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Square roots of perturbed subelliptic
operators on Lie groups

by

Lashi Bandara (Canberra), A. F. M. ter Elst (Auckland) and
Alan McIntosh (Canberra)

Abstract. We solve the Kato square root problem for bounded measurable pertur-
bations of subelliptic operators on connected Lie groups. The subelliptic operators are
divergence form operators with complex bounded coefficients, which may have lower or-
der terms. In this general setting we deduce inhomogeneous estimates. In case the group
is nilpotent and the subelliptic operator is pure second order, we prove stronger homoge-
neous estimates. Furthermore, we prove Lipschitz stability of the estimates under small
perturbations of the coefficients.

1. Introduction. The Kato problem in Rd was a long standing problem
which was solved by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian
[AHLMT] in 2002. The papers of Hofmann [Hof] and McIntosh [McI2] and
the book by Auscher and Tchamitchian [AT] provide a narrative of the
resolution of Kato’s conjecture. This problem was recast in terms of the
functional calculus of a first-order system by Axelsson, Keith and McIntosh
in [AKM1] and [AKM2], which together provide a unified first-order frame-
work for recovering and extending some results concerning the harmonic
analysis of strongly elliptic operators. A version of the Kato problem was
presented by Morris for manifolds with exponential growth in [Mor], and
another version on metric measure spaces with the doubling property was
presented by Bandara in [Ban]. The main aim of this paper is to give a
solution to the Kato problem for subelliptic operators on Lie groups.

Let G be a connected Lie group with Lie algebra g and (left) Haar
measure µ. All integration on G is with respect to the (left) Haar measure
and the norm is the L2-norm, unless stated otherwise. Let a1, . . . , am be an
algebraic basis for g, that is, an independent set which generates g. Let L
be the left regular representation in L2(G). So (L(x)f)(y) = f(x−1y) for
all x ∈ G, f ∈ L2(G) and a.e. y ∈ G. For all k ∈ {1, . . . ,m} let Ak be the
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infinitesimal generator of the one-parameter unitary group t 7→ L(exp tak).
Then Ak is skew-adjoint. Define the Sobolev space W ′1,2(G) =

⋂m
k=1D(Ak)

with norm such that

‖f‖2W ′1,2(G) = ‖f‖2 +
m∑
k=1

‖Akf‖2.

Then W ′1,2(G) is a Hilbert space since Ak is closed for all k. Note that
W ′1,2(G) depends on the choice of the algebraic basis and if confusion is
possible, then we write W ′1,2(G, a). Clearly C∞c (G) ⊂ W ′1,2(G), so W ′1,2(G)
is dense in L2(G).

Next, for all k, l ∈ {1, . . . ,m} let bkl, bk, b
′
k, b0 ∈ L∞(G). Assume there

exists a constant κ > 0 such that the following G̊arding inequality holds:

(1.1) Re
( m∑
k,l=1

(bklAlu,Aku) +

m∑
l=1

(blAlu, u) +

m∑
k=1

(b′ku,Aku) + (b0u, u)
)

≥ κ
( m∑
k=1

‖Aku‖2 + ‖u‖2
)

for all u ∈W ′1,2(G). Then the inhomogeneous divergence form operator

HI = −
m∑

k,l=1

AkbklAl +
m∑
l=1

blAl −
m∑
k=1

Akb
′
k + b0I

is a maximal accretive operator on L2(G) of type ω for some ω ∈ [0, π/2).
So −HI generates a bounded semigroup on L2(G).

It is easy to see that (1.1) holds under the homogeneous G̊arding in-
equality

(1.2) Re

m∑
k,l=1

(bklAlu,Aku) ≥ κ
m∑
k=1

‖Aku‖2

with a possible change in κ, provided a large enough positive constant is
added to b0. For example, if

Re
m∑

k,l=1

bklξkξl ≥ κ|ξ|2

a.e. for all ξ ∈ Cm, then (1.2) is valid.
Furthermore, let b ∈ L∞(G) and suppose there exists a constant κ1 > 0

such that Re b ≥ κ1 a.e. Then bHI is an ω̃-sectorial operator on L2(G) for
some ω̃ < π, so it has a unique square root

√
bHI which is 1

2 ω̃-sectorial and
satisfies (

√
bHI)

2 = bHI .
The main theorems of this paper are as follows. The first one is the

solution of the inhomogeneous Kato problem for subelliptic operators.
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Theorem 1.1. LetG be a connected Lie group and suppose that a1, . . . , am
is an algebraic basis for the Lie algebra g of G. Let

HI = −
m∑

k,l=1

AkbklAl +

m∑
l=1

blAl −
m∑
k=1

Akb
′
k + b0I

be a divergence form operator with bounded measurable coefficients satisfying
the ellipticity condition (1.1). Let b ∈ L∞(G) and suppose there exists a
constant κ1 > 0 such that Re b ≥ κ1 a.e. Then D(

√
bHI) = W ′1,2(G) and

there exist c, C > 0 such that

c(‖
√
bHI u‖+ ‖u‖) ≤ ‖u‖+

m∑
k=1

‖Aku‖ ≤ C(‖
√
bHI u‖+ ‖u‖)

for all u ∈W ′1,2(G).

For connected nilpotent Lie groups, or more generally, for Lie groups G
which are the local direct product of a connected compact Lie group K and
a connected nilpotent Lie group N , a homogeneous result is also valid. (To
say that G is the local direct product of K and N means that G = K ·N and
K ∩ N is discrete. Equivalently, the Lie algebra of G is the direct product
of the Lie algebra of K and the Lie algebra of N .)

Theorem 1.2. Let G be the local direct product of a connected compact
Lie group and a connected nilpotent Lie group. Let

H = −
m∑

k,l=1

AkbklAl

be a homogeneous divergence form operator with bounded measurable co-
efficients satisfying the subellipticity condition (1.2). Let b ∈ L∞(G) and
suppose there exists a constant κ1 > 0 such that Re b ≥ κ1 a.e. Then
D(
√
bH) = W ′1,2(G) and there exist c, C > 0 such that

c‖
√
bH u‖ ≤

m∑
k=1

‖Aku‖ ≤ C‖
√
bH u‖

for all u ∈W ′1,2(G).

Lie groups of the above mentioned type necessarily have the doubling
property. We do not know whether the doubling property itself implies
homogeneous bounds, except in the special case when the algebraic basis
a1, . . . , am is actually a vector space basis. In other words, whenH is strongly
elliptic rather than subelliptic, then the conclusion of Theorem 1.2 does hold
on all Lie groups with polynomial growth. For vector space bases we drop
the prime and write W1,2(G) = W ′1,2(G) and W1,2(G, a) = W ′1,2(G, a).
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Theorem 1.3. Let G be a connected Lie group with polynomial growth
and suppose that a1, . . . , am is a vector space basis for the Lie algebra g of G.
Let

H = −
m∑

k,l=1

AkbklAl

be a strongly elliptic homogeneous divergence form operator with bounded
measurable coefficients satisfying the ellipticity condition (1.2). Let b ∈ L∞(G)
and suppose there exists a constant κ1 > 0 such that Re b ≥ κ1 a.e. Then
D(
√
bH) = W1,2(G) and there exist c, C > 0 such that

c‖
√
bH u‖ ≤

m∑
k=1

‖Aku‖ ≤ C‖
√
bH u‖

for all u ∈W1,2(G).

