Kaczmarz algorithm with relaxation in Hilbert space

by
Ryszard Szwarc and Grzegorz Świderski (Wrocław)

Abstract

We study the relaxed Kaczmarz algorithm in Hilbert space. The connection with the non-relaxed algorithm is examined. In particular we give sufficient conditions when relaxation leads to the convergence of the algorithm independently of the relaxation coefficients.

1. Introduction. Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be a linearly dense sequence of unit vectors in a Hilbert space \mathcal{H}. Define

$$
\begin{aligned}
& x_{0}=\left\langle x, e_{0}\right\rangle e_{0} \\
& x_{n}=x_{n-1}+\left\langle x-x_{n-1}, e_{n}\right\rangle e_{n}
\end{aligned}
$$

The formula is called the Kaczmarz algorithm ([4]).
In this work we fix a sequence $\lambda=\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ of relaxation coefficients so that $0<\lambda_{n}<2$ for any n. Then we define

$$
\begin{align*}
& x_{0}=\lambda_{0}\left\langle x, e_{0}\right\rangle e_{0} \\
& x_{n}=x_{n-1}+\lambda_{n}\left\langle x-x_{n-1}, e_{n}\right\rangle e_{n} \tag{1.1}
\end{align*}
$$

Let Q_{n} denote the orthogonal projection onto the line $\mathbb{C} e_{n}$ and let $P_{n}=$ $I-Q_{n}$. Then (1.1) takes the form

$$
\begin{equation*}
x_{n}=x_{n-1}+\lambda_{n} Q_{n}\left(x-x_{n-1}\right) \tag{1.2}
\end{equation*}
$$

The last formula can be transformed into

$$
\begin{equation*}
x-x_{n}=\left(I-\lambda_{n} Q_{n}\right)\left(x-x_{n-1}\right)=\left[\left(1-\lambda_{n}\right) Q_{n}+P_{n}\right]\left(x-x_{n-1}\right) \tag{1.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
R_{n}=\left(1-\lambda_{n}\right) Q_{n}+P_{n} \tag{1.4}
\end{equation*}
$$

Clearly R_{n} is a contraction. Iterating (1.3) gives

$$
x-x_{n}=R_{n} R_{n-1} \ldots R_{0} x
$$

[^0]We are interested in determining when the algorithm converges, i.e. $x_{n} \rightarrow x$ for any x in the space.

This is always satisfied in a finite-dimensional space for a periodic choice of vectors and relaxation coefficients. Indeed, let $\operatorname{dim} \mathcal{H}<\infty$ and $\left\{e_{n}\right\}_{n=0}^{\infty}$, $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ be N-periodic. For $A=R_{N-1} \ldots R_{1} R_{0}$ it suffices to show that A^{n} tends to zero. We claim that $\|A\|<1$. If not, there is a vector x such that $\|A x\|=\|x\|=1$. Then $\left\|R_{0} x\right\| \geq\|A x\|=\|x\|$, hence $R_{0} x=x$, which implies $P_{0} x=x$. In the same way $P_{1} x=x, \ldots, P_{N-1} x=x$, which implies that $x \perp e_{0}, e_{1}, \ldots, e_{N-1}$. As the vectors $\left\{e_{n}\right\}_{n=0}^{N-1}$ are linearly dense we get $x=0$. The speed of convergence in the finite-dimensional case has been studied in [2].

In the infinite-dimensional case this work is a natural continuation of [6] where the non-relaxed algorithm was studied in detail. In particular the convergence was characterized in terms of the Gram matrix of the vectors e_{n}.
2. Main formulas. Define vectors g_{n} recursively by

$$
\begin{equation*}
g_{n}=\lambda_{n} e_{n}-\lambda_{n} \sum_{k=0}^{n-1}\left\langle e_{n}, e_{k}\right\rangle g_{k} \tag{2.1}
\end{equation*}
$$

(see [5]). Then by straightforward induction it can be verified that

$$
\begin{equation*}
x_{n}=\sum_{k=0}^{n}\left\langle x, g_{k}\right\rangle e_{k} \text {. } \tag{2.2}
\end{equation*}
$$

As the images of the projections P_{n} and Q_{n} are mutually orthogonal, in view of 1.3 we get

$$
\begin{aligned}
\left\|x-x_{n}\right\|^{2} & =\left(1-\lambda_{n}\right)^{2}\left\|Q_{n}\left(x-x_{n-1}\right)\right\|^{2}+\left\|P_{n}\left(x-x_{n-1}\right)\right\|^{2} \\
\left\|x-x_{n-1}\right\|^{2} & =\left\|Q_{n}\left(x-x_{n-1}\right)\right\|^{2}+\left\|P_{n}\left(x-x_{n-1}\right)\right\|^{2}
\end{aligned}
$$

