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Sharp equivalence between ρ- and τ-mixing coefficients

by

Rémi Peyre (Nancy)

Abstract. For two σ-algebras A and B, the ρ-mixing coefficient ρ(A,B) between A
and B is the supremum correlation between two real random variables X and Y which
are A- resp. B-measurable; the τ ′(A,B) coefficient is defined similarly, but restricting to
the case where X and Y are indicator functions. It has been known for a long time that
the bound ρ ≤ Cτ ′(1 + |log τ ′|) holds for some constant C; in this article, we show that
C = 1 works and is best possible.

1. Introduction. In this article, we consider two σ-algebras A and B
on a common probability space (Ω,F ,P), whose correlation level we aim at
quantifying. A classical definition for such correlation quantification is the
ρ-mixing coefficient (also known as “maximal correlation coefficient”):

(1) ρ(A,B) := sup
X∈L2(A)
Y ∈L2(B)

|Cov(X,Y )|
Var(X)1/2 Var(Y )1/2

(where the supremum is taken only over nonconstant X and Y ). This coef-
ficient is 0 if and only if A and B are independent; and we consider A and
B to be as correlated (in the ρ-mixing sense) as ρ(A,B) is large. Note that
one always has ρ(A,B) ≤ 1, because of the Cauchy–Schwarz inequality.

There are other ways to measure dependence betweenA and B (see for in-
stance the review paper [2]): in particular, rather than looking at correlation
between A- and B-measurable random variables, we can look at correlation
between events. The most classical measure of dependence in this category
is the α-mixing coefficient :

α(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|.

Still in the same category, the τ -mixing coefficient is useful to capture strong
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correlation between small probability events:

τ(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|
P(A)1/2 P(B)1/2

.

In this article, we will rather consider a variant of τ :

(2) τ ′(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|
P(A)1/2(1− P(A))1/2 P(B)1/2(1− P(B))1/2

.

The τ ′-mixing coefficient is essentially the same as τ , as for all σ-algebras
A,B one has

τ(A,B) ≤ τ ′(A,B) ≤ 2τ(A,B);

indeed, on the one hand τ ′ ≥ τ is obvious, and on the other hand it can
always be assumed that P(A),P(B) ≤ 1/2 in (2), since the right-hand side
of (2) remains unchanged when A or B is replaced by the respective com-
plement.

But (2) is the same definition as (1), except that one restricts X and Y
to be indicator functions; so one always has τ ′(A,B) ≤ ρ(A,B). Hence, it is
a natural question whether some kind of converse link between τ ′ and ρ also
holds, i.e.: can one find some nontrivial (1) bound on ρ as a function of τ ′
(or equivalently of τ)? That question was answered positively by Bradley [1]
in 1983.

The next question is: what is the best bound for ρ as a function of τ ′?
Bradley and Bryc [3, Theorem 1.1(ii)] (and independently Bulinskĭı [5])
showed that one always has

(3) ρ ≤ Cτ ′(1 + |log τ ′|)

for some constant C; and Bradley, Bryc and Janson [4, Theorem 3.1] showed
that the shape of that bound is sharp, i.e. essentially nothing can be improved
in (3) but the value of C. However, the optimal value of C remained unknown.

In this article we will show that C = 1 works (Theorem 3.1) and that
the corresponding bound is optimal (Theorem 4.1).

2. A first result. In this section we are going to prove a first result on
bounding the ρ-mixing coefficient thanks to some condition on events. This
result, in addition to being of independent interest, is also interesting for its
proof, which involves some ideas which we will re-use in the proof of our
main theorem (Theorem 3.1).

(1) By “nontrivial”, I mean that the bound on ρ would tend to 0 as τ ′ tends to 0.
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We first need to define a certain Sobolev space:

Definition 2.1. For a C1 function f : (0, 1)→ R with compact support
(we write f ∈ C1

c ((0, 1)), one defines

(4) ‖f‖Ḣ1
0 ((0,1)) :=

(1�

0

|f ′(x)|2 dx
)1/2

.

This defines a norm on C1
c ((0, 1)); the completion of this set for that norm

is denoted by Ḣ1
0 ((0, 1))—or merely H1, as no ambiguity can occur.

Some nondifferentiable functions can nevertheless be seen as elements
of H1; in particular, if f is a continuous function defined on [0, 1] with
f(0) = f(1) = 0 and if f is C1 at all points but a finite number, then (4)
remains valid, and f is in H1 if and only if

	1
0 |f
′(x)|2 dx < ∞. Conversely,

the Sobolev embedding theorem asserts that any element of H1 can be seen
as a continuous function defined on [0, 1] and being zero at 0 and 1.

The main result of this section is the following one:

Theorem 2.2. Take f, g ∈ H1. Let A and B be two σ-algebras such that,
for all A ∈ A, B ∈ B,

(5) P(A ∩B)− P(A)P(B) ≤ f(P(A))g(P(B)).

Then
ρ(A,B) ≤ ‖f‖H1‖g‖H1 .

Remark 2.3. Note that taking the absolute value on the left-hand side
of (5) is not necessary.

Before proving that theorem, let us record a particular case:

Corollary 2.4. For p, q > 1/2, define

(6) αp,q(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|
P(A)p P(B)q

.