In Section 3 we prove the homogeneous bounds, that is, Theorem 1.2, and
Theorem 1.3 follows as a corollary. The algebraic basis provides a canonical
distance d that is well suited for the study of subelliptic operators. Then
(G, d, µ) is a metric measure space. The proof is achieved by building upon
the results of Bandara [Ban] who adapted the earlier framework of [AKM1]
to the situation of metric measure spaces.

The situation in Theorem 1.3 requires more substantial innovations in the
proof, involving the structure theory of Lie groups as developed by Dungey–
ter Elst–Robinson [DER]. Note that we cannot directly apply homoge-
neous estimates for second-order derivatives of the form ‖AkAlu‖ ≤ C‖∆u‖
where ∆ is the (sub-)Laplacian, as typically used in proofs of the Kato
estimates. Indeed these homogeneous estimates ‖AkAlu‖ ≤ C‖∆u‖ for
second-order derivatives are false for G, if G is a connected Lie group
with polynomial growth which is not a local direct product of a connected
compact Lie group and a connected nilpotent Lie group. (See [ERS, Theo-
rem 1.1].)

In Section 4 we turn to the proof of the inhomogeneous estimates as
stated in Theorem 1.1. The Haar measure is at most exponential in volume
growth of balls, so we are in a position where we can adapt the results of
Morris [Mor] who obtained Kato estimates on complete Riemannian mani-
folds which satisfy a similar exponential growth condition on the volume of
balls. Indeed his methods work for an arbitrary Borel-regular measure.

In Section 5 we consider some variants of the inhomogeneous results,
while in Section 6 we state and prove a Lipschitz estimate of the form (in
the homogeneous case)∥∥∥√(b+ b̃)H̃ u−

√
bH u

∥∥∥ ≤ C(‖b̃‖∞ +
∑
j,k

‖b̃jk‖∞
)
‖∇u‖,
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where

H = −
m∑

k,l=1

AkbklAl and H̃ = −
m∑

k,l=1

Ak(bkl + b̃kl)Al,

under small bounded perturbations b̃, b̃kl of the coefficients.

2. Preliminaries. In this section we gather some background material
on Lie groups and operator theory that will be used throughout the paper.

2.1. Lie groups. We use the notation as in the introduction. In par-
ticular, a1, . . . , am is an algebraic basis for the Lie algebra g of a connected
Lie group G.

For all k ∈ {1, . . . ,m} and x ∈ G define Xk|x ∈ TxG by

Xk|xf =
d

dt
f((exp tak)x)

∣∣∣∣
t=0

.

Then Xk is a smooth right invariant vector field on G. Note that Akf =
−Xkf for all f ∈ C∞c (G).

The space L2(G,Cm) has a natural inner product. Define the unbounded
operator ∇ from L2(G) into L2(G,Cm) by D(∇) = W ′1,2(G) and

(∇u)(x) = ((A1u)(x), . . . , (Amu)(x))

for a.e. x ∈ G. Then ∇ is densely defined and closed, since Ak is closed for
all k ∈ {1, . . . ,m}. We denote its adjoint by −div. Thus div = −∇∗.

Define the sesquilinear form J : W ′1,2(G)×W ′1,2(G)→ C by

J [f, g] = (∇f,∇g).

Then J is a closed positive symmetric form. Let ∆ be the self-adjoint op-
erator associated with J . We call ∆ the sub-Laplacian (associated with the
algebraic basis a1, . . . , am). Clearly ∆ = −div∇. There is another simple
identity for ∆.

Proposition 2.1. One has ∆ = −
∑m

k=1A
2
k with D(∆) =

⋂m
k=1D(A2

k).
Moreover, D(∆) =

⋂m
k,l=1D(AkAl) and there exists a constant C1 > 0 such

that

(2.1)

m∑
k,l=1

‖AkAlu‖2 ≤ C1(‖∆u‖2 + ‖u‖2) for all u ∈ D(∆).

Finally, if G is the local direct product of a connected compact Lie group and
a connected nilpotent Lie group, then there exists a constant C2 > 0 such
that

1

m
‖∆u‖2 ≤

m∑
k,l=1

‖AkAlu‖2 ≤ C2‖∆u‖2 for all u ∈ D(∆).
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Proof. It is proved in ter Elst–Robinson [ER2, Theorem 7.2.I] that ∆0 :=
∆|⋂m

k,l=1D(AkAl) is a closed operator and in the proof it is shown that ∆0 = ∆

(with same domains). Moreover, ter Elst–Robinson [ER3, Theorem 3.3.III]
gives

⋂m
k,l=1D(AkAl) =

⋂m
k=1D(A2

k). Then estimate (2.1) follows from the
closed graph theorem. The final equivalence of seminorms is proved in ter
Elst–Robinson–Sikora [ERS, Proposition 4.1].

Define

W ′1,2(G,Cm)={x 7→(u1(x), . . . , um(x)) :u1, . . . , um∈W ′1,2(G)}⊂L2(G,Cm).

Next, the space L2(G,Cm
2
) has a natural inner product. Define the operator

∇̃ from L2(G,Cm) into L2(G,Cm
2
) by D(∇̃) = W ′1,2(G,Cm) and

(2.2) (∇̃f)(x) = ((Akul)(x))kl

for a.e. x ∈ G, if f(x) = (u1(x), . . . , um(x)) for a.e. x ∈ G.

Remark 2.2. To satisfy our readers with a geometric appetite, we make
the following geometric remark. Recall the notion of a connection ∇ over a
vector bundle V . This is an operator ∇ : C∞(V )→ C∞(T ∗G⊗V ) satisfying
∇fX(Y ) = f∇XY and ∇X(fY ) = X(f)Y + f∇XY for all f ∈ C∞(G),
X ∈ C∞(T ∗G) and Y ∈ C∞(V ). Now, given a subbundle E ⊂ T ∗G, we can
define a subconnection ∇ : C∞(V )→ C∞(E⊗V ) to mean that it satisfies the
above properties but with the condition on X being that X ∈ C∞(E). Our
philosophy in this paper stems from an observation that we can construct a
subbundle E on which our subelliptic operators are strongly elliptic. Since
Lie groups are parallelisable, and for the benefit of a wider audience, we
refrain from using the language of vector bundles in this paper. However,
we refer the reader to [BMc], where the first and third authors provide a
solution to a version of the Kato square root problem for certain uniformly
elliptic second-order operators over a class of vector bundles.

We also need a subelliptic distance on G. Let γ : [0, 1]→ G be an abso-
lutely continuous path such that γ̇(t) ∈ span{X1|γ(t), . . . , Xm|γ(t)} for a.e.
t ∈ [0, 1]. Define the length of γ by

`(γ) =

1�

0

( m∑
k=1

|γk(t)|2
)1/2

dt ∈ [0,∞]

if γ̇(t) =
∑m

k=1 γ
k(t)Xk|γ(t) for a.e. t ∈ [0, 1]. Since G is connected it follows

from a theorem of Carathéodory [Car] that for all x, y ∈ G there exists such
a path γ with finite length and γ(0) = x and γ(1) = y. If x, y ∈ G then we
define the distance d(x, y) between x and y to be the infimum of the length
of all such paths with γ(0) = x and γ(1) = y. Then d is a metric on G.
For all x ∈ G and r > 0, let B(x, r) = {y ∈ G : d(x, y) < r}. If x = e, the
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identity element of G, then we write B(r) = B(e, r). Then B(x, r) = B(r)x
for all x ∈ G.