Subtracting gives

$$
\left\|x-x_{n-1}\right\|^{2}-\left\|x-x_{n}\right\|^{2}=\lambda_{n}\left(2-\lambda_{n}\right)\left\|Q_{n}\left(x-x_{n-1}\right)\right\|^{2}
$$

By 1.2 we thus get

$$
\begin{equation*}
\left\|x-x_{n-1}\right\|^{2}-\left\|x-x_{n}\right\|^{2}=\frac{2-\lambda_{n}}{\lambda_{n}}\left\|x_{n}-x_{n-1}\right\|^{2} \tag{2.3}
\end{equation*}
$$

Now taking (2.2) into account results in

$$
\left\|x-x_{n-1}\right\|^{2}-\left\|x-x_{n}\right\|^{2}=\frac{2-\lambda_{n}}{\lambda_{n}}\left|\left\langle x, g_{n}\right\rangle\right|^{2}
$$

By summing up the last formula we obtain

$$
\|x\|^{2}-\lim _{n}\left\|x-x_{n}\right\|^{2}=\sum_{n=0}^{\infty} \frac{2-\lambda_{n}}{\lambda_{n}}\left|\left\langle x, g_{n}\right\rangle\right|^{2}
$$

Therefore the algorithm converges if and only if

$$
\begin{equation*}
\|x\|^{2}=\sum_{n=0}^{\infty} \frac{2-\lambda_{n}}{\lambda_{n}}\left|\left\langle x, g_{n}\right\rangle\right|^{2}, \quad x \in \mathcal{H} \tag{2.4}
\end{equation*}
$$

Define

$$
h_{n}=\sqrt{\frac{2-\lambda_{n}}{\lambda_{n}}} g_{n}, \quad f_{n}=\sqrt{\frac{2-\lambda_{n}}{\lambda_{n}}} e_{n} .
$$

Then (2.1) takes the form

$$
\begin{equation*}
h_{n}=f_{n}-\sum_{k=0}^{n-1} \frac{1}{2-\lambda_{k}}\left\langle f_{n}, f_{k}\right\rangle h_{k} . \tag{2.5}
\end{equation*}
$$

In view of (2.4) the algorithm converges if and only if

$$
\begin{equation*}
\|x\|^{2}=\sum_{n=0}^{\infty}\left|\left\langle x, h_{n}\right\rangle\right|^{2}, \quad x \in \mathcal{H} . \tag{2.6}
\end{equation*}
$$

The last condition states that $\left\{h_{n}\right\}_{n=0}^{\infty}$ is a so-called tight frame (see [1]; cf. [6). Equivalently the sequence h_{n} is linearly dense and the Gram matrix of the vectors h_{n} is a projection.

We are now going to describe the Gram matrix of the vectors h_{n} in more detail.

Define the lower triangular matrix M_{λ} by the formula

$$
\begin{equation*}
\left(M_{\lambda}\right)_{n k}=\frac{1}{2-\lambda_{k}}\left\langle f_{n}, f_{k}\right\rangle, \quad n>k . \tag{2.7}
\end{equation*}
$$

Thus (2.5) can be rewritten as

$$
\begin{equation*}
f_{n}=h_{n}+\sum_{k=0}^{n-1}\left(M_{\lambda}\right)_{n k} h_{k} . \tag{2.8}
\end{equation*}
$$

Let U_{λ} be the lower triangular matrix defined by

$$
\begin{equation*}
\left(I+U_{\lambda}\right)\left(I+M_{\lambda}\right)=I . \tag{2.9}
\end{equation*}
$$

Denote

$$
\left(U_{\lambda}\right)_{n k}=c_{n k}, \quad n>k .
$$

Then (2.7)-2.9) imply

$$
h_{n}=f_{n}+\sum_{k=0}^{n-1} c_{n k} f_{k} .
$$

Moreover setting $c_{n n}=1$ gives

$$
\begin{equation*}
\left\langle h_{i}, h_{j}\right\rangle=\sum_{k=0}^{i} c_{i k} \sum_{l=0}^{j} \overline{c_{j l}}\left\langle f_{k}, f_{l}\right\rangle=\left\langle\left(I+U_{\lambda}\right) F_{\lambda}\left(I+U_{\lambda}^{*}\right) \delta_{j}, \delta_{i}\right\rangle \tag{2.10}
\end{equation*}
$$

where F_{λ} denotes the Gram matrix of the vectors f_{n}, i.e.

