 1: p € range(vk,). Using (9), we see that

p
lellsx = || 3 ann

n=mo

< 4/4.
X_(S/

CASE 2: p € range(vy,) for somel € {1,...,7}. In this case the desired
estimate will be obtained by combining and @D Specifically, let F' =
{0,...,1— 1} and notice that

-1 P
||wHEX = Z Z anTn + Z nTn

X

=0 neG; n=my
p
< Zzanxn X+H D antn||
i€EF neG; n=m;
p
= Z)\lQX(UkZ) )X + H Z anfEnHX
el n=m;
5 u
< — + H Z AnTn
4C it
@ s )
< — 4 = —
—4C 4 7 2

CASE 3: p ¢ range(vy,) for some l € {0,...,7}. In this case we will only
use (§). Indeed, there exists I € {0,...,5} such that range(vy,) < {p} if
i €{0,...,1l}, while {p} < range(vg,) otherwise. Setting H = {0,...,[}, we
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see that

lwlley = HZ S anw| = |32 M@ (o)

i=0 neG; i€H

’25 )
Sws<71

The above cases are exhaustive, and so ||w| g, < §/2, completing the
proof. m

3.3. Proof of Theorem Let X be a separable Banach space, and
(xy,) the sequence used to define Ex.

(i) It is straightforward.

(ii) We have already noticed that ||@x|| = 1. To see that Qx is onto,
observe that the image of the closed unit ball of EFx under (Qx contains
{zy, : n € N} and therefore it is dense in the closed unit ball of X.

(iii) Let Y be an infinite-dimensional subspace of Ex and assume that
the operator Qx : Y — X is strictly singular. Using a standard sliding
hump argument we find a block subspace V' of Ex and a subspace Y’ of Y
with V isomorphic to Y’ and such that Qx : V — X is strictly singular.
Hence, we may select a normalized block sequence (vy) of (eX) with vy € V
and ||QX(Uk)|| x < 27F for every k € N. By Proposﬂ:lon the sequence
(vg) is equivalent to the standard unit vector basis of ¢y, and the result
follows.

(iv) This part was essentially observed in [29]. We reproduce the argu-
ment for completeness. So, let (wg) be a normalized basic sequence in X.
The sequence (x,) is dense in the unit sphere of X. Therefore it is possi-
ble to select an infinite subset N = {ng < n; < ---} of N such that the
subsequence (xp, ) is basic and equivalent to (wy) (see [2I]). Let K > 1
be the basis constant of (z,,). Let j € N and ao,...,a; € R, and notice
that

J J
E : 2 : X
X Ex
k=0 k=0

J
< KH g AfTn,
X X
k=0

Therefore, () is K-equivalent to (e;, ), and the result follows.
(v) First we consider the relation S C C(2M)N x SB defined by

(yn),Y) €S & (Vny, €Y) and span{y, : n € N} =Y.

3
— max ARl
ogingZ ket
k=0

The relation S is analytic (see [7, Lemma 2.6]). We apply Proposition [8| to
get a sequence Sy, : SB — C(2Y) (n € N) of Borel maps such that for every
X € SB with X # {0} the sequence (S,(X)) is norm dense in Sx. Now
notice that
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(X,Y) €€ & I(yn) € YN with ((yn), Y) € S and either

(X:{o} and Vk € N Yag, . .., a, € Q we have

k
H § anYn
n=0 o0

(X#{O} and Vk € N Vaq,...,a; € Q we have

k m
| X [ = max, [| 3 ansux)]| ).
n=0 n=0

The above formula implies that the set £ is analytic.

(vi) By (ii), X is a quotient of Ex. Therefore, if E% is separable, then
X* is also separable. For the converse, we argue by contradiction. So, as-
sume that there exists a Banach space X with separable dual such that
E% is non-separable. Our strategy is to show that there exists a sequence
(we)seo<n in Ex which is topologically equivalent to the basis of James tree
(see Definition [5)) and the sequence (Qx (w¢))ico<n has the same property.
As already indicated in §2.3, this implies that X* is non-separable and yields
a contradiction.