Proposition 2.3.

I. The topology on G is the same as the topology associated with d. In
particular, the open balls are measurable.

II. The metric space (G, d) is complete and the closed balls B(x, r) are
compact.

III. There exist c, C > 0 and D′ ∈ N such that crD
′ ≤ µ(B(r)) ≤ CrD

′

for all r ∈ (0, 1].
IV. There exist C > 0 and λ ≥ 0 such that µ(B(r)) ≤ Ceλr for all r ≥ 1.

Proof. For a proof of statement I, see [VSC, Proposition III.4.1].

Statement II follows from the discussion in Section III.4 of [VSC] and
the fact that every locally compact metric space is complete.

Statement III is a consequence of Nagel–Stein–Wainger [NSW, Theo-
rems 1 and 4].

The last statement is proved in Guivarc’h [Gui, Théorème II.3].

A metric measure space (X , ρ, ν) is a set X with a metric ρ and a measure
ν on the Borel σ-algebra of X induced by the metric on X . The metric
measure space is said to have the doubling property if there exists a constant
c > 0 such that 0 < ν(B(x, 2r)) ≤ cν(B(x, r)) <∞ for all x ∈ X and r > 0.
It is called locally exponentially doubling if there exist κ, λ ≥ 0 and C ≥ 1
such that

0 < ν(B(x, tr)) ≤ Ctκeλtrν(B(x, r)) <∞

for all x ∈ X , r > 0 and t ≥ 1. It follows from Proposition 2.3.I that the triple
(G, d, µ) is a metric measure space. We say the Lie group G has polynomial
growth if there exist D ∈ N and c > 0 such that µ(B(r)) ≤ crD for all r ≥ 1.
Recall that the modular function on G, which we denote by δ throughout this
paper, is the function δ : G→ (0,∞) such that µ(Ux) = δ(x)µ(U) for every
Borel measurable U ⊂ G and x ∈ G. It is a continuous homomorphism. The
group G is called unimodular if δ(x) = 1 for all x ∈ G.

Proposition 2.4.

I. The metric measure space (G, d, µ) is locally exponentially doubling.
II. The Lie group G has polynomial growth if and only if the metric

measure space (G, d, µ) has the doubling property. If G has poly-
nomial growth then there exist c, C > 0 and D ∈ N0 such that
crD ≤ µ(B(x, r)) ≤ CrD for all x ∈ G and r ≥ 1.

Proof. I. It follows from statements III and IV of Proposition 2.3 that
there exist C ≥ 1, λ ≥ 0 and D′ ∈ N such that 0 < µ(B(tr)) ≤ CtD

′
eλtr
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µ(B(r)) for all r > 0 and t ≥ 1. Then for all x ∈ G, r > 0 and t ≥ 1 one has

0 < µ(B(x, tr)) = µ(B(tr)x) = δ(x)µ(B(tr))

≤ Cδ(x)tD
′
eλtrµ(B(r)) = CtD

′
eλtrµ(B(x, r)).

So the metric measure space (G, d, µ) is locally exponentially doubling.

II. Clearly volume doubling implies polynomial growth. Conversely, sup-
pose that G has polynomial growth. Then it follows from Guivarc’h [Gui,
Théorème II.3] that there exist c, C > 0 and D ∈ N0 such that crD ≤
µ(B(r)) ≤ CrD for all r≥1. Moreover, G is unimodular by [Gui, Lemma I.3].
Therefore µ(B(x, r)) = µ(B(r)x) = µ(B(r)) for all x ∈ G and r > 0 and the
volume estimate follows. Together with Proposition 2.3.III it follows that
there exists a constant c′ > 0 such that µ(B(2r)) ≤ c′µ(B(r)) for all r > 0.
Therefore the metric measure space (G, d, µ) has the doubling property.

If η is a scalar valued Lipschitz function η on a metric space (X , ρ)
without isolated points, then we denote by Lip η the pointwise Lipschitz
constant

(Lip η)(x) = lim sup
y→x

|η(x)− η(y)|
ρ(x, y)

whenever x ∈ X .

Let L(1) be the left regular representation in L1(G) and for all k ∈
{1, . . . ,m} let A

(1)
k be the infinitesimal generator of the one-parameter group

t 7→ L(1)(exp tak). Let A
(∞)
k = −(A

(1)
k )∗ be the dual operator on L∞(G). One

has the following relation with Lipschitz functions.

Proposition 2.5.

I. The space
⋂m
k=1D(A

(∞)
k ) is the space of all bounded Lipschitz func-

tions on G.
II. If η ∈

⋂m
k=1D(A

(∞)
k ), then

∑m
k=1(A

(∞)
k η)2 ≤ (Lip η)2 a.e.

Proof. Statement I follows as in Theorem 6.12 of [Hei].

II. Let ξ ∈ Rm with |ξ| = 1. For all t > 0 define yt = exp(t
∑m

k=1 ξkak).
Then d(yt, e) ≤ t and if t is small enough then yt 6= e. Let x ∈ G. Then for
all t > 0 with yt 6= e one has

sup
y∈B(x,t)\{x}

|η(y)− η(x)|
d(y, x)

≥ |η(ytx)− η(x)|
d(ytx, x)

≥ |η(ytx)− η(x)|
t

=

∣∣∣∣1t ((L(∞)(y−1t )− I)η
)
(x)

∣∣∣∣,
where L(∞) is the left regular representation in L∞(G). Now choose t = 1/n
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with n ∈ N and note that

lim
n→∞

n(L(∞)(y−11/n)− I)η = −
m∑
k=1

ξkA
(∞)
k η

weakly∗ in L∞(G). Therefore

|Lip η| ≥
∣∣∣ m∑
k=1

ξkA
(∞)
k η

∣∣∣ a.e.

This holds for all ξ ∈ Rm with |ξ| = 1.
Let D be a countable dense subset of {ξ ∈ Rm : |ξ| = 1}. Then there

exists a nullset N ⊂ G such that

(2.3) |(Lip η)(x)| ≥
∣∣∣ m∑
k=1

ξk(A
(∞)
k η)(x)

∣∣∣
for all x ∈ G \ N and ξ ∈ D. Hence by continuity (2.3) is valid for all
x ∈ G \N and ξ ∈ Rm with |ξ| = 1. Therefore

|(Lip η)(x)|2 ≥
m∑
k=1

|(A(∞)
k η)(x)|2 for all x ∈ G \N .

2.2. Operator theory. For the convenience of the reader, we shall
present some operator-theoretic material which sits at the heart of both the
homogeneous and inhomogeneous problems.

First, we recall the theory of bisectorial operators. For all ω ∈ [0, π/2)
define the bisector by

Sω = {ζ ∈ C : |arg ζ| ≤ ω or |π − arg ζ| ≤ ω or ζ = 0}
and the open bisector by

Soω = {ζ ∈ C \ {0} : |arg ζ| < ω or |π − arg ζ| < ω}.
Let H be a Hilbert space. An operator T : D(T ) → H with D(T ) ⊂ H is
then called ω-bisectorial (or bisectorial with angle of sectoriality ω) if it is
closed, σ(T ) ⊂ Sω, and for each ω < µ < π/2, there is a constant Cµ > 0
such that |ζ| ‖(ζI−T )−1‖ ≤ Cµ for all ζ ∈ C\{0} satisfying |arg ζ| ≥ µ and
|π − arg ζ| ≥ µ.

