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Approximate and weak amenability of
certain Banach algebras

by

P. Bharucha and R. J. Loy (Canberra)

Abstract. The notions of approximate amenability and weak amenability in Banach
algebras are formally stronger than that of approximate weak amenability. We demon-
strate an example confirming that approximate weak amenability is indeed actually weaker
than either approximate or weak amenability themselves. As a consequence, we examine
the (failure of) approximate amenability for `p-sums of finite-dimensional normed al-
gebras.

1. Introduction. Various notions of amenability in Banach algebras
have surfaced over the years which attempt to make sharp the tradeoff
between the restrictiveness of the notion (that is, how many examples of
Banach algebras satisfy it) and the hereditary theory associated with it.
This effort has led to two distinct approaches—one being to restrict the
bimodules in question, yielding such notions as weak amenability; and the
other being to somewhat relax the structure on the derivations themselves
yielding such notions as approximate amenability [9].

Definition 1.1. A Banach algebra A is weakly amenable if each con-
tinuous derivation D : A→ A∗ is inner.

Definition 1.2. A Banach algebra A is approximately amenable if, for
each Banach A-bimodule E and every continuous derivation D : A → E∗,
there exists a net (x∗α) ⊂ E∗ such that D is given by

D(a) = lim
α

(a · x∗α − x∗α · a) (a ∈ A).

We examine the combination of these two notions.

Definition 1.3. A Banach algebra A is approximately weakly amenable
if for every continuous derivation D : A→ A∗ there is a net (a∗α) ⊂ A∗ such
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that
D(a) = lim

α
(a · a∗α − a∗α · a) (a ∈ A).

Given what has already been said, this is a natural combination of
the two distinct methods for generalizing amenability. Approximate weak
amenability has not been extensively studied, except for Segal algebras [7].
One of our main goals is to remedy this situation. Until now it has not
been established that approximate weak amenability is totally independent
of weak amenability, or of approximate amenability. The broad purpose of
this paper is to demonstrate this independence. To be specific, we seek an
example of a Banach algebra which is approximately weakly amenable but
which fails to be approximately amenable or weakly amenable.

2. The example. Via a very simple argument, we can immediately rule
out a large class of Banach algebras from our search.

Proposition 2.1. Suppose that A is a commutative Banach algebra
which is approximately weakly amenable. Then A is weakly amenable.

Proof. Consider a continuous derivation D : A → A∗. Then by hypoth-
esis there is a net (x∗α) ⊂ A∗ such that for each a ∈ A,

D(a) = lim
α

(a · x∗α − x∗α · a) = 0,

since A∗ is a commutative A-bimodule.

That is to say, for commutative Banach algebras, approximate weak
amenability and weak amenability are the same.

As previously stated, the only concerted effort to study approximate
weak amenability has been carried out on Segal algebras. We recall the basic
definitions involved. Given a function f defined on a group G, we denote
the left and right translations of f by x ∈ G as

lxf(y) = f(xy), rx(y) = f(yx) (y ∈ G).

Definition 2.2. A Segal algebra on a locally compact group G is a linear
subspace S(G) of the convolution algebra L1(G) which satisfies the following
properties:

• S(G) is dense in L1(G),
• S(G) is a Banach space under some norm ‖ · ‖S and ‖f‖S ≥ ‖f‖1 for

all f ∈ S(G),
• S(G) is left-translation invariant, and ‖lxf‖S = ‖f‖S for every x ∈ G

and f ∈ S(G), and the map x 7→ lxf from G into S(G) is continuous.

Under these properties, it is standard that a Segal algebra is indeed a
Banach algebra, contained as an ideal in L1(G). A Segal algebra is symmetric
if the analogous statement also holds for right translations.
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To use what is known about approximate weak amenability on Segal
algebras, we also need to slightly restrict the class of groups considered.

Definition 2.3. A locally compact group G is called a SIN group if
there is a basis for neighbourhoods of the identity of G consisting of compact
sets Uα for which xUαx

−1 = Uα for all α and x ∈ G.