We argue as follows. First, X does not contain a copy of £;. Therefore,
by (iii), Ex does not contain a copy of ¢; either. Hence, Theorem [7| applied
to Ex yields a sequence (e;);eo<n in Ex which is topologically equivalent
to the basis of James tree. We need to replace (e;);co<v with another se-
quence having an additional property. Specifically, let us say that a sequence
(Vt)1eg<n in Ex is a tree-block if (v,,) is a block sequence of (eX) for every

= max [a,]), or

o € 2N, Notice that this notion is hereditary with respect to dyadic subtrees:
if (vt);e0<n is a tree-block and D = {d; : t € 2<} is a dyadic subtree of 2<N,
then (vg, );eo<n is also a tree-block.

CLAIM 20. There exists a sequence (v¢);ea<n in Ex which is topologically
equivalent to the basis of James tree and a tree-block.

Proof of Claim . We select C' > 1 such that O~ < |le|| gy, < C for
every t € 2<N. Let s € 2<N. There exists an infinite antichain A of 2<N
such that s C ¢ for every t € A. The sequence (et),co<n is topologically
equivalent to the basis of James tree, and so (e;)ica is weakly null. Using
this observation, we can recursively construct a dyadic subtree R = {r; :
t € 2N} of 2<N and a tree-block sequence (vt),co<n in Ex with [le,, —vt|| £y
< (20)711H1 for every t € 2<N. Clearly, (v);co<n is as desired. u

CLAIM 21. There exist a dyadic subtree Sy of 2<N and a constant © > 1
such that ©~1 < [|Qx (vi)||x < O for every t € Sp.
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Proof of Claim |21, Let K > 1 be such that [lvg]|g, < K for every
t € 2<N. We will show that there exist so € 2<N and 6 > 0 such that for
every t € 2<N with so C ¢ we have ||Qx(v;)|lx > 6. Then we set Sy =
{sgt:t € 2N} and © = max{#~!, K} and notice that Sy and O satisfy the
requirements of the claim.

We argue by contradiction. Assume that for every s € 2<N and 8 > 0
there exists ¢t € 2<N with s C ¢ and such that ||Qx(v¢)||x < 6. Hence, we
may select a sequence (tz) in 2<V such that for every & € N we have

(a) tk C tk+1,

(b) lQx(ve)lIx < 27"

By (a), the set {tx : kK € N} is a chain, while, by Claim the sequence
(v¢)geo<n is semi-normalized and a tree-block. Therefore, (v, ) is a semi-
normalized block sequence of (e;X ). By Proposition|17|and (b), (vt, ) is equiv-
alent to the standard unit vector basis of ¢, and so it is weakly null. By
Claim 20 however, (vy);cp<n is topologically equivalent to the basis of James
tree. Since {tj : k € N} is a chain, (v, ) must be a non-trivial weak® Cauchy
sequence. This yields a contradiction. m

CLAIM 22. There exists a dyadic subtree S1 of 2<N with S C Sy and
such that for every infinite chain {to T t1 T ---} of S1 the sequence
(Qx (vy,)) is basic.

Proof of Claim[23. By Claims [20] and for every s € Sy there exists
an infinite antichain A of Sy with s C t for every t € A and such that
the sequence (Qx (v¢))iea is semi-normalized and weakly null. Now use the
classical procedure of Mazur for selecting basic sequences (see [21]). =

CLAIM 23. There exists a dyadic subtree Sy of 2<N with Sy C S1 and
such that for every infinite chain {to T t1 T ---} of Sy the sequence
(Qx(vy,)) is weak™ Cauchy.

Proof of Claim[23. Let

X = {c € [S1]chains : the sequence (Qx (v¢))iec is weak” Cauchy}.
The set X is co-analytic (see [30] for more details). Therefore, by Theorem [4]
there exists a dyadic subtree Sy of 2<N with Sy C S and such that [S2]chains
is monochromatic. It is enough to show that [S9|chains N X # 0. Recall that
X does not contain a copy of ¢;. Therefore, by Rosenthal’s dichotomy [28],
we may find an infinite chain ¢ of Sy such that (Qx (v¢))iec is weak* Cauchy,
and the result follows. =

Let S be the dyadic subtree of 2<N obtained in Claim and let {s; :

t € 2<N} be the canonical representation of S5. We can now define the
sequence (w¢)yco<n mentioned at the beginning of the proof of (vi): we set

Wy = Ust
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for every t € 2<N. By Claim [20| and Fact @ the sequence (w¢);eo<n is topo-
logically equivalent to the basis of James tree and a tree-block. The final
claim is the following.