Remark 2.6. When T is ω-bisectorial, then T 2 is 2ω-sectorial (mean-
ing that σ(T ) ⊂ S+

2ω = {ζ ∈ C : |arg ζ| ≤ 2ω or ζ = 0} and appropri-
ate resolvent bounds hold) and hence T 2 has a unique ω-sectorial square

root
√
T 2. It may or may not happen that D(

√
T 2) = D(T ) with homoge-

neous (‖
√
T 2 u‖ ' ‖Tu‖) or inhomogeneous (‖

√
T 2 u‖+ ‖u‖ ' ‖Tu‖+ ‖u‖)

equivalence of norms. The determination of such equivalences involves study-
ing the holomorphic functional calculus of T and proving quadratic esti-
mates.
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Let T be an ω-bisectorial operator. Then one has the (possibly non-
orthogonal) decomposition H = N (T ) ⊕ R(T ) by a variation of the proof
of Theorem 3.8 in Cowling–Doust–McIntosh–Yagi [CDMY]. We denote by
projN (T ) the projection from H onto N (T ) along this decomposition. Bisec-
torial operators admit a functional calculus in the following sense [ADM].
For all µ ∈ (0, π/2) let Ψ(Soµ) denote the space of all holomorphic functions
ψ : Soµ → C for which there exist α, c > 0 such that

|ψ(ζ)| ≤ c |ζ|α

1 + |ζ|2α

for all ζ ∈ Ψ(Soµ). If µ > ω then for all ψ ∈ Ψ(Soµ) one can define the bounded
operator

ψ(T ) =
1

2πi

�

γ

ψ(ζ)(ζI − T )−1 dζ,

where γ is a contour in Soµ enveloping Sω parametrised anti-clockwise. The
integral here is simply defined via Riemann sums and this sum converges
absolutely as a consequence of the decay of ψ coupled with the resolvent
bounds of T . If, in addition, there exists a constant C > 0 such that
‖ψ(T )‖ ≤ C‖ψ‖∞ for all ψ ∈ Ψ(Soµ), then we say that T has a bounded
holomorphic Soµ-functional calculus.

Define Hol∞(Soµ) to be the space of all bounded functions f : Soµ∪{0} →
C which are holomorphic on Soµ. For all f ∈ Hol∞(Soµ) there exists a
uniformly bounded sequence (ψn)n∈N in Ψ(Soµ) which converges to f on
Soµ in the compact-open topology. If in addition T has a bounded holo-
morphic Soµ functional calculus, then limn→∞ ψn(T ) exists in the strong
operator topology on L(H) by a modification of the proof of the theo-
rem in Section 5 in McIntosh [McI1], and we define f(T ) ∈ L(H) by
f(T )u = limn ψn(T )u+f(0) projN (T ) u for all u ∈ H. The bounded operator
f(T ) is indeed independent of the choice of the sequence (ψn)n∈N. We then
say that T has a bounded holomorphic H∞(Soµ)-functional calculus.

Define χ± : C→ C by

χ±(z) =

{
1 if ±Re z > 0,

0 if ±Re z ≤ 0.

Moreover, define sgn = χ+−χ−. Then χ±, sgn ∈ Hol∞(Soµ) for all µ ∈ (0, π2 ).

Next we recall some important facts from Axelsson–Keith–McIntosh
[AKM1] regarding quadratic estimates. We consider a triple (Γ,B1, B2) of
operators in H. First, we quote the following hypotheses from this reference:

(H1) The operator Γ : D(Γ ) → H is a closed, densely defined operator
from D(Γ ) ⊂ H into H such that R(Γ ) ⊂ N (Γ ). So Γ 2 = 0.
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(H2) The operators B1 and B2 are bounded on H. Moreover, there are
κ1, κ2 > 0 such that

Re(B1u, u) ≥ κ1‖u‖2 for all u ∈ R(Γ ∗),

Re(B2u, u) ≥ κ2‖u‖2 for all u ∈ R(Γ ).

(H3) The operators B1 and B2 satisfy

B1B2(R(Γ )) ⊂ N (Γ ) and B2B1(R(Γ ∗)) ⊂ N (Γ ∗).

Define Π = Γ + Γ ∗ and ΠB = Γ +B1Γ
∗B2. Then Π is self-adjoint. If

(2.4) ω =
1

2

(
arccos

κ1
‖B1‖

+ arccos
κ2
‖B2‖

)
then it follows from Proposition 2.5 in [AKM1] that ΠB is ω-bisectorial.
Hence for all t > 0 one can define the operator QBt = iΠB(I + t2Π2

B)−1 ∈
L(H).

The following proposition highlights the connection between the har-
monic analysis and bounded holomorphic functional calculus.

Theorem 2.7 (Kato square root type estimate). Suppose that the triple
(Γ,B1, B2) satisfies (H1)–(H3) and the operator ΠB satisfies the quadratic
estimate

∞�

0

‖QBt u‖2
dt

t
' ‖u‖2

for all u ∈ R(ΠB). Then the following hold:

I. For all µ ∈ (ω, π/2) the operator ΠB has a bounded holomorphic
Soµ-functional calculus, where ω is as in (2.4).

II. The Hilbert space admits the spectral decomposition

H = N (ΠB)⊕R(ΠB) = N (ΠB)⊕R(χ+(ΠB))⊕R(χ−(ΠB)),

where the sums are in general not orthogonal.

III. One has D(ΠB) = D(
√
Π2
B) and

‖Γu‖+ ‖B1Γ
∗B2u‖ ' ‖ΠBu‖ '

∥∥∥√Π2
Bu
∥∥∥

for all u ∈ D(ΠB).

Proof. I. This is contained in the proof of Proposition 4.8 in [AKM1].
II. The first equality follows from [AKM1, Proposition 2.2]. The second

follows from the bounded H∞-functional calculus of ΠB.
III. This follows from Lemma 4.2 in [AKM1] and again functional calcu-

lus. Essentially it uses the fact that sgn(ΠB) is bounded (by I), along with

the identities
√
Π2
B u = sgn(ΠB)ΠBu and ΠBu = sgn(ΠB)

√
Π2
B u.



204 L. Bandara et al.

3. The homogeneous problem. In this section we prove the homoge-
neous subelliptic Kato problem by an application of the results in Axelsson–
Keith–McIntosh [AKM1] and Morris [Mor] (see also Bandara [Ban]). Let
(X , d, µ) be the metric measure space and let (Γ,B1, B2) be the triple of
operators in the Hilbert space H as in Subsection 2.2. We recall that for a
scalar valued Lipschitz function η we denote by Lip η the pointwise Lipschitz
constant. If no confusion is possible, then we identify a measurable function
with the associated multiplication operator.

The hypotheses that are required are as follows:

(H4) The metric space (X , d) is complete and connected. The measure µ
is Borel-regular and doubling. Moreover, there exists N ∈ N such
that H = L2(X ,CN ;µ).

(H5) The operators B1 and B2 are multiplication operators by bounded
matrix valued functions, denoted again by B1, B2∈L∞(X ,L(CN )).