It is standard that many commonly considered groups are of class SIN,
for example all compact groups, discrete groups and abelian groups.

The main result obtained for Segal algebras is the following. We see that
many of the most common Segal algebras are in fact approximately weakly
amenable.

Theorem 2.4 ([7, Theorem 2.1]). Suppose that S(G) is a symmetric
Segal algebra on a SIN group. Then S(G) is approximately weakly amenable.

There is also a result of this type for weak amenability [8]. However, the
fact is that it assumes commutativity of the Segal algebra, that is, G must
be abelian (this result is, of course, obvious from Theorem 2.4 in light of the
equivalence of weak and approximate weak amenability under the commu-
tativity hypothesis). A partial converse to this is the following observation.
Note that L2(G) is, of course, a symmetric Segal algebra on G whenever G
is compact.

Proposition 2.5 ([8, Remark 3.2]). Suppose that G is a compact non-
abelian group. Then L2(G) is not weakly amenable.

This indicates the possibility that there might be a compact non-abelian
group G such that L2(G) fulfils the required criteria. We look for a non-
abelian compact group G such that L2(G) is not approximately amenable.
Clearly, this group must be infinite.

To determine a possible approach for this, one looks to the abelian case,
even though this is not what is ultimately desired. We have already chosen
to investigate the case of compact G. Suppose then for the moment that
G is abelian. Then the standard Fourier transform gives a Banach algebra
isomorphism of L2(G) onto `2(Ĝ) under pointwise multiplication. We thus
need a result relating to the approximate amenability of `2-sums.

Lemma 2.6. For 1 ≤ p < ∞ and any infinite set I, `p(I) fails to be
approximately amenable.

This is the observation directly following Theorem 4.1 of [5]. Thus `2(Ĝ)
fails approximate amenability, and hence L2(G) fails approximate amenabil-
ity.

Motivated by this we turn to the representation theory of compact
groups. The reader is referred to [6] and [10] for further details. For G
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a locally compact group, the dual object of G, denoted by Σ = Σ(G), is the
collection of equivalence classes of irreducible unitary representations of G.

Definition 2.7 ([10, 28.24]). Let I be an index set. For each i ∈ I, let
Hi be a Hilbert space of dimension di. Then denote

⊕
i∈I B(Hi) by G(I).

Define a Hilbert space direct sum norm on G(I) by

‖E‖2 =
(∑
i∈I

di‖Ei‖2tr
)1/2

,

and corresponding space G2(I) = {E ∈ G(I) : ‖E‖2 < ∞}; here, ‖M‖tr
denotes the trace class norm of a matrix M .

It is shown in [10, Corollary 28.29] that G2(I) is a Hilbert space under
the inner product

〈E,F 〉 =
∑
i∈I

di tr(EiF ∗i ),

thus generalizing the Hilbert space `2.
One now considers the index set Σ, with dσ = dimHσ for σ ∈ Σ, and

uses coordinatewise product on G2(Σ) to turn it into a Banach algebra.
Note that if G were abelian, then G2(Σ) would correspond to `2(Σ) both
in terms of topology and multiplication. We now make use of the algebra
G2(Σ); it puts us in a position to define an appropriate Fourier transform.

It should be noted that if one uses [10, Definitions 28.34] to define our
Fourier transform f 7→ f̂ for f ∈ L1(G), it is given in terms of the decompo-
sitions of the unitary representations of G. We use an equivalent definition,
which is in the notation of [6, p. 134], circumventing the need to specify
bases for the Hilbert spaces involved.

Definition 2.8. The Fourier transform of f ∈ L1(G) at σ ∈ Σ is the
operator

f̂(σ) =
�
f(x)σ(x) dh(x),

which maps onto a dense subset of c0(Σ) = {E ∈ G(I) : ‖Ei‖tr
i→ 0}. As

usual, h is the unique normalized Haar measure on the group G.

To make sense of this definition, one should view it in the weak sense.
That is, for any u ∈ Hσ we define f̂(σ)u by specifying its inner product with
another arbitrary v ∈ Hσ, and this is given by

〈f̂(σ)u, v〉 =
�
f(x)〈σ(x)u, v〉 dh(x).