Then

ρ(A,B) ≤ 22−p−qpq

(2p− 1)1/2(2q − 1)1/2
αp,q(A,B).

Proof. Since the numerator on the right-hand side of (6) remains un-
changed when A or B is replaced by its complement, the hypotheses of
Theorem 2.2 are satisfied with f(x) = αp,q(A,B)(xp ∧ (1− x)p) and g(y) =
yq ∧ (1 − y)q. Then the conclusion follows from the computation of ‖f‖H1

and ‖g‖H1 .
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Proof of Theorem 2.2. Since our goal is to bound ρ(A,B) above, let us
consider two L2 real r.v. X and Y which are A- resp. B-measurable; and
let us try to bound |Cov(X,Y )| by some multiple of Var(X)1/2 Var(Y )1/2.
Actually we will only bound Cov(X,Y ), since then −Cov(X,Y ) will also be
bounded by writing it as Cov(X,−Y ).

In order to write the covariance as a function of probabilities of events,
we need the following lemma, known as the Hoeffding identity :

Lemma 2.5 (Hoeffding [6]). Let X,Y be two L2 real r.v. defined on the
same probability space. Then

(7) Cov(X,Y ) =
�

R×R
(P(X ≤ x and Y ≤ y)− P(X ≤ x)P(Y ≤ y)) dx dy.

We will give a quick proof of the Hoeffding identity here for the sake of
completeness:

Proof of the Hoeffding identity. By a standard approximation argument,
we can assume that X and Y are bounded above. Since both sides of (7)
remain unchanged when a constant is added to X or to Y , we can even
assume that X and Y only take nonpositive values, so that the integral in
(7) may actually be taken over R− × R−.

Now, we start from the formula expressing covariance through expecta-
tions:

(8) Cov(X,Y ) = E(XY )− E(X)E(Y ).

For a nonpositive r.v. X, one has the classical relation

(9) E(X) = −
�

R−

P(X ≤ x) dx,

which is proved by writing X(ω) = −
	
R− 1X(ω)≤x dx and then applying

Fubini’s theorem. With a similar argument, for nonpositive X and Y one
has

(10) E(XY ) =
�

R−×R−

P(X ≤ x and Y ≤ y) dx dy.

Then, (8) turns into

Cov(X,Y )

=
�

R−×R−

P(X ≤ x and Y ≤ y) dx dy −
�

R−

P(X ≤ x) dx
�

R−

P(Y ≤ y) dy

=
�

R−×R−

(P(X ≤ x and Y ≤ y)− P(X ≤ x)P(Y ≤ y)) dx dy.
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Now we go back to the proof of Theorem 2.2. In our case, the hypothesis
(5) yields

Cov(X,Y ) ≤
�

R×R
f(P(X ≤ x))g(P(Y ≤ y)) dx dy

=
�

R

f(P(X ≤ x)) dx
�

R

g(P(Y ≤ y)) dy.

Thus, it suffices to show that for all r.v. X ∈ L2(P),

(11)
�

R

f(P(X ≤ x)) dx ≤ ‖f‖H1 Var(X)1/2.

To see this, for p ∈ (0, 1), denote

χ(p) := inf{x ∈ R : P(X ≤ x) ≥ p}.

By a perturbation argument, we can assume that χ is strictly increasing, so
that P(X ≤ χ(p)) = p for all p ∈ (0, 1), and also that χ ∈ C1([0, 1]) (2).
Then we can perform the change of variables x = χ(p) to get

�

R

f(P(X ≤ x)) dx =

1�

0

f(p)χ′(p) dp.

(This change of variables is legal here because f(0) = f(1) = 0, so that the
integral on the left-hand side of (11) is in fact over [χ(0), χ(1)].)

Var(X) can also be expressed as a function of χ′. Indeed, applying (7)
to Y = X, one finds

Var(X) =
�

R×R
(P(X ≤ x1) ∧ P(X ≤ x2)− P(X ≤ x1)P(X ≤ x2)) dx1 dx2

(12)

=
�

(0,1)2

(p1 ∧ p2 − p1p2)χ′(p1)χ′(p2) dp1 dp2.

In the end, our goal has become the following one: to show that for all
f ∈ H1 and ϕ ∈ C([0, 1]), one has

(13)
1�

0

f(p)ϕ(p) dp ≤ ‖f‖H1

( �

(0,1)2

(p1 ∧ p2 − p1p2)ϕ(p1)ϕ(p2) dp1dp2

)1/2
.

Note that, by a density argument, it will be enough to prove (13) only for
f ∈ C2

c ((0, 1)).

(2) When we write χ as a function over the closed interval [0, 1], the values of χ(0)
and χ(1) are taken by continuous extension.



250 R. Peyre

Now we have to deal with some bilinear forms. Denote, for f, g ∈ C([0, 1]),

〈f, g〉L2 :=
�

(0,1)

f(p)g(p) dp,

〈f, g〉V :=
�

(0,1)2

(p1 ∧ p2 − p1p2)f(p1)g(p2) dp1 dp2,(14)

so that (13) may be written as

(15) 〈f, ϕ〉L2 ≤ ‖f‖H1〈ϕ,ϕ〉1/2V .