(H6) There exists a constant C > 0 such that for every bounded Lip-
schitz function η : X → R one has

(a) the multiplication operator ηI leaves D(Γ ) invariant, and
(b) the commutator [Γ, ηI] is again a multiplication operator sat-

isfying the bounds

|([Γ, ηI]u)(x)| ≤ C|(Lip η)(x)| |u(x)|

for a.e. x ∈ X and all u ∈ D(Γ ).

(H7) For every open ball B in X one has
�

B

Γudµ = 0 and
�

B

Γ ∗v dµ = 0

for all u ∈ D(Γ ) and v ∈ D(Γ ∗) with suppu ⊂ B and supp v ⊂ B.
(H8) There exist C1, C2 > 0, M ∈ N and an operator

Z : D(Z) ⊂ L2(X ,CN )→ L2(X ,CM )

such that

(a) D(Π) ∩R(Π) ⊂ D(Z),
(b) (coercivity) ‖Zu‖ ≤ C2‖Πu‖ for all u ∈ D(Π) ∩R(Π), and
(c) (Poincaré estimate)

	
B |u−〈u〉B|

2 dµ ≤ C1r
2
	
B |Zu|

2 dµ for all
x ∈ X , r > 0 and u ∈ D(Π) ∩ R(Π), where B = B(x, r) and
〈u〉B := 1

µ(B)

	
B udµ.

Hypothesis (H6) implies that Γ behaves like a first-order differential
operator.

The required quadratic estimates for the operator ΠB now almost follow
from Theorem 2.4 in Bandara [Ban].
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Theorem 3.1. Suppose (X , d, µ), H and the triple (Γ,B1, B2) satisfy
Hypotheses (H1)–(H8). Then the operator ΠB satisfies the quadratic esti-
mate

∞�

0

‖QBt u‖2
dt

t
' ‖u‖2

for all u ∈ R(ΠB) ⊂ H. Hence for all µ ∈ (ω, π/2), the operator ΠB has a
bounded H∞(Soµ)-functional calculus, where ω is as in (2.4).

Proof. The change to (H8) only affects Proposition 5.9 in Bandara [Ban].
This change forces the weighted Poincaré inequality Proposition 5.8 in [Ban]
to become

�

X
|u(x)− uQ|2

〈
d(x,Q)

t

〉−M
dµ(x) .

�

X
|t(Zu)(x)|2

〈
d(x,Q)

t

〉p−M
dµ(x)

for all u ∈ R(Π) ∩D(Π). Consequently, in the proof of Proposition 5.9 in
[Ban] we can invoke our coercivity hypothesis (H8) similar to the proof of
Proposition 5.5 in [AKM1] to obtain the same conclusion. The rest of the
proof of Theorem 2.4 in [Ban] remains unchanged.

For the proof of Theorem 1.2 we apply Theorem 3.1. Recall that in this
case, G is the local direct product of a connected compact Lie group and a
connected nilpotent Lie group.

Proof of Theorem 1.2. Choose X = G, with Haar measure and distance
being the subelliptic distance. Let H = L2(G)⊕L2(G,Cm) = L2(G,C1+m).
Define D(Γ ) = W ′1,2(G)⊕ L2(G,Cm) and define Γ : D(Γ )→ H by

Γ =

(
0 0

∇ 0

)
.

Next let B be the multiplication operator on L2(G,Cm) by bounded matrix
valued functions (bkl). Define B1, B2 : H → H by

B1 =

(
b 0

0 0

)
and B2 =

(
0 0

0 B

)
.

Then

Γ ∗ =

(
0 −div

0 0

)
and Π =

(
0 −div

∇ 0

)
.

Note that Π is self-adjoint. We next verify that Hypotheses (H1)–(H8) are
valid.

(H1) Since C∞c (G) and therefore also W ′1,2(G) is dense in L2(G), and all
the Ak are closed operators, this hypothesis is obvious.
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(H2) Clearly B1 and B2 are bounded. First note that

Re(B1(f, 0), (f, 0)) =
�

G

b|f |2 ≥ κ1‖f‖2L2(G) = κ1‖(f, 0)‖2H

for all f ∈ L2(G), and hence when f = −divw for all w ∈ D(div).

Second, if w ∈W ′1,2(G), then

Re(B2(0,∇w), (0,∇w)) = Re
�

G

〈B∇w,∇w〉 ≥ κ
�

G

|∇w|2 = κ‖(0,∇w)‖2H,

where we used the G̊arding inequality (1.2).

(H3) This trivially holds, since B1B2 = B2B1 = 0.

(H4) The metric space (G, d) is complete by Proposition 2.3.II. By as-
sumption, G is connected. The Haar measure is Borel-regular by Sections 11
and 15 in [HR]. Since G is the local direct product of a connected compact
Lie group and a connected nilpotent Lie group, it has polynomial growth.
Therefore the metric measure space (G, d, µ) has the doubling property by
Proposition 2.4.II.

(H5) This is obvious.

(H6) Let η be a bounded real valued Lipschitz function on G. Then

η ∈
⋂m
k=1D(A

(∞)
k ) by Proposition 2.5.I. Let u = (u1, u2) ∈ D(Γ ). Then

u1 ∈ W ′1,2(G) and therefore ηu1 ∈ W ′1,2(G). So ηu ∈ D(Γ ). Moreover, for
a.e. x ∈ G one has

([Γ, ηI]u)(x) = (0, (∇(ηu1))(x))− (0, (η∇u1)(x))

= (0, (A
(∞)
1 η)(x)u1(x), . . . , (A(∞)

m η)(x)um(x)).

Hence |([Γ, ηI]u)(x)| ≤ (Lip η)(x)|u(x)| by Proposition 2.5.II.

(H7) Let B be an open ball in G and let u = (u1, u2) ∈ D(Γ ) with
suppu ⊂ B. There exists a function χ ∈ C∞c (B) such that χ(x) = 1 for all
x ∈ suppu. Then

�

B

Γu =
(

0,
�

B

∇u1
)

=
(

0,
�

B

(∇u1)χ
)

= (0, (A1u1, χ), . . . , (Amu1, χ))

= −(0, (u1, A1χ), . . . , (u1, Amχ)) = (0, 0).

Similarly, let v = (v1, v2) ∈ D(Γ ∗) with supp v ⊂ B. There exists a function
χ ∈ C∞c (B) such that χ(x) = 1 for all x ∈ supp v. Then

�

B

Γ ∗v =
(
−

�

B

div v2, 0
)

=
(
−

�

B

div v2χ, 0
)

= (−(div v2, χ)L2(G), 0)

= ((v2,∇χ)L2(G,Cm), 0) = (0, 0).