$$
\begin{equation*}
\left(F_{\lambda}\right)_{n k}=\left\langle f_{n}, f_{k}\right\rangle \tag{2.11}
\end{equation*}
$$

and δ_{i} is the standard basis in $\ell^{2}(\mathbb{N})$. We will denote by $D_{a_{n}}$ the diagonal matrix with the numbers a_{n} on the main diagonal. By definition of the vectors f_{n} and by 2.7 we have

$$
\begin{equation*}
F_{\lambda}=D_{\left(2-\lambda_{n}\right) \lambda_{n}}+M_{\lambda} D_{2-\lambda_{n}}+D_{2-\lambda_{n}} M_{\lambda}^{*} \tag{2.12}
\end{equation*}
$$

We have
Lemma 2.1.

$$
\begin{equation*}
\left(I+U_{\lambda}\right) F_{\lambda}\left(I+U_{\lambda}^{*}\right)=I-\left(D_{1-\lambda_{n}}+U_{\lambda} D_{2-\lambda_{n}}\right)\left(D_{1-\lambda_{n}}+D_{2-\lambda_{n}} U_{\lambda}^{*}\right) \tag{2.13}
\end{equation*}
$$

Proof. The formula follows readily by using the relation

$$
M_{\lambda} U_{\lambda}=U_{\lambda} M_{\lambda}=-M_{\lambda}-U_{\lambda}
$$

which comes from (2.9).
Now we are ready to state one of the main results.
TheOrem 2.2. The relaxed Kaczmarz algorithm defined by (1.1) is convergent if and only if the matrix $V_{\lambda}:=D_{1-\lambda_{n}}+U_{\lambda} D_{2-\lambda_{n}}$ is a partial isometry.

Proof. By Lemma 2.1 the operator V_{λ} is a contraction. Again by Lemma 2.1 and 2.10 we get

$$
\left\langle h_{i}, h_{j}\right\rangle=\left\langle\left(I-V_{\lambda} V_{\lambda}^{*}\right) \delta_{j}, \delta_{i}\right\rangle
$$

From the discussion after formula (2.6) we know that the algorithm converges if and only if the Gram matrix of the vectors h_{i} is a projection. But the latter is equivalent to V_{λ} being a partial isometry.
3. Relaxed versus non-relaxed algorithm. For a constant sequence $\lambda \equiv 1$ let $M=M_{1}$ and $U=U_{1}$. From the definition of M_{λ} we get

$$
\begin{equation*}
M_{\lambda}=D_{\sqrt{\lambda_{n}\left(2-\lambda_{n}\right)}} M D_{\sqrt{\lambda_{n} /\left(2-\lambda_{n}\right)}} \tag{3.1}
\end{equation*}
$$

We would like to have a similar relation for V_{λ} (see Thm. 2.2). Clearly for $\lambda \equiv 1$ we have $V_{1}=U$.

LEMMA 3.1. Let D_{1} and D_{2} be diagonal matrices with non-zero elements on the main diagonal. Let M, \widetilde{M}, U and \widetilde{U} be lower triangular matrices so that $\widetilde{M}=D_{1} M D_{2}$ and

$$
(I+M)(I+U)=I, \quad(I+\widetilde{M})(I+\widetilde{U})=I
$$

Then

$$
\widetilde{U}=D_{1} U\left[I+\left(I-D_{1} D_{2}\right) U\right]^{-1} D_{2}
$$

Proof. We have

$$
M=-U(I+U)^{-1}, \quad \widetilde{U}=-\widetilde{M}(I+\widetilde{M})^{-1}
$$

Thus

$$
\begin{aligned}
\widetilde{U} & =-D_{1} M D_{2}\left(I+D_{1} M D_{2}\right)^{-1}=-D_{1} M\left(I+D_{1} D_{2} M\right)^{-1} D_{2} \\
& =D_{1} U(I+U)^{-1}\left[I-D_{1} D_{2} U(I+U)^{-1}\right]^{-1} D_{2} \\
& =D_{1} U\left[(I+U)-D_{1} D_{2} U\right]^{-1} D_{2}=D_{1} U\left[I+\left(I-D_{1} D_{2}\right) U\right]^{-1} D_{2}
\end{aligned}
$$