When ϕ is of the form χ′, 〈ϕ,ϕ〉V is nonnegative since it corresponds to
Var(X) in (12); and for general ϕ, drawing our inspiration from the formula

Var(X) =
1

2

�

R×R
(x1 − x2)2 dP(X = x1) dP(X = x2),

we find that

〈ϕ,ϕ〉V =
�

p1<p2

(p2�
p1

ϕ(q) dq
)2
dp1 dp2 ≥ 0,

which shows that 〈·, ·〉V is a scalar product indeed.
Having this scalar product property at hand suggests using the Cauchy–

Schwarz inequality to show (15). We define

(16) L : Cc((0, 1))→ C0([0, 1]), (Lf)(q) :=

1�

0

(p ∧ q − pq)f(p) dp,

so that we can write
〈f, g〉V = 〈Lf, g〉L2 .

Now, if we could find a (right) inverse M for L (i.e. an operator such that
LM = Id), we would have

〈f, ϕ〉L2 = 〈L(Mf), ϕ〉L2 = 〈Mf,ϕ〉V ≤ ‖Mf‖V ‖ϕ‖V ,

which would be a good step towards our goal. Such a right inverse is in-
deed given by the “minus second derivative” operator, that is, M : f ∈
C2
c ((0, 1)) 7→ −f ′′ ∈ Cc((0, 1)). We compute indeed that, for q ∈ (0, 1),

(L(−f ′′))(q) = −
1�

0

(p ∧ q − pq)f ′′(p) dp

= −(1− q)
q�

0

pf ′′(p) dp− q
1�

q

(1− p)f ′′(p) dp
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= −(1− q)[pf ′(p)]q0 + (1− q)
q�

0

f ′(p) dp− q[(1− p)f ′(p)]1q − q
1�

q

f ′(p) dp

= −q(1− q)f ′(q) + (1− q)f(q) + q(1− q)f ′(q) + qf(q) = f(q)

by integrating by parts (and using that f ′(0) = f ′(1) = f(0) = f(1) = 0).
So, we have

〈f, ϕ〉L2 ≤ ‖f ′′‖V ‖ϕ‖V .
To end the proof, we finally observe that ‖f ′′‖V is actually equal to ‖f‖H1 :

‖f ′′‖2V = 〈f ′′, f ′′〉V = 〈L(f ′′), f ′′〉L2 = −〈f, f ′′〉L2

= −
1�

0

f ′′(p)f(p) dp =

1�

0

f ′(p)2 dp = ‖f‖2H1

(where the penultimate equality ensues from integrating by parts).

3. ρ ≤ τ ′(1 + |log τ ′|)

3.1. Statement. The goal of this third section is to prove the statement
of its title:

Theorem 3.1. For any two σ-algebras A,B, the coefficient ρ(A,B) can
be bounded using the coefficient τ ′(A,B), according to the following formula:

(17) ρ ≤ τ ′(1− log τ ′)

(where for τ ′ = 0 we take by continuity τ ′(1− log τ ′) = 0).

0 τ ′ 1
0

ρ

1

ρ
=
τ
′ (1
−
lo
g τ
′ )

ρ
=
τ
′

Fig. 1. How we bound ρ as a function of τ ′

Remark 3.2. Since τ ′(A,B) is always ≤ 1, we can rewrite the right-
hand side of (17) as “τ ′(1 + |log τ ′|)”, which makes it easier to see that the
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right-hand side is never less than τ ′—it is obvious indeed that one always
has ρ ≥ τ ′.

3.2. Comparison technique

Proof of Theorem 3.1 (first part). We denote τ := τ ′(A,B). If τ = 0 or
τ = 1 then the conclusion is immediate, since in the first case A and B are in-
dependent, while in the second case (17) is automatic by the Cauchy–Schwarz
inequality. Therefore we will assume that τ ∈ (0, 1).

So, let X and Y be L2 real r.v. which are A- resp. B-measurable; our
goal is to bound Cov(X,Y ) above (as in the proof of Theorem 2.2, bounding
Cov(X,Y ) will actually yield a bound for |Cov(X,Y )|). We start from the
formula (7):

(18) Cov(X,Y ) =
�

R×R
(P(X ≤ x and Y ≤ y)− P(X ≤ x)P(Y ≤ y)) dx dy.

Now we use the τ ′-mixing property: for A-, resp. B-measurable events A,B,

(19) P(A∩B) ≤ P(A)P(B)+τ P(A)1/2(1−P(A))1/2 P(B)1/2(1−P(B))1/2.

Yet, if we use that formula naively, we shall not get anything better than
Theorem 2.2—which in the present case would yield an infinite bound, that
is, nothing. The new idea consists in noticing that (19) can be automatically
improved to

(20) P(A ∩B) ≤(
P(A)P(B) + τ P(A)1/2(1− P(A))1/2 P(B)1/2(1− P(B))1/2

)
∧ P(A) ∧ P(B).

To alleviate notation, we set

Z(p, q) :=
(
pq + τp1/2(1− p)1/2q1/2(1− q)1/2

)
∧ p ∧ q

(actually Z is also a function of τ , but throughout the proof, τ will be fixed),
so that the right-hand side of (20) becomes Z(P(A),P(B)). So,

(21)

Cov(X,Y ) ≤
�

R×R

(
Z(P(X ≤ x),P(Y ≤ y))− P(X ≤ x)P(Y ≤ y)

)
dx dy.