CrAaM 24. The sequence (Qx (w¢))ico<n is topologically equivalent to the
basis of James tree.

Proof of Claim 24, By Claim (Qx (wy))eo<n is semi-normalized.
Notice also that (Qx(w:))iea is weakly null for every infinite antichain A
of 2<N,

Let o € 2. By Claim (Qx(wg,)) is weak™ convergent to an z*
€ X**. First notice that 23" # 0. Indeed, (w,,) is a semi-normalized block
sequence of (e;X) which is weak* convergent to a w}* € B3\ Ex. If 23* = 0,
then Proposition |L§ would imply that (wg,,) is weakly null. Hence z3* # 0.
Next we observe that x}* € X**\ X. Indeed, by Claim the sequence
(Qx(wy)y)) is basic. Therefore, if (Qx (wy,)) were weakly convergent to an
x € X, then necessarily x = 0, which, however, is ruled out by the previous
reasoning, and so x;* € X**\ X.

Finally, suppose, towards a contradiction, that there exist o, 7 € 2 with
o # 7 and such that z}* = z¥*. Then one can select two sequences (s, ) and
(t,) in 2<N such that:

(a) Sp C spt+1 C o for every n € N.

(b) t,, T tyy1 C 7 for every n € N.

(c) If we set z, = ws, —wy, for every n € N, then (z,) is a semi-
normalized block sequence of (e ).

Our assumption that z}* = 27 reduces to the fact that the sequence
(Qx(2z,)) is weakly null. By (c¢), we may apply Proposition [L8| to infer that
(2n) is also weakly null. Therefore, the sequences (w,,) and (w,p,) are
weak™ convergent to the same element of EY'. This contradicts the fact that
(wt)sea<n is topologically equivalent to the basis of James tree. The proof is
complete. m

As already indicated, Claim yields a contradiction. This completes
the proof of part (vi) of Theorem 3| and so the entire proof is complete.

3.4. Consequences. We now isolate three corollaries of Theorem
The second one will be of particular importance in the next section.

COROLLARY 25. Let Z be a minimal Banach space not containing a copy
of co. If X s a separable Banach space not containing a copy of Z, then Ex
does not contain a copy of Z either.

Proof. Follows immediately from Theorem [3{(iii). =
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COROLLARY 26. Let Z be a minimal Banach space not containing a copy
of co and let A be an analytic subset of NCz N NCy,. Then there exists a
subset B of NCz NNCy, with the following properties:

(i) The set B is analytic.
(ii) Every Y € B has a Schauder basis.
(iii) For every X € A there exists Y € B such that X is a quotient of Y.

Proof. Let € be the set defined in Theorem [3|(v). We define B C SB by
the rule
YeB & 3X [X € Aand (X,Y) €&].

The set B is clearly analytic. Invoking parts (i) and (ii) of Theorem [3| and
Corollary [25] we see that B is as desired. =

COROLLARY 27. There exists a map f : w1 — w1 such that for every
countable ordinal & and every separable Banach space X with d)Nch (X)<¢
the space X is a quotient of a Banach space Y with a Schauder basis satisfy-

ing one,, (Y) < f(6).-
Proof. Fix a countable ordinal £ and set
A ={X €SB PNCy, (X) <&}

By Theorem |§|7 ¢N0e1 : NCy; — wi is a co-analytic rank on NCy,. Hence
the set A is analytic (in fact Borel, see [20]). We apply Corollary [26]to the
space Z = (1 and the analytic set A¢ to get an analytic subset B of NCy,
such that for every X € A¢ there exists Y € B with a Schauder basis and
having X as quotient. By boundedness, there exists a countable ordinal ¢
such that

sup{¢nc,, (V) : Y € B} = (.
We define f(§) = ¢. Clearly the map f:w; — wy is as desired. =

3.5. Comments. By a well-known result due to W. J. Davis, T. Figiel,
W. B. Johnson and A. Petczynski [9], if X is a Banach space with separable
dual, then X is a quotient of a Banach space Vx with a shrinking Schauder
basis. By Theorem [3| the space Ex has a Schauder basis, separable dual
and admits X as quotient. We point out, however, that the natural Schauder
basis (eX ) of Ey is not shrinking. On the other hand, the subspace structure
of Ex is very well understood. The space Vx mentioned above is defined
using the interpolation techniques developed in [9] and it is not clear which
are the isomorphic types of its subspaces.