Proposition 3.2. We have

$$
\begin{equation*}
V_{\lambda}:=D_{1-\lambda_{n}}+U_{\lambda} D_{2-\lambda_{n}}=\left(A_{\lambda}+B_{\lambda} U\right)\left(B_{\lambda}+A_{\lambda} U\right)^{-1} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\lambda}=D_{\left(1-\lambda_{n}\right) / \sqrt{\lambda_{n}\left(2-\lambda_{n}\right)}}, \quad B_{\lambda}=D_{1 / \sqrt{\lambda_{n}\left(2-\lambda_{n}\right)}} \tag{3.3}
\end{equation*}
$$

Proof. Let

$$
D_{1}=D_{\sqrt{\lambda_{n}\left(2-\lambda_{n}\right)}}, \quad D_{2}=D_{\sqrt{\lambda_{n} /\left(2-\lambda_{n}\right)}}
$$

By (3.1) we have $M_{\lambda}=D_{1} M D_{2}$. We can apply Lemma 3.1 to get

$$
U_{\lambda}=D_{1} U\left[I+\left(I-D_{1} D_{2}\right) U\right]^{-1} D_{2}
$$

Observe that $D_{1} D_{2}=D_{\lambda_{n}}$ and $D_{2} D_{2-\lambda_{n}}=D_{1}$. Thus

$$
\begin{aligned}
V_{\lambda} & =I-D_{1} D_{2}+D_{1} U\left[I+\left(I-D_{1} D_{2}\right) U\right]^{-1} D_{1} \\
& =\left\{D_{1}^{-1}\left(I-D_{1} D_{2}\right)\left[I+\left(I-D_{1} D_{2}\right) U\right]+D_{1} U\right\}\left[I+\left(I-D_{1} D_{2}\right) U\right]^{-1} D_{1} \\
& =\left\{\left(D_{1}^{-1}-D_{2}\right)+\left[D_{1}^{-1}\left(I-D_{1} D_{2}\right)^{2}+D_{1}\right] U\right\}\left[D_{1}^{-1}+\left(D_{1}^{-1}-D_{2}\right) U\right]^{-1}
\end{aligned}
$$

The proof will be finished once we notice that

$$
D_{1}^{-1}-D_{2}=A_{\lambda}, \quad D_{1}^{-1}=B_{\lambda}, \quad\left(I-D_{1} D_{2}\right)^{2}+D_{1}^{2}=I
$$

Basing on Proposition 3.2 we can derive a simple formula for $V_{\lambda}^{*} V_{\lambda}$ in terms of U and U^{*}.

Main Theorem 3.3. Assume the sequence λ_{n} satisfies $\varepsilon \leq \lambda_{n} \leq 2-\varepsilon$ for any $n \geq 0$. Then

$$
I-V_{\lambda}^{*} V_{\lambda}=\left(B_{\lambda}+U^{*} A_{\lambda}\right)^{-1}\left(I-U^{*} U\right)\left(B_{\lambda}+A_{\lambda} U\right)^{-1}
$$

where A_{λ} and B_{λ} are defined in 3.3). In particular the relaxed algorithm is convergent for any sequence λ_{n} with $\varepsilon \leq \lambda_{n} \leq 2-\varepsilon$ if $U^{*} U=I$.

Proof. Both operators A_{λ} and B_{λ} are bounded as soon as the coefficients λ_{n} stay away from 0 and 2 . Moreover the operator $B_{\lambda}+A_{\lambda} U$ is invertible as

$$
B_{\lambda}+A_{\lambda} U=B_{\lambda}\left(I+D_{1-\lambda_{n}} U\right), \quad\left\|D_{1-\lambda_{n}}\right\| \leq 1-\varepsilon<1
$$