As in the proof of Theorem 2.2, we now define

(22) χ(p) := inf{x ∈ R : P(X ≤ x) ≥ p}
and likewise

υ(q) := inf{y ∈ R : P(Y ≤ y) ≥ q}.
Then the change of variables (x, y) = (χ(p), υ(q)) in (21) yields

(23) Cov(X,Y ) ≤
�

(0,1)2

(Z(p, q)− pq)χ′(p)υ′(q) dp dq
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(using if needed an approximation argument to act as if χ and υ were C1

and strictly increasing). As in the proof of 2.2 again, one also has

Var(X) =
�

(0,1)2

(p1 ∧ p2 − p1p2)χ′(p1)χ′(p2) dp1 dp2,(24)

Var(Y ) =
�

(0,1)2

(q1 ∧ q2 − q1q2)υ′(q1)υ′(q2) dq1 dq2.(25)

It turns out that the right-hand sides of (23), (24) and (25) can be seen
as the covariance and variances of two random variables which we will now
introduce. But first, we define a probability law which will play a central role
in the following:

Definition 3.3. The Chogosov law (3), denoted by Γ , is the probability
law on (0, 1)2 characterized by

(26) ∀p, q ∈ (0, 1)2 Γ ((0, p)× (0, q)) = Z(p, q).

(It will be proved in Subsection 3.3 that this law actually exists).

Now, on the space {(p, q) ∈ (0, 1)2} equipped with the Chogosov law, we
define the following random variables:

X∗ := χ(p),(27)
Y ∗ := υ(q).(28)

We claim that X∗ and Y ∗ have the same distributions as X resp. Y . Under
the Chogosov law indeed, both p and q have a Uniform(0, 1) distribution
(this follows by taking q = 1, resp. p = 1 in (26)), so that the function χX∗
obtained by replacing X by X∗ in (22) coincides with χ (which proves that
X and X∗ have the same law), and likewise υY ∗ = υ. So, the right-hand
sides of (24) and (25) are equal to Var(X∗) resp. Var(Y ∗). Furthermore, by
applying (18) to X∗ and Y ∗, the very definition of the Chogosov law shows
that Cov(X∗, Y ∗) is exactly the right-hand side of (23). In the end, proving
the theorem is tantamount to proving that

(29) Cov(X∗, Y ∗) ≤ τ(1− log τ) Var(X∗)1/2 Var(Y ∗)1/2.

Now, denoting by A∗ the σ-algebra on (0, 1)2 spanned by p, and by B∗
the σ-algebra spanned by q, we observe that X∗ and Y ∗ are A∗- resp. B∗-
measurable; thus, to show (29), it will be enough to show that

(30) ρ(A∗,B∗) ≤ τ(1− log τ).

3.3. The Chogosov law
* To alleviate notation, from now on we will denote p̄ := 1 − p and

p̂ := p− 1/2 (with similar notation for q).

(3) So called in honour of my dear friend M. K. Chogosov.
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In this subsection, we make a pause in the proof of Theorem 3.1 to prove
the existence of the Chogosov law and to describe its structure. We recall
that the Chogosov law Γ is the probability law on {(p, q) ∈ (0, 1)2} defined
by

(31) Γ ((0, p)× (0, q)) = (pq + τ(pp̄)1/2(qq̄)1/2) ∧ p ∧ q =: Z(p, q).

0 p 1
0

q

1

¬



®

d

u

0 p 1
0

q

1

Fig. 2. The Chogosov law Γ . Left: different zones relative to the support of the measure;
right: a cloud of 1.024 independent points with law Γ . (The drawings are made for τ =
1/2.)

First we notice that, due to the presence of minimum symbols in the
definition of Z(p, q), its analytic expression depends on the zone of (0, 1)2 in
which (p, q) lies (see Figure 2):

• If qp̄/(pq̄) < τ2, then Z(p, q) = q; in this case we will say that we are
in Zone 1.
• If τ2 < qp̄/(pq̄) < τ−2, then Z(p, q) = pq+τ(pp̄)1/2(qq̄)1/2; in this case

we will say that we are in Zone 2.
• If qp̄/(pq̄) > τ−2, then Z(p, q) = p; in this case we will say that we are

in Zone 3.

It will be convenient too to give a name to the boundaries between the
different zones: the boundary between Zones 1 and 2 (corresponding to
qp̄/(pq̄) = τ2) will be denoted by d, and the boundary between Zones 2
and 3 (corresponding to qp̄/(pq̄) = τ−2) by u. One can parametrize these
boundaries by p: d is the graph of the function “q = qd(p)” and u is the graph
of “q = qu(p)”, where qd(p) := τ2p/(p̄+ τ2p) and qu(p) := p/(τ2p̄+ p).

First, we have to check that the Chogosov law actually exists. In fact,
(31) automatically describes a measure on (0, 1)2 whose density is ∂2Z/∂q∂p
(in the sense of distributions), but we have to make sure that this measure
is nonnegative!
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We start by computing ∂Z/∂p:

• In Zone 1, ∂Z(p, q)/∂p = 0.
• In Zone 2, ∂Z(p, q)/∂p = q − τ(qq̄)1/2p̂/(pp̄)1/2.
• In Zone 3, ∂Z(p, q)/∂p = 1.