Then this Fourier transform has the desired properties.

Theorem 2.9 ([10, Theorems 28.40 and 28.43]). Suppose that G is a
compact group. Then the transform f 7→ f̂ maps L2(G) isometrically onto
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G2(Σ). Also, this map is an isomorphism, in that f̂ ∗ g(σ) = f̂(σ)ĝ(σ) for
f, g ∈ L2(G) and σ ∈ Σ.

Hence the Fourier transform is actually a Banach algebra isomorphism
from L2(G) onto G2(Σ). This means that if we can establish that G2(Σ) fails
to be approximately amenable, then L2(G) will also fail to be approximately
amenable.

Let us for the moment assume that the group has infinitely many one-
dimensional representations, somewhat resembling the abelian case. Write
Σ1 = {σ ∈ Σ : dimHσ = 1}. Then

G2(Σ) = G2(Σ1)⊕G2(Σ\Σ1),

with both of these summands being ideals; recall that we are using coordi-
natewise product. Since the product on G2(Σ1) coincides with the pointwise
product on `2(Σ1), and denoting I = G2(Σ\Σ1), we have

G2(Σ)/I = `2(Σ1).

Note that when we write `2(Σ1), it is clear that we are referring to complex-
valued sequences over the index set Σ1. However, we will soon encounter
`p(A), where A is a Banach algebra, which will denote A-valued sequences
over a countable index set with summable pth powers of the norms. It will
always be clear from the context which we are using.

We know from Lemma 2.6 that `2(Σ1) is not approximately amenable,
and thus in this instance G2(Σ) cannot be approximately amenable ([9,
Corollary 2.1]). We recall the standard fact that if two group characters are
distinct, then they are non-equivalent. Hence, we have the following.

Proposition 2.10. To find a compact group for which L2(G) fails ap-
proximate amenability, it suffices to find such a non-abelian group with in-
finitely many one-dimensional representations.

Example 2.11. Consider the group G = T × SU(2), where T is the
circle group and SU(2) is the special unitary group of 2×2 matrices T with
determinant 1 such that T ∗T = I. We know that T has dual group Z of
countably many distinct one-dimensional unitary representations. We now
extend these to the entire group G.

To this end, consider the representations as operators ψ : T 7→ B(C), and
extend to ψ̃ : G 7→ B(C) by ψ̃(t,M) = ψ(t). These are all clearly unitary
and not equivalent for different ψ ∈ T̂, and so there are countably many
classes of the required representations. Hence our group G has infinitely
many classes of irreducible one-dimensional representations, and (at last)
L2(T× SU(2)) with convolution cannot be approximately amenable.

It is obvious that the pattern generalizes.
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Corollary 2.12. Suppose that G = G0 × G1 where G0 and G1 are
compact, and G0 is infinite and abelian. Then L2(G) is not approximately
amenable.

Hence by choosing G1 non-abelian, one has a range of groups for which
L2(G) is approximately weakly amenable, but neither approximately nor
weakly amenable. Note that we may even choose G1 to be finite in this
context. Recall that when G is non-abelian, [8, Remark 3.2] uses any two
non-commuting elements of G to demonstrate the lack of weak amenability
of L2(G).

Example 2.13. The unitary group U(2) of 2 × 2 matrices T such that
T ∗T = I has countably many one-dimensional non-equivalent unitary rep-
resentations ([10, §29.48]). Also, U(2) is isomorphic (as a group) to the
quotient group T× SU(2)/{(−1,−I)), (1, I)} ([6, p. 146]), elucidating the
existence of the one-dimensional representations. Thus L2(U(2)) is not ap-
proximately amenable via Proposition 2.10.

3. `p-sums. Thus far, we have considered compact groups with infinitely
many one-dimensional representations. A compact group is only guaran-
teed to have one such representation, namely the trivial one. What about
compact groups with infinitely many n-dimensional representations? This
would involve examining the space `2(Mn) for some fixed n. For the rest
of this section, we will take n to be some fixed natural number, and write
M(·) = Mn(·), M = Mn(C). We obtain an appropriate result about se-
quences of matrices, based on a very similar result on amenability from the
recent memoir [4].