Notice that

$$
B_{\lambda}^{2}-A_{\lambda}^{2}=I
$$

Therefore

$$
\begin{aligned}
V_{\lambda}^{*} & V_{\lambda}=\left(B_{\lambda}+U^{*} A_{\lambda}\right)^{-1}\left(A_{\lambda}+U^{*} B_{\lambda}\right)\left(A_{\lambda}+B_{\lambda} U\right)\left(B_{\lambda}+A_{\lambda} U\right)^{-1} \\
& =\left(B_{\lambda}+U^{*} A_{\lambda}\right)^{-1}\left[B_{\lambda}^{2}+U^{*} A_{\lambda}^{2} U+U^{*} A_{\lambda} B_{\lambda}+A_{\lambda} B_{\lambda} U+U^{*} U-I\right]\left(B_{\lambda}+A_{\lambda} U\right)^{-1} \\
& =\left(B_{\lambda}+U^{*} A_{\lambda}\right)^{-1}\left[\left(B_{\lambda}+U^{*} A_{\lambda}\right)\left(B_{\lambda}+A_{\lambda} U\right)+U^{*} U-I\right]\left(B_{\lambda}+A_{\lambda} U\right)^{-1} \\
& =I+\left(B_{\lambda}+U^{*} A_{\lambda}\right)^{-1}\left(U^{*} U-I\right)\left(B_{\lambda}+A_{\lambda} U\right)^{-1}
\end{aligned}
$$

Finally, we get

$$
I-V_{\lambda}^{*} V_{\lambda}=\left(B_{\lambda}+U^{*} A_{\lambda}\right)^{-1}\left(I-U^{*} U\right)\left(B_{\lambda}+A_{\lambda} U\right)^{-1}
$$

Corollary 3.4. Assume $0<\left|\lambda_{n}-1\right|<1-\varepsilon$ for any $n \geq 0$. The relaxed algorithm is convergent if and only if $U^{*} U=I$.

Proof. By (3.2) the operator V_{λ} is one-to-one as $\lambda_{n} \neq 1$. Assume the relaxed algorithm is convergent. Then V_{λ} is a partial isometry. Hence $V_{\lambda}^{*} V_{\lambda}=I$ as V_{λ} is one-to-one. By Theorem 3.3 we get $U^{*} U=I$. The converse implication is already included in Theorem 3.3 .

REmARK. The assumption $U^{*} U=I$ is stronger than U being a partial isometry. According to [3] it ensures that the Kaczmarz algorithm is convergent even if we drop finitely many vectors from the sequence $\left\{e_{n}\right\}_{n=0}^{\infty}$.

Remark. The assumption $\varepsilon<\lambda_{n}<2-\varepsilon$ is necessary in general for convergence of the relaxed Kaczmarz algorithm. Indeed, assume the opposite, i.e. $\left|\lambda_{n_{k}}-1\right| \rightarrow 1^{-}$for an increasing subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of natural numbers. By extracting a subsequence we may assume

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(1-\left|\lambda_{n_{k}}-1\right|\right)<1 \tag{3.4}
\end{equation*}
$$

In particular we have $\lambda_{n_{k}} \neq 1$. In the two-dimensional space \mathbb{C}^{2} let

$$
e_{n}= \begin{cases}(1,0) & \text { for } n=n_{k} \\ (0,1) & \text { for } n \neq n_{k}\end{cases}
$$

Then for $x=(1,0)$ we have

$$
x_{n_{l}}=\left[1-\prod_{k=1}^{l}\left(1-\lambda_{n_{k}}\right)\right] x .
$$

But the product $\prod_{k=1}^{\infty}\left(1-\lambda_{n_{k}}\right)$ does not tend to zero under assumptions (3.4).

References

[1] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
[2] F. Deutsch and H. Hundal, The rate of convergence for the method of alternating projections, II, J. Math. Anal. Appl. 205 (1997), 381-405.
[3] R. Haller and R. Szwarc, Kaczmarz algorithm in Hilbert space, Studia Math. 169 (2005), 123-132.
[4] S. Kaczmarz, Angenäherte Aufösung von Systemen linearer Gleichungen, Bull. Int. Acad. Polon. Sci. Lett. Cl. Sci. Math. Natur. Sér. A Sci. Math. 1937, 355-357; English transl.: Internat. J. Control 57 (1993), 1269-1271.
[5] S. Kwapień and J. Mycielski, On the Kaczmarz algorithm of approximation in infinitedimensional spaces, Studia Math. 148 (2001), 75-86.
[6] R. Szwarc, Kaczmarz algorithm in Hilbert space and tight frames, Appl. Comput. Harmonic Anal. 22 (2007), 382-385.

Ryszard Szwarc, Grzegorz Świderski
Institute of Mathematics
University of Wrocław
50-384 Wrocław, Poland
E-mail: szwarc2@gmail.com
gswider@math.uni.wroc.pl

[^0]: 2010 Mathematics Subject Classification: Primary 41A65.
 Key words and phrases: Kaczmarz algorithm, Hilbert space, Gram matrix, relaxation, tight frame.