(As Z is continuous at the boundaries d and u, it is not important to know
what happens there.) Next we compute ∂2Z/∂q∂p:

• In Zone 1, ∂2Z/∂q∂p = 0.
• At q = qd(p), ∂Z(p, ·)/∂p has a jump of amplitude

qd(p)− τ(qd(p)q̄d(p))
1/2p̂/(pp̄)1/2;

since q̄d(p)/p̄ = τ−2qd(p)/p, that amplitude can be simplified to qd(p)−
p̂qd(p)/p = qd(p)/(2p).
• In Zone 2, ∂2Z/∂q∂p = 1 + τ p̂q̂/((pp̄)1/2(qq̄)1/2).
• At q=qu(p), ∂Z(p, ·)/∂p has a jump of amplitude

q̄u(p) + τ(qu(p)q̄u(p))1/2p̂/(pp̄)1/2;

since qu(p)/p = τ−2q̄u(p)/p̄, that amplitude can be simplified to q̄u(p)+
p̂q̄u(p)/p̄ = q̄u(p)/(2p̄).
• Finally, in Zone 3, ∂2Z/∂q∂p = 0.

Now, checking the nonnegativity of Γ is equivalent to verifying that
both ∂2Z/∂q∂p (wherever defined) and the jumps of ∂Z/∂p are nonnega-
tive. Obviously the only nontrivial case is Zone 2. To show that 1 + τ ×
p̂q̂/((pp̄)1/2(qq̄)1/2) is nonnegative on the whole Zone 2, we consider four
cases separately:

• If p ≤ 1/2 and q ≤ 1/2, then p̂q̂ ≥ 0, so that the nonnegativity of the
density is trivial.

• Likewise, nonnegativity is trivial if p ≥ 1/2 and q ≥ 1/2.
• If p ≤ 1/2 and q ≥ 1/2, we use qp̄/(pq̄) ≤ τ−2 (since we are in

Zone 2) to get |τ p̂q̂/((pp̄)1/2(qq̄)1/2)| ≤ |p̂q̂|/(qp̄) = |p̂/p̄| |q̂/q|; and
since p ≤ 1/2 and q ≥ 1/2, one has |p̂/p̄| |q̂/q| ≤ 1/2× 1/2 ≤ 1, which
shows that the density is nonnegative.
• Likewise, if p ≥ 1/2 and q ≤ 1/2, we use qp̄/(pq̄) ≥ τ2 to deduce that
|τ p̂q̂/((pp̄)1/2(qq̄)1/2)| ≤ |p̂q̂|/(pq̄) = |p̂/p| |q̂/q̄| ≤ 1/2× 1/2 ≤ 1.

So we have proved that the Chogosov law actually exists (see also Fig-
ure 2). Moreover, the above computations permit a more detailed description
of this law:

Definition 3.4. For p ∈ (0, 1), we define the law Γ p on (0, 1) in the
following way:

• On (qd(p), qu(p)), Γ p has density 1 + τ p̂q̂/((pp̄)1/2(qq̄)1/2) with respect
to the Lebesgue measure.
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• At qd(p), Γ p has an atom of mass qd(p)/(2p); and at qu(p), it has an
atom of mass q̄u(p)/(2p̄).
• Outside [qd(p), qu(p)], Γ p is zero.

Then we may describe the Chogosov law in the following way:

Proposition 3.5. (p, q) is distributed according to the Chogosov law Γ
if and only if p is uniformly distributed on (0, 1) and, conditionally on p, q
is distributed according to Γ p. In other words, for all A,B ⊂ (0, 1),

Γ (A×B) =
�

A

Γ p(B) dp.

3.4. ρ-mixing for the Chogosov law

Proof of Theorem 3.1 (second part). The second and last part of the proof
is to show (30). Remember that we are working on the space {(p, q) ∈ (0, 1)2}
equipped with the Chogosov law (defined by (31)), and that A∗ is the σ-
algebra spanned by p, while B∗ is the σ-algebra spanned by q.

Let us consider random variables X and Y which are A∗- resp. B∗-
measurable, that is, X = f(p) and Y = g(q). Our goal will be to bound
|Cov(X,Y )| by some multiple of Var(X)1/2 Var(Y )1/2. Subtracting the re-
spective expectations from X and Y (which will not change any of the sides
of the inequality to be proved), it will be convenient to assume that X and Y
are centered; then, indeed, one will have Var(X) = E(X2) = ‖f‖2L2((0,1)) and
likewise Var(Y ) = ‖g‖2L2((0,1)), since both p and q are uniformly distributed
on (0, 1). Moreover, centering X and Y means that f and g lie in the (closed)
subspace of mean zero functions in L2((0, 1)): in the rest of the proof, this
Hilbert (sub)space will be denoted by H.

Since X and Y are centered, one has Cov(X,Y ) = E(XY ). Thus, we can
write Cov(X,Y ) in terms of some linear operator:

Definition 3.6. We define L : H → H by

(Lg)(p) := EΓ p(g),

where we recall that Γ p is the Chogosov law conditioned on the value of
p (cf. Definition 3.4 and Proposition 3.5). In other words, (Lg)(p) is the
expectation of g(q) conditioned on p when (p, q) is distributed according to
the Chogosov law. (That interpretation ensures that L actually maps H into
itself.)