(H8) Define the operator

Z : D(Z)→ L2(G,Cm)⊕ L2(G,Cm
2
) ' L2(G,Cm+m2

)



Square roots of subelliptic operators 207

by D(Z) = W ′1,2(G)⊕W ′1,2(G,Cm) ⊂ H and

Z(u1, u2) = (∇u1, ∇̃u2),

where ∇̃ is defined in (2.2). Let (u1, u2) ∈ D(Π)∩R(Π). Then there exists
an element (v1, v2) ∈ D(Π) such that (u1, u2) = Π(v1, v2). This implies that
u1, v1 ∈ W ′1,2(G), u2, v2 ∈ D(div) and, moreover, (u1, u2) = (−div v2,∇v1).
Therefore ∇v1 = u2 ∈ D(div) and hence

v1 ∈ D(div∇) = D(∆) =

m⋂
k,l=1

D(AkAl)

by Proposition 2.1. So u2 = ∇v1 ∈W ′1,2(G,Cm). This implies that (u1, u2) ∈
D(Z). We proved that D(Π) ∩ R(Π) ⊂ D(Z). Moreover, if C2 ≥ 1 is as in
Proposition 2.1 then

‖Z(u1, u2)‖2 = ‖∇u1‖2 + ‖∇̃u2‖2 = ‖∇u1‖2 +
m∑

k,l=1

‖AkAlv1‖2

≤ C2(‖∇u1‖2 + ‖∆v1‖2) = C2(‖∇u1‖2 + ‖div u2‖2)
= C2‖Π(u1, u2)‖2.

Finally, the Poincaré estimate follows from the estimate (P.1) in Saloff-
Coste–Stroock [SS, p. 118].

Now it follows from Theorem 3.1 that the operator ΠB has a bounded
H∞ by functional calculus. Since sgn ∈ Hol∞(Soµ) for all µ ∈ (0, π/2), one

has D(ΠB) = D(
√
Π2
B) and ‖ΠBu‖ ' ‖

√
Π2
B u‖ for all u ∈ D(ΠB) by

Theorem 2.7.III. Note that

ΠB =

(
0 −bdivB

∇ 0

)
and Π2

B =

(
bH 0

0 H̃

)
,

where H̃u = −∇(bdiv(Bu)) for all u ∈ L2(G,Cm) with (0, u) ∈ D(Π2
B).

Then √
Π2
B =

(√
bH 0

0
√
H̃

)
and ‖ΠB(u1, u2)‖2 = ‖∇u1‖2 + ‖bdiv(Bu2)‖2 for all (u1, u2) ∈ D(ΠB) =
W ′1,2(G) ⊕ D(div ◦B). Restricting to the scalar valued functions gives the

main result D(
√
bH) = W ′1,2(G) and ‖

√
bHu‖ ' ‖∇u‖. This completes the

proof of Theorem 1.2.

We conclude this section with a proof of the homogeneous estimates of
Theorem 1.3 for homogeneous strongly elliptic operators on connected Lie
groups with polynomial growth.



208 L. Bandara et al.

Proof of Theorem 1.3. We use the structure theory for Lie groups with
polynomial growth as developed in Dungey–ter Elst–Robinson [DER] and
summarised on pages 125–126 there. There exists another group multiplica-
tion ∗ on G such that the manifold G with multiplication ∗ is a Lie group,
denoted by GN , which is the local direct product of a connected compact
Lie group and a connected nilpotent Lie group. Let gN be the Lie algebra
of GN . Then gN = g as vector spaces. The Haar measure µ on G is again
a Haar measure on GN . Moreover, W1,2(G, a) = W1,2(GN , a). There exist a
Lie group homomorphism S : GN → Aut(gN ), an inner product 〈·, ·〉 on gN
and an orthonormal basis b1, . . . , bm of gN such that S(x) is orthogonal on
gN for all x ∈ G and

(Aku)(x) =
m∑
l=1

〈S(x)bl, ak〉(B
(N)
l u)(x)

for a.e. x ∈ G, k ∈ {1, . . . ,m} and u ∈ W1,2(G, a), where B
(N)
l is the

infinitesimal generator of GN in the direction bl. Note that W1,2(G, a) =
W1,2(GN , a) = W1,2(GN , b) since both a1, . . . , am and b1, . . . , bm are vector
space bases in g. Moreover, there exists a constant C ≥ 1 such that

(3.1)
1

C

m∑
k=1

‖Aku‖2 ≤
m∑
k=1

‖B(N)
k u‖2 ≤ C

m∑
k=1

‖Aku‖2

for all u ∈W1,2(G, a).

Now

H = −
m∑

k′,l′=1

B
(N)
k′ c̃k′l′B

(N)
l′

as a divergence form operator, where

c̃k′l′(x) =

m∑
k,l=1

〈S(x)bk′ , ak〉ckl(x)〈S(x)bl′ , al〉.

Using (3.1) it follows that H satisfies the assumptions of Theorem 1.2 with
respect to the coefficients c̃kl, the group GN and the basis b1, . . . , bm. There-

fore ‖
√
bH u‖ '

∑m
k=1 ‖B

(N)
k u‖ by Theorem 1.2. A further use of the equiv-

alence (3.1) of the seminorms completes the proof of the theorem.

Remark 3.2. It is an open problem whether Theorem 1.3 is also valid
for subelliptic operators, or equivalently, whether Theorem 1.2 is valid for
Lie groups with polynomial growth.

4. The inhomogeneous problem. To solve the inhomogeneous prob-
lem, we apply the results on quadratic estimates in the framework of Morris
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[Mor], with appropriate modifications, in particular to hypotheses (H6) and
(H8) of [Mor].

For us, this means we continue to use hypotheses (H1)–(H3) from Sec-
tion 2, and hypotheses (H5), (H6) from Section 3, together with the following
ones:

(H4i) (X , d, µ) is a complete, connected, locally exponentially doubling
metric measure space with a Borel-regular measure µ. Moreover,
there exists N ∈ N such that H = L2(X ,CN ;µ).

(H7i) There exists a constant c > 0 such that for every open ball B in X
with radius at most 1 one has∣∣∣ �

B

Γudµ
∣∣∣ ≤ cµ(B)1/2‖u‖ and

∣∣∣ �
B

Γ ∗v dµ
∣∣∣ ≤ cµ(B)1/2‖v‖

for all u ∈ D(Γ ) and v ∈ D(Γ ∗) with suppu ⊂ B and supp v ⊂ B.
(H8i) There exist C1, C2 > 0, M ∈ N and an operator Z : D(Z) →

L2(X ,CM ) with D(Z) ⊂ L2(X ,CN ) = H such that

(a) D(Π) ∩R(Π) ⊂ D(Z),
(b) (coercivity) ‖Zu‖+ ‖u‖ ≤ C2‖Πu‖ for all u ∈ D(Π) ∩R(Π),

and
(c) (Poincaré estimate)

	
B |u−〈u〉B|

2 dµ ≤ C1r
2
	
B(|Zu|2+|u|2) dµ

for all x ∈ X , r ∈ (0,∞) and u ∈ D(Π) ∩ R(Π), where B =
B(x, r).

Remark 4.1. For any r0 > 0, the Poincaré estimate in (H8i) is valid
uniformly for all r ≥ r0.

We are now able to formulate the theorem on quadratic estimates for
the inhomogeneous operators.

Theorem 4.2. Suppose (X , d, µ), H and (Γ,B1, B2) satisfy hypotheses
(H1), (H2), (H3), (H4i), (H5), (H6), (H7i) and (H8i). Then the operator ΠB

satisfies the quadratic estimate

∞�

0

‖QBt u‖2
dt

t
' ‖u‖2 for all u ∈ R(ΠB) ⊂ L2(X ,CN ).

Hence ΠB has a bounded H∞-functional calculus.