Proposition 3.1. Let A be a Banach algebra. Then A is approximately
amenable if and only if Mn(A) is approximately amenable.

Proof. The “if” part (which is what we really need) follows directly via
the method of [4, Theorem 2.7], replacing inner derivations with approxi-
mately inner derivations. For the converse, one invokes [9, Proposition 2.3]
and its subsequent remark, noting that since M is finite-dimensional, the
condition in the remark is satisfied.

This immediately gives us a way of untangling the approximate amenabil-
ity of `1(Mn) algebras via the canonical Banach algebra isomorphism `1(M)
= M(`1). However, a similar approach is also possible in the `p case.

Lemma 3.2. Let 1 ≤ p ≤ ∞. Then

‖Γ‖p =
(∑

i,j

|γij |p
)1/p

for Γ = (γij) ∈M

is an algebra norm on M .
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Proof. The fact that Γ = 0 if and only if ‖Γ‖p = 0, as well as the
homogeneity of ‖ · ‖p, are obvious. The triangle inequality is the same as
Minkowski’s inequality for `p-spaces. SinceM is finite-dimensional, all norms
on M are equivalent, and hence ‖ · ‖p is an algebra norm.

This observation immediately leads to an important identification, whose
verification is elementary.

Proposition 3.3. For 1 ≤ p ≤ ∞, there is a canonical Banach algebra
isomorphism from M(`p) onto `p(M).

We now give the main result of this section, discussing approximate
amenability for summable sequences of finite-dimensional algebras.

Theorem 3.4. Suppose that F is a finite-dimensional normed algebra.
Then for 1 ≤ p <∞, `p(F) is not approximately amenable.

Proof. Since F is finite-dimensional, it has a Wedderburn decomposition

F u
N⊕
i=1

Mni �R,

where R = rad(F). Hence we have the decomposition

`p(F) u
N⊕
i=1

`p(Mni)� `p(R) u
N⊕
i=1

Mni(`
p)� `p(R).

If F is not purely radical, then Proposition 3.1, Lemma 2.6 and [9, Corollary
2.1] show that `p(F) is not approximately amenable. On the other hand, if F
is radical, then, being finite-dimensional, it is nilpotent, whence so is `p(F).
Thus `p(F) cannot possess an approximate identity.

Remark 3.5. From the isomorphism Proposition 3.3, and Proposition
3.1, it becomes clear that `∞(F) is amenable (or approximately amenable)
if and only if F is semisimple.

Given the result obtained for finite-dimensional algebras, there is an
immediate question: for 1 ≤ p <∞, does `p(A) fail approximate amenability
for every Banach algebra A? We proceed with a technical lemma.

Lemma 3.6. Suppose that A is a Banach algebra, and that I is a closed
ideal in A. For 1 ≤ p ≤ ∞, we have an isomorphism

`p(A)/`p(I) ∼= `p(A/I).

Proof. Let a = (an) ∈ `p(A). Define Q : `p(A)→ `p(A/I) by

Q(an) = (an + I) (a = (an) ∈ `p).
It is immediate that Q is a contractive homomorphism.
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Now suppose that i = (in) ∈ `p(I). Then Q(i) = 0. If a ∈ `p(A) and
Q(a) = 0, then we have an ∈ I for each n, and so a ∈ `p(I). Thus kerQ =
`p(I).

Finally, we must check that Q is surjective. Given (an + I) ∈ `p(A/I),
we know that, for n ∈ N, given εn > 0, there is in ∈ I such that

‖an + in‖ ≤ ‖an + I‖+ εn.

In particular, if an /∈ I, then ‖an+ I‖ 6= 0, and so we can choose in ∈ I such
that

(1) ‖an + in‖ ≤ 2‖an + I‖.
And if an ∈ I, then ‖an + I‖ = 0, so with in = −an, equation (1) still holds.
So for all n, we may choose in ∈ I so that (1) holds.