Thus, conditioning on p, one gets

Cov(X,Y ) = 〈f, Lg〉H .
Therefore, to show (30), it is (necessary and) sufficient to prove that the
operator norm ‖L‖H→H is not greater than τ(1− log τ).
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It turns out that L has the nice property of being self-adjoint on H.
Indeed, we have defined L so that 〈f, Lg〉H = EΓ (f(p)g(q)); but the law Γ
is invariant under the permutation (p, q) 7→ (q, p) (since Z(p, q) is), so that
〈f, Lg〉H = EΓ (f(p)g(q)) = EΓ (f(q)g(p)) = 〈Lf, g〉H .

We will use the following lemma on self-adjoint operators, whose proof
can be found in §3.5:

Lemma 3.7. Let L be a self-adjoint operator (possibly unbounded) on a
Hilbert space H. Assume there exists a dense subset D ⊂ H such that, for
some C <∞,

∀h ∈ D lim sup
k→∞

|〈Lkh, h〉H |1/k ≤ C.

Then ‖L‖H→H ≤ C.
Thanks to Lemma 3.7, we can focus on some dense subset of H on which

the work is easier:

Definition 3.8. Let ε > 0 be a parameter that we fix for the time being
(though in the end we will make it tend to 0). We define formally, for f ∈ H,

‖f‖Lip := sup
p∈(0,1)

|f ′(p)|
(pp̄)−3/2+ε

,

or, in rigorous terms,

‖f‖Lip := sup
p1<p2

|f(p2)− f(p1)|	p2
p1

(pp̄)−3/2+ε dp
.

We denote by Lip the space of functions of H such that ‖f‖Lip < ∞,
which we equip with the norm ‖ · ‖Lip.

Obviously Lip is a dense subset of H. Moreover the canonical injection
Lip ↪→ H is continuous: indeed, for f ∈ Lip, we have

	p
1/2 f

′(p1) dp1 =

f(p)− f(1/2) (here we act as if f ∈ C1((0, 1)) to alleviate notation, but the
reasoning would actually work for all f ∈ Lip), and since f is orthogonal in
L2((0, 1)) to the constant functions (for it has zero mean),∥∥∥p 7→ p�

1/2

f ′(p1) dp1

∥∥∥2

L2((0,1))
= ‖f‖2L2((0,1)) + ‖f(1/2)‖2L2((0,1)),

whence

‖f‖H = ‖f‖L2((0,1)) ≤
∥∥∥p 7→ p�

1/2

f ′(p1) dp1

∥∥∥
L2((0,1))

(32)

=
(1�

0

( p�

1/2

f ′(p1) dp1

)2
dp
)1/2

≤
(1�

0

( p�

1/2

|f ′(p1)| dp1

)2
dp
)1/2

≤ ‖f‖Lip ×
(1�

0

( p�

1/2

(p1p̄1)−3/2+ε dp1

)2
dp
)1/2

.
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The rightmost factor in (32) being finite because ε > 0, this proves that the
injection Lip ↪→ H is continuous. Denoting by C the norm of this injection, it
follows that for all f ∈ Lip and k ∈ N, one has |〈Lkf, f〉H | ≤ ‖f‖H‖Lkf‖H ≤
‖f‖HC‖Lkf‖Lip ≤ ‖f‖HC‖L‖kLip→Lip‖f‖Lip (note that C‖f‖Lip‖f‖H <∞),
whence

lim sup
k→∞

|〈Lkf, f〉H |1/k ≤ ‖L‖Lip→Lip.

Thus, by Lemma 3.7,
‖L‖H→H ≤ ‖L‖Lip→Lip.

As we will see, ‖L‖Lip→Lip is easier to bound than ‖L‖H→H .
To bound ‖L‖Lip→Lip, we will use the idea of monotone coupling between

the Γ p’s. For ω ∈ (0, 1), let

Q(p, ω) := inf{q ∈ (0, 1) : Γ p((0, q]) ≥ ω}
be the inverse repartition function of Γ p. Then Γ p is the pushforward of the
Uniform(0, 1) distribution by the map Q(p, ·), so that

(33) (Lf)(p) =

1�

0

f(Q(p, ω)) dω.

To alleviate notation, we will act as if f were of class C1 (treating the
general case f ∈ Lip would cause no more difficulty but would require heavier
formalism). Then, differentiating (33), one finds

(34) (Lf)′(p) =

1�

0

Q′(p, ω)f ′(Q(p, ω)) dω,

where Q′ is the derivative of Q(p, ω) with respect to p. (Justification for
having differentiated under the integral sign will follow from the upcoming
computations on Q′.)

Consequently,

|(Lf)′(p)| ≤ ‖f‖Lip

1�

0

|Q′(p, ω)|(Q(p, ω)Q̄(p, ω))−3/2+ε dω.