Proof. First, we note that for all non-empty subsets E,F on any metric
space X satisfying d(E,F ) > 0 one can find a Lipschitz function η : X →
[0, 1] such that η = 1 on E, η = 0 on F , and Lip η ≤ 1/d(E,F ), where
Lip η is the Lipschitz constant of η. Also observe that all the smooth cutoff
functions used in Morris [Mor] can be replaced by Lipschitz equivalents, in
particular allowing us to obtain off-diagonal estimates in the present case.
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Next, our alteration to (H6) and (H8) allows us to dispense with the use
of the Sobolev spaces with respect to the Levi-Civita connection in [Mor] and
simply consider R(Π)∩D(Π). Explicitly, the weighted Poincaré inequality
in Lemma 5.7 of [Mor] is altered to read ‖Zu‖ instead of ‖∇u‖, and by coer-
civity, Proposition 5.8 in [Mor] holds. Then so does Proposition 5.2 in [Mor],
since we still have ‖u‖ . ‖Πu‖. Finally, we observe that the measure merely
needs to be locally exponentially doubling and Borel-regular.

Now we are able to prove Theorem 1.1, using ideas from [Mor], which
have their roots in [AKM2].

Proof of Theorem 1.1. We apply Theorem 4.2 with X = G and H =
L2(G) ⊕ (L2(G) ⊕ L2(G,Cm)) = L2(G,C2+m). Define D(Γ ) = W ′1,2(G) ⊕
L2(G)⊕ L2(G,Cm) and define Γ : D(Γ )→ H by

Γ =

 0 0 0

I 0 0

∇ 0 0

 .

Let B be the multiplication operator on L2(G)⊕L2(G,Cm) = L2(G,C1+m)
by bounded matrix valued functions

b0 b′1 · · · b′m

b1

... (bkl)

bm

 .

Next define B1, B2 : H → H by

B1 =

(
b 0

0 0

)
and B2 =

(
0 0

0 B

)
.

Then

Γ ∗ =

0 I −div

0 0 0

0 0 0

 and Π =

 0 I −div

I 0 0

∇ 0 0

 .

Note again that Π is self-adjoint.

The proof that hypotheses (H1), (H3), (H5) and (H6) are valid is similar
to the proof of Theorem 1.2 in Section 3. Also (H2) follows similarly from
the G̊arding inequality (1.1). It remains to verify hypotheses (H4i), (H7i)
and (H8i).

(H4i) The only difference with (H4) is the locally exponentially doubling
property, which follows from Proposition 2.4.I.
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(H7i) Let B be an open ball in G and let u = (u1, u2, u3) ∈ D(Γ ) with
suppu ⊂ B. Then

	
B∇u1 = 0 by the argument in the proof of (H7) in

Section 3. Therefore∣∣∣ �
B

Γu
∣∣∣2 =

∣∣∣ �
B

u1

∣∣∣2 +
∣∣∣ �
B

∇u1
∣∣∣2 =

∣∣∣ �
B

u1

∣∣∣2 ≤ µ(B)‖u1‖2 ≤ µ(B)‖u‖2.

Similarly, if v = (v1, v2, v3) ∈ D(Γ ∗) with supp v ⊂ B then
	
B div v3 = 0

and ∣∣∣ �
B

Γ ∗v
∣∣∣ =

∣∣∣ �
B

v2 − div v3

∣∣∣ =
∣∣∣ �
B

v2

∣∣∣ ≤ µ(B)1/2‖v‖

as required.

(H8i) Define Z : D(Z) → L2(G,Cm) ⊕ L2(G,Cm) ⊕ L2(G,Cm
2
) =

L2(G,C2m+m2
) by D(Z) = W ′1,2(G)⊕W ′1,2(G)⊕W ′1,2(G,Cm) ⊂ H and

Z(u1, u2, u3) = (∇u1,∇u2, ∇̃u3).

Let u = (u1, u2, u3) ∈ D(Π)∩R(Π). Then there exists an element (v1, v2, v3)
∈ D(Π) such that (u1, u2, u3) = Π(v1, v2, v3) = (v2 − div v3, v1,∇v1) with
in particular u1, u2 = v1 ∈ W ′1,2(G) and u3, v3 ∈ D(div). Therefore ∇v1 =
u3 ∈ D(div) and hence

v1 ∈ D(div∇) = D(∆) =
m⋂

k,l=1

D(AkAl)

by Proposition 2.1. So u3 = ∇v1 ∈ W ′1,2(G,Cm). This implies that u =
(u1, u2, u3) ∈ D(Z). We proved that D(Π) ∩R(Π) ⊂ D(Z), and it remains
to obtain the bound ‖Zu‖+ ‖u‖ ≤ C2‖Πu‖.

Note that

‖Zu‖2 = ‖∇u1‖2 + ‖∇u2‖2 + ‖∇̃u3‖2

and

‖Πu‖2 = ‖u2 − div u3‖2 + ‖u1‖2 + ‖∇u1‖2

= ‖(I −∆)v1‖2 + ‖u1‖2 + ‖∇u1‖2.

Clearly

‖∇u2‖2 = ‖∇v1‖2 = (∆v1, v1) ≤ ‖∆v1‖ ‖v1‖ ≤ ‖(I −∆)v1‖2,

and if C1 ≥ 1 as in Proposition 2.1, then

‖∇̃u3‖2 =

m∑
k,l=1

‖AkAlv1‖2 ≤ C1(‖∆v1‖2 + ‖v1‖2) ≤ 2C1‖(I −∆)v1‖2.

So

‖Z(u1, u2, u3)‖2 ≤ 3C1‖Π(u1, u2, u3)‖2.
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Next we show that ‖(u1, u2, u3)‖2 ≤ (4C1m
2 + 4)‖Π(u1, u2, u3)‖2. Trivially,

‖u1‖2 ≤ ‖Π(u1, u2, u3)‖2. Moreover,

‖div u3‖2 ≤ m2‖∇̃u3‖2 ≤ 2C1m
2‖(I −∆)v1‖2

and

‖u2‖2 ≤ 2‖u2 − div u3‖2 + 2‖div u3‖2 ≤ (4C1m
2 + 2)‖(I −∆)v1‖2.

Also ‖u3‖2 = ‖∇v1‖2 ≤ ‖(I −∆)v1‖2.
We conclude that ‖Zu‖+ ‖u‖ ≤ C2‖Πu‖ (for a suitable constant C2) as

required.

Finally we prove the Poincaré inequality. Jerison [Jer] proved that there
exist c, r0 > 0 such that

(4.1)
�

B(r)

|f − 〈f〉B(r)|2 ≤ cr2
�

B(r)

|∇f |2

for all r ∈ (0, r0] and f ∈ C∞(B(r)). Since C∞(G) ∩W ′1,2(G) is dense in
W ′1,2(G) by Lemma 2.4 in ter Elst–Robinson [ER1], it follows that (4.1) is
valid for all r ∈ (0, r0] and f ∈ W ′1,2(G). Let R denote the right regular
representation in G and let δ be again the modular function on G. Then

�

B(x,r)

|f − 〈f〉B(x,r)|2 = δ(x)
�

B(r)

|R(x)f − 〈R(x)f〉B(r)|2

≤ cδ(x)r2
�

B(r)

|∇R(x)f |2 = cr2
�

B(x,r)

|∇f |2

for all x ∈ G, r ∈ (0, r0] and f ∈W ′1,2(G). The Poincaré estimate follows by
Remark 4.1. So (H8i) is verified.