Thus (an + in) ∈ `p(A) by comparison, and Q(an + in) = (an + I).

Corollary 3.7. Suppose that A is a Banach algebra with a closed ideal
I of finite codimension. Then for 1 ≤ p < ∞, `p(A) is not approximately
amenable.

Proof. We immediately see that `p(A)/`p(I) is not approximately amen-
able and, by [9, Corollary 2.1], `p(A) also fails approximate amenability.

Hence, `p(A) fails to be approximately amenable for many examples of
Banach algebras A, including commutative non-radical A (for then A admits
a non-zero character). This confirms, for example, that algebras such as
`1(`∞) are not approximately amenable.

Coming back to compact groups, the following result is formally stronger
than what we obtained previously.

Proposition 3.8. Let G be a compact group with associated represen-
tation space Σ. Suppose that G has infinitely many n-dimensional represen-
tations for some n. Then L2(G) is not approximately amenable.

Proof. We repeat the argument preceding Proposition 2.10, with Σn =
{σ ∈ Σ : dimHσ = n} and I = G2(Σ\Σn), to obtain

G2(Σ)/I = `2(Mn) = Mn(`2),

which is not approximately amenable. Recall that norming Mn under ‖ · ‖tr
is equivalent to norming it under ‖ · ‖2.

This enables us to examine some more groups.

Example 3.9. Consider the infinite product G =
∏∞
i=1 SU(2). It is

known that SU(2) has exactly one n-dimensional representation for each n
([6, Theorem 5.39]). Thus it is easy to verify using [10, Theorem 27.43]
that G has only one 1-dimensional representation, but infinitely many n-
dimensional representations for n ≥ 2. We may now invoke Proposition 3.8
to see that L2(G) is not approximately amenable.
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4. Update. A new preprint [1] has very recently come to the attention of
the authors. It entirely resolves the problem with the above situation, in that
until now we had a result about the approximate amenability of L2(G) for G
compact only when G had infinitely many n-dimensional representations for
some fixed n. In [1] this issue is resolved by showing that Banach algebras
A which contain sequences of elements which are unbounded yet multiplier
bounded fail to be approximately amenable.

Theorem 4.1 ([1, Lemma 2.4 and Theorem 2.5]). Suppose that A is a
Banach algebra. Suppose there exists an unbounded but multiplier bounded
sequence (En) ⊂ A such that EnEn+1 = En+1En = En for all n. Then A
fails to be approximately amenable.

This fact immediately implies that the required `p-sums fail to be ap-
proximately amenable.

Example 4.2. Let A = `p(Mnk
), where at each index k, Mnk

is the
collection of square matrices of size nk, normed under ‖ · ‖tr. Denoting the
identity in Mnk

by Ink
, we see that the sequence

Ek = (In1 , . . . , Ink
, 0, 0, . . . )

satisfies the criteria of Theorem 4.1. Hence, A fails to be approximately
amenable.

Remark 4.3. Interestingly, this example seems to be at the heart of
[1, Example 2.7], however their hypothesis that ‖Ink

‖ → ∞ (which thus
appears to be superfluous) compensates for the fact that they do not take
sums of the Ink

. The same result will follow for `p(An) for any sequence (An)
of Banach algebras each of which contains a non-zero idempotent. However,
the method of Theorem 4.1 and Example 4.2 does not apply, for instance,
to the situation where all the An equal a fixed finite-dimensional radical
algebra, which is covered by Theorem 3.4.

Theorem 4.4. For any infinite compact group G, the algebra L2(G) fails
to be approximately amenable.

Example 4.5. Consider the compact non-abelian group SU(2). It has
exactly one n-dimensional representation for each n ∈ N ([6] Theorem 5.39).
We have the group isomorphisms ([10, Theorem 29.36 and §29.49])

SO(3) ≈ SU(2)/{I,−I} and O(3) ≈ {−1, 1} × SO(3).

The fact that the L2-algebras of these groups fail approximate amenability
is encapsulated by the new result above.
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