We would also like to comment on the proof of the separability of the
dual of Ex. Our strategy was to construct a sequence (w¢)yco<n in Ex
which is topologically equivalent to the basis of James tree and is such that
its image under the operator (Jx has the same property; in other words,
Qx fixes a copy of this basic object. This kind of reasoning can be applied
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to a more general framework. Specifically, let Y and Z be separable Banach
spaces and T : Y — Z be a bounded linear operator. There are a number
of problems in functional analysis which boil down to understanding when
the dual operator T has non-separable range. Using the combinatorial tools
developed in [3] and an analysis similar to the one in the present paper, it can
be shown that if Y does not contain a copy of #1, then T™ has non-separable
range if and only if T fixes a copy of a sequence which is topologically
equivalent to the basis of James tree.

4. Proof of the main result. In this section we prove Theorem
stated in the introduction. The proof will be based on the following, more
detailed, result.

THEOREM 28. Let Z be a minimal Banach space not containing a copy
of co and A be an analytic subset of NCzNNCy,. Then there exists a Banach
space V€ NCz NNCy, with a Schauder basis which is surjectively universal
for the class A. Moreover, if X € A has the bounded approzimation property,
then X is isomorphic to a complemented subspace of V.

Let us point out that the assumption on the complexity of A in Theorem
is optimal. Notice also that if F is any Banach space with a Schauder
basis, then the set of all X € A which are isomorphic to a complemented
subspace of E is contained in the set of all X € A having the bounded
approximation property. Therefore, the “moreover” part of the above result
is optimal too.

Proof of Theorem[28 Since Z is minimal, there exists 1 < p < oo such
that Z does not contain a copy of £,. We fix such a p. We apply Lemma
to the space Z and the analytic set A to get a subset D of NCz NNCy, such
that:

(a) The set D is analytic.
(b) Every Y € D has a Schauder basis.
(c) For every X € A with the bounded approximation property there

exists Y € D such that X is isomorphic to a complemented subspace
of Y.

Next we apply Corollary [26] to the space Z and the analytic set A to get a
subset B of NCz N NC,, with the following properties:

(d) The set B is analytic.
(e) Every Y € B has a Schauder basis.
(f) For every X € A there exists Y € B such that X is a quotient of Y.

We set C = BUD and we notice that C C NCz NNCy,. By (a) and (d), the
set C is analytic, while, by (b) and (e), every Y € C has a Schauder basis.
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The desired space V' is the p-amalgamation space of the class C obtained in
Theorem It remains to check that V' has the desired properties. Notice,
first, that V' has a Schauder basis.

CLAIM 29. The space V is surjectively universal for the class A.

Proof of Claim . Let X € A. By (f), there exists Y € B such that X
is a quotient of Y. We fix a quotient map @ : ¥ — X. Next we observe that
V' contains a complemented copy of Y. Therefore, we can find a subspace
E of V, a projection P : V — FE and an isomorphism 7" : F — Y. Let
Q' : V — X be defined by Q' = Q oT o P and notice that @’ is onto. Hence,
X is a quotient of V', and the result follows. =

Cram 30. We have V€ NCz NNCy,.

Proof of Claim[30. We will show that V' does not contain a copy of Z
(the proof that V' does not contain a copy of ¢; is identical). We argue
by contradiction. Assume that there exists a subspace W of V' which is
isomorphic to Z. By the choice of p, we see that W does not contain a
copy of £,. Therefore, by Theorem there exist Yp,...,Y, in the class C
such that W is isomorphic to a subspace of Yy & --- @ Y,,. There exist an
infinite-dimensional subspace W' of W and iy € {0,...,n} such that W’ is
isomorphic to a subspace of Yj,. Since Z is minimal, Y;, must contain a copy
of Z. This contradicts C C NCy, and so the claim is proved. =

Finally, we notice that if X € A has the bounded approximation prop-
erty, then, by (c¢) above and Theorem X is isomorphic to a complemented
subspace of V. This shows that the space V has the desired properties. The
proof of Theorem [28]is complete. m

We proceed to the proof of Theorem

Proof of Theorem[2 Let C C SB.