Now one can complete the proof of Theorem 1.1 similarly to Section 3
by an application of Theorem 4.2.

5. Further results. We have chosen to take the (left) Haar measure
µ on L2(G;µ), and the infinitesimal generators are with respect to the left
regular representation in L2(G;µ). Another option would be to choose the
right Haar measure ν on G and consider the left regular representation in
L2(G; ν). Then the solution to the Kato problem has the following formula-
tion.

Theorem 5.1. Let a1, . . . , am be an algebraic basis for the Lie algebra g

of a connected Lie group G. For all k ∈ {1, . . . ,m} let A
(R)
k be the infinites-

imal generator of the one-parameter group t 7→ L(R)(exp tak), where L(R)

denotes the left regular representation in L2(G; ν). For all k, l ∈ {1, . . . ,m}
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let bkl, bk, b
′
k, b0 ∈ L∞(G). Assume there exist κ, c1 > 0 such that

Re
m∑

k,l=1

(bklA
(R)
k u,A

(R)
l u) ≥ κ

m∑
k=1

‖A(R)
k u‖2 − c1‖u‖2

for all u ∈
⋂m
k=1D(A

(R)
k ). Consider the divergence form operator

H =

m∑
k,l=1

(A
(R)
k )∗bklA

(R)
l +

m∑
k=1

bkA
(R)
k +

m∑
k=1

(A
(R)
k )∗b′k + b0I

in L2(G; ν), where the norm and inner product are in L2(G; ν). Suppose
Re b0 is large enough such that −H generates a bounded semigroup on
L2(G; ν). Let b ∈ L∞(G) and suppose there exists a constant κ1 > 0 such
that Re b ≥ κ1 a.e. Then

D(
√
bH) =

m⋂
k=1

D(A
(R)
k )

with equivalent norms.

Proof. The proof is almost the same as the proof of Theorem 1.1, so

we just indicate the differences. We replace all Ak by A
(R)
k . Note that for

all k ∈ {1, . . . ,m} there exists a constant βk ∈ R such that (A
(R)
k )∗ =

−A(R)
k + βkI, where the adjoint is in L2(G; ν). We take the same subelliptic

distance on G. There exists a constant c > 0 such that ν = cδ−1µ, where δ
is the modular function (see [HR, Theorem 15.15]). Moreover, since δ is a
continuous homomorphism, there exist M,ω > 0 such that δ(x) ≤Meωd(x,e)

for all x ∈ G. Hence by Proposition 2.3 there are c, C, λ > 0 and D′ ∈ N such
that crD

′ ≤ ν(B(r)) ≤ CrD′ for all r ∈ (0, 1] and ν(B(r)) ≤ Ceλr for all r ≥
1. (Actually, the natural number D′ is the same as in Proposition 2.3.III.)
Then hypothesis (H4i) follows. Next consider hypothesis (H7i). Let B be an
open ball in G, let u = (u1, u2, u3) ∈ D(Γ ) and suppose that suppu ⊂ B.
There exists a function χ ∈ C∞c (B) such that χ(x) = 1 for all x ∈ suppu.
Let k ∈ {1, . . . ,m}. Then�

B

A
(R)
k u1 dν = (u1, (A

(R)
k )∗χ)L2(G;ν)

= (u1, (−A(R)
k + βkI)χ)L2(G;ν) = βk

�

B

u1 dν.

So |
	
B∇u1dν| ≤

√
β21 + · · ·+ β2mν(B)1/2‖u‖. The rest of the proof of (H7i)

is similar.
All other hypotheses have the same proof as before.

One can also consider the infinitesimal generators with respect to the
right regular representation on L2(G;µ) or L2(G; ν). Then the inhomoge-
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neous Kato problem has again a solution. This follows from Theorems 1.1
and 5.1 by using the inversion x 7→ x−1 on G. We leave the formulation of
the two theorems to the reader.

6. Stability. Finally we consider stability under holomorphic pertur-
bation.

Let U ⊂ C be an open set, ω ∈ [0, π/2) and for all ζ ∈ U let T (ζ) be an
ω-bisectorial operator in H with domain D(T (ζ)). Let µ ∈ (ω, π/2). We say
that T has a uniformly bounded holomorphic H∞(Soµ)-functional calculus if
there exists a constant C > 0 such that ‖ψ(T (ζ))‖ ≤ C‖ψ‖∞ uniformly for
all ψ ∈ Ψ(Soµ) and ζ ∈ U .

Theorem 6.1. Let U ⊂ C be an open set, H a Hilbert space and (X, d, µ)
a metric measure space. Let B1, B2 : U → L(H) be bounded holomorphic
functions. Suppose that the triple (Γ,B1(ζ), B2(ζ)) satisfies (H1)–(H8) uni-
formly for all ζ ∈ U , with constants κ1 and κ2. Let

ω = sup
ζ∈U

1

2

(
arccos

κ1
‖B1(ζ)‖

+ arccos
κ2

‖B2(ζ)‖

)
<
π

2
.

Let µ ∈ (ω, π/2). Then:

I. The operator ΠB(ζ) is a ω-bisectorial operator in H uniformly for
all ζ ∈ U .

II. The family ζ 7→ ΠB(ζ) has a uniformly bounded holomorphicH∞(Soµ)-
functional calculus.

III. For all f ∈ Hol∞(Soµ) the map ζ 7→ f(ΠB(ζ)) is holomorphic.

Proof. Statement I follows from Proposition 2.5 in Axelsson–Keith–
McIntosh [AKM1], and II from Theorem 3.1. Statement III follows as in
the proof of Theorem 6.4 in [AKM1].

We conclude the paper by noting the following stability result.

Theorem 6.2. Let G be the local direct product of a connected compact
Lie group and a connected nilpotent Lie group. Let

H = −
m∑

k,l=1

AkbklAl

be a homogeneous divergence form operator with bounded measurable co-
efficients satisfying the subellipticity condition (1.2) with constant κ1. Let
b ∈ L∞(G) and suppose there exists a constant κ2 > 0 such that Re b ≥ κ2
a.e. Let η1 ∈ (0, κ1) and η2 ∈ (0, κ2). Then there exists a constant C > 0
such that the following is valid. For all k, l ∈ {1, . . . ,m} let b̃kl ∈ L∞(G)
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and suppose that

M̃ = sup
x∈G
‖(b̃kl(x))‖Cm×m ≤ η1.

Further, let b̃ ∈ L∞(G) with ‖b̃‖∞ ≤ η2. Let

H̃ = −
m∑

k,l=1

Ak(bkl + b̃kl)Al.

Then ∥∥∥√(b+ b̃)H̃ u−
√
bH u

∥∥∥ ≤ C(M̃ + ‖b̃‖∞)‖∇u‖

for all u ∈W ′1,2(G).

Proof. This follows as in the proof of Theorem 6.5 in [AKM1], using
Theorem 3.1 and Theorem 6.1 with B(ζ) = B + ζB̃ for all ζ ∈ U , where
U is an appropriate open set with [0, 1] ⊂ U ⊂ C. See also the proof of
Theorem 7.2 in [BMc].

There are similar stability results for the inhomogeneous problems as in
Theorem 1.1, or with the right Haar measure or right translations. We leave
the formulation to the reader.
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