As that formula is valid for all p and f , it follows that
(35)

‖L‖Lip→Lip ≤ sup
p∈(0,1)

{
(pp̄)3/2−ε

1�

0

|Q′(p, ω)|(Q(p, ω)Q̄(p, ω))−3/2+ε dω
}
,

hence

(36) ‖L‖H→H ≤ Right-hand side of (35).

Before starting with explicit computations, we prove that it is legitimate
to take directly ε = 0 in (36) (recall that ε was a priori defined to be
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any strictly positive parameter). We first notice that, denoting by Sp :=
[qd(p), qu(p)] the support of Γ p, one always has Q(p, ω) ∈ Sp. But for all
q ∈ Sp, one has qq̄/(pp̄) ≤ τ−2: in the case q ≤ p indeed, having q ∈ Sp
implies that qp̄/(pq̄) ≥ τ2, thus qq̄/(pp̄) = (q/p)2/(qp̄/(pq̄)) ≤ 1/τ2 = τ−2;
and there is a similar argument for q ≥ p. Then, for all p,

(pp̄)3/2−ε
1�

0

|Q′(p, ω)|(Q(p, ω)Q̄(p, ω))−3/2+εdω

≤ τ−2ε × (pp̄)3/2
1�

0

|Q′(p, ω)|(Q(p, ω)Q̄(p, ω))−3/2 dω.

In that formula, the factor τ−2ε does not depend on p and tends to 1 as
ε→ 0; therefore (36) remains valid for ε = 0.

So, we have to compute the right-hand side of (36) for ε = 0. The first
step is to compute Q and Q′. Because of the structure of Γ p (see Definition
3.4), there are three cases for the analytic expression of Q(p, ω):

• If 0 < ω ≤ qd(p)/(2p), then Q(p, ω) = qd(p).
• Likewise, if 1− q̄u(p)/(2p̄) ≤ ω < 1, then Q(p, ω) = qu(p).
• The case qd(p)/(2p) < ω < 1 − q̄u(p)/(2p̄) is more complicated. As
Γ p is the p-conditional law of Γ , the definition (31) of Γ implies that
Γ p((0, q]) = ∂pZ(p, q); thus Q(p, ω) is the Q such that

(37) Q− τ p̂(QQ̄)1/2/(pp̄)1/2 = ω.

(Indeed, remember that in that case one has Q(p, ω) ∈ (qd(p), qu(p)),
so that Z(p,Q) = pQ+ τ(pp̄)1/2(QQ̄)1/2).

From that we get the formula for Q′(p, ω)—recall that Q′ is the derivative
of Q with respect to p:

• For ω < qd(p)/(2p), one has Q′(p, ω) = dqd/dp. Since qd is char-
acterized by “qd(p)p̄ = τ2pq̄d(p)”, differentiating the latter formula
with respect to p yields Q′(p, ω) = (qd(p) + τ2q̄d(p))/(p̄+ τ2p). Using
again that qdp̄ = τ2pq̄d, that expression then simplifies to Q′(p, ω) =
qd(p)q̄d(p)/(pp̄).
• Likewise, for ω > 1− q̄u(p)/(2p̄), one has Q′(p, ω) = qu(p)q̄u(p)/(pp̄).
• Finally for qd(p)/(2p) < ω < 1 − q̄u(p)/(2p̄), we differentiate (37) to

get

Q′(p, ω) =
τ(QQ̄)1/2

4(pp̄)3/2(1 + τ p̂Q̂/(pp̄QQ̄)1/2)

where “Q” is shorthand for “Q(p, ω)”.

(Note by the way that these computations ensure that Q′(p, ω) actually
exists [for all p, and almost all ω] and that |Q′| is bounded by τ−2 [that
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point, which is nonsubstantial and tedious, is left to the reader], which gives
a posteriori justification to (34)).

Then we can compute the right-hand side of (36) (for ε = 0):

(pp̄)3/2
1�

0

|Q′(p, ω)|(Q(p, ω)Q̄(p, ω))−3/2 dω

= (pp̄)3/2 qd(p)

2p

qd(p)q̄d(p)

pp̄
(qd(p)q̄d(p))

−3/2(38)

+ (pp̄)3/2 q̄u(p)

2p̄

qu(p)q̄u(p)

pp̄
(qu(p)q̄u(p))−3/2(39)

(40)

+ (pp̄)3/2

1−q̄u/(2p̄)�

qd/(2p)

τ(Q(ω)Q̄(ω))1/2

4(pp̄)3/2
(
1 + τ p̂Q̂(ω)/(pp̄Q(ω)Q̄(ω))1/2

)(Q(ω)Q̄(ω))−3/2dω

where, in (40), qd, qu and Q(ω) are shortcuts for resp. qd(p), qu(p) and
Q(p, ω).