(i)=(ii). Assume that there exists a separable Banach space Y not con-
taining a copy of ¢; which is surjectively universal for the class C. The space
Y does not contain a copy of ¢1, and so ¢NCe1 (Y) < wi. Moreover, every
space in C is a quotient of Y. Therefore, by Lemma

sup{¢nc,, (X) : X € C} < ¢ne,, (V) < wi.

(ii)=-(iii). Let & be a countable ordinal such that sup{¢nc,, (X) : X € C}
= £. By Theorem (9 the map ¢NCe1 : NCy, — wq is a co-analytic rank
on NCy,. It follows that the set

A={V €SB: ¢N021 (V) <¢&}

is a Borel subset of NCy, (see [20]) and clearly C C A.
(iii)=(i). Assume that there exists an analytic subset A of NC,, with
C C A. We apply Theorem [2§] for Z = ¢; and the class A to get a Banach
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space V with a Schauder basis which does not contain a copy of ¢; and is
surjectively universal for A. A fortiori, V is surjectively universal for C, and
the result follows. m

5. A related result and open problems. Let us recall the following
notion (see [2, Definition 90]).

DEFINITION 31. A class C C SB is said to be strongly bounded if for
every analytic subset A of C there exists Y € C which is universal for the
class A.

This is a quite strong structural property. It turns out, however, that
many natural classes of separable Banach spaces are strongly bounded.

Part of the research in this paper grew out from our attempt to find
natural instances of the “dual” phenomenon, abstracted in the following
definition.

DEFINITION 32. A class C CSB is said to be surjectively strongly bounded
if for every analytic subset A of C there exists Y € C which is surjectively
universal for the class A.

Thus, Theorem [28| has the following consequence.

COROLLARY 33. Let Z be a minimal Banach space not containing a copy
of co. Then the class NCy, N NCgz is surjectively strongly bounded.

The following proposition provides two more natural examples.

PROPOSITION 34. The class REFL of separable reflexive Banach spaces
and the class SD of Banach spaces with separable dual are surjectively strong-
ly bounded.

Proposition [34] follows by combining a number of results already existing
in the literature, and so instead of giving a formal proof we only give the
guidelines. To see that REFL is surjectively strongly bounded, let A be an
analytic subset of REFL and consider the dual class A* defined by

Y ¢ A* & JX € A with Y isomorphic to X*.

The set A* is analytic (see [10]) and A* C REFL. Since REFL is strongly
bounded (see [12]), there exists a separable reflexive Banach space Z which
is universal for the class A*. Therefore, every X in A is a quotient of Z*.
The referee suggested that, alternatively, one can use the universality results
obtained in [24].

The argument for the class SD is somewhat different and uses the param-
eterized version of the Davis—Figiel-Johnson—Petczynski construction due to
Bossard, as well as an idea already employed in the proof of Theorem [28]
Let A be an analytic subset of SD. By the results in [9] and [6], there exists
an analytic subset B of Banach spaces with a shrinking Schauder basis such
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that for every X € A there exists Y € B having X as a quotient. It is then
possible to apply the machinery developed in [2] to obtain a Banach space
FE with a shrinking Schauder basis that contains a complemented copy of
every space in B. By the choice of B, the space E is surjectively universal
for the class A.

Although, by Theorem the class NCy, is surjectively strongly bounded,
we should point out that it is not known whether it is strongly bounded.
We close this section by mentioning the following related problems.

PROBLEM 1. Is it true that every separable Banach space X not con-
taining a copy of £1 embeds into a space Y with a Schauder basis and not
containing a copy of £1¢

PROBLEM 2. Does there exist a map g : w1 — wi such that for every
countable ordinal & and every separable Banach space X with ¢NCzl (X)<¢
the space X embeds into a Banach space Y with a Schauder basis satisfying

Ixcy, (V) < 9(6)?
PROBLEM 3. Is the class NCy, strongly bounded?

We notice that an affirmative answer to Problem [2]can be used to provide
an affirmative answer to Problem [3[ (to see this combine Theorem |§| and
Theorem |14] stated in §2).

It seems reasonable to conjecture that the above problems have an af-
firmative answer. OQur optimism is based on the following facts. Firstly, the
answer to Problem [3] is known to be “yes” within the category of Banach
spaces with a Schauder basis (see [2]). Secondly, it is known that for every
minimal Banach space Z not containing a copy ¢; the class NCy is strongly
bounded (see [11]).
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