Using the formula characterizing qd(p), (38) simplifies to (qd(p)p̄/
(pq̄d(p)))

1/2/2 = τ/2. Similarly, (39) simplifies to τ/2. To compute (40),
we make the change of variables q = Q(ω). Differentiating (37) with respect
to ω, we see that for that change of variables,(

1 +
τ p̂Q̂(ω)

(pp̄Q(ω)Q̄(ω))1/2

)
dq = dω,

whence

(pp̄)3/2

1−q̄u/(2p̄)�

qd/(2p)

τ(Q(ω)Q̄(ω))1/2

4(pp̄)3/2
(
1 + τ p̂Q̂(ω)/(pp̄Q(ω)Q̄(ω))1/2

)(Q(ω)Q̄(ω))−3/2 dω

=
τ

4

qu(p)�

qd(p)

1

qq̄
dq =

τ

4

[
log

q

q̄

]qu(p)

qd(p)

=
τ

4

(
log

qu(p)

q̄u(p)
− log

qd(p)

q̄d(p)

)
which, using the formulas characterizing qd(p) and qu(p), is finally equal to

τ

4

(
log

p

τ2p̄
− log

pτ2

p̄

)
=
τ

4
log

1

τ4
= −τ log τ.

So, the sum (38)–(40) is equal to τ(1−log τ) for all p, and thus the right-hand
side of (36) (for ε = 0) is τ(1− log τ), which proves the theorem.

3.5. Appendix: On the norm of self-adjoint operators. This ap-
pendix aims at proving Lemma 3.7.
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Proof of Lemma 3.7. By the spectral theorem for self-adjoint operators,
up to some isomorphism, we may assume that H is the space L2(µ) corre-
sponding to some Radon measure space (X,µ) and that L is a real multipli-
cation operator on that space—i.e. there exists λ ∈ L∞(µ,R) such that

∀x ∈ X (Lf)(x) = λ(x)f(x)

(where “∀x” actually means “for µ-almost all x”).
Once L is written in that form, we see that for all f ∈ L2(µ),

(41) lim sup
k→∞

|〈Lkf, f〉H |1/k = sup
{
c > 0 : µ({f 6= 0 and |λ| > c}) > 0

}
.

(To prove “≥”, use that for k even one has λ(x)k ≥ 0 ∀x.) But if one had
µ({|λ| > C}) > 0, the set of f ∈ H such that µ({f 6= 0 and |λ| > C}) > 0
would be a nonempty open subset of H, and then (41) would contradict the
assumption of the lemma. Therefore µ({|λ| > C}) = 0, thus ‖L‖H→H ≤ C.

4. Optimality of our bound
* Throughout this section, all the sets considered will be tacitly under-

stood to be Borel.

4.1. Statement of the theorem and outline of the proof. In this
section we will prove that our bound (17) cannot be improved. More precisely,
we are going to prove the following theorem:

Theorem 4.1. Let τ ∈ [0, 1] and let ρ < τ(1− log τ). Then there exists
a probability space (Ω,F ,P) and two σ-algebras A,B on this space such that

τ ′(A,B) ≤ τ and ρ(A,B) ≥ ρ.
Since the map τ 7→ τ(1− log τ) is continuous, that theorem is an imme-

diate corollary of the following one:
Theorem 4.2. Let τ ∈ [0, 1] and τ1 > τ . Then there exists a probability

space (Ω,F ,P) and two σ-algebras A,B on this space such that
τ ′(A,B) ≤ τ1 and ρ(A,B) ≥ τ(1− log τ).

Note that Theorem 4.2 is immediate for τ = 0 and for τ = 1, so it is
enough to prove it for τ ∈ (0, 1).

To do so, we will have to find a sharp bound on some τ ′-mixing coefficient,
which is not an easy challenge in general. For that reason, we first focus
on some particular measure for which finding this kind of bound is easier.
However this measure will not be a probability measure (it will have infinite
total mass), so that we will have to use a truncation argument in a second
step to get a genuine probability measure.

* In the following, we are considering some fixed τ ∈ (0, 1), and our
goal is to prove 4.2 for that value of τ .
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4.2. The measure Γ∞
Definition 4.3. We define, for (p, q) ∈ (0,∞)2,

Z∞(p, q) := τp1/2q1/2 ∧ p ∧ q.
We define the measure Γ∞ on (0,∞)2 by

∀p, q ∈ (0,∞)2 Γ∞((0, p)× (0, q)) = Z∞(p, q).

(This actually defines a nonnegative measure: the reasoning is similar to—
and easier than—the one for the Chogosov law. See also Figure 3.)

0 p

q

Fig. 3. The measure Γ∞: a Poisson cloud of points with density Γ∞. (The scale and
density of the cloud are consistent with Figure 2.)

For p ∈ (0,∞), we define the measure Γ p∞ on (0,∞) in the following way:

• On (τ2p, τ−2p), Γ p∞ has density τ/(4p1/2q1/2) with respect to the Le-
besgue measure.
• At τ2p, Γ p∞ has an atom of mass τ2/2; and at τ−2p, it has an atom of

mass 1/2.
• Outside [τ2p, τ−2p], Γ p∞ is zero.

(Note that Γ p∞ is a probability measure).

Just as for the Chogosov law, we can prove the following properties of
the measure Γ∞:

Proposition 4.4.

(1) Both marginals of Γ∞ (i.e. its marginals on p and on q) are equal to
the Lebesgue measure on (0,∞).

(2) Γ p∞ is the “p-conditional law” of Γ∞, in the sense that for all A,B ⊂
(0,∞), one has Γ∞(A×B) =

	
A Γ

p
∞(B) dp.

So, like the Chogosov law, the measure Γ∞ is made of several components:
first, a component with density τ/(4p1/2q1/2) with respect to the Lebesgue
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measure on the cone {(p, q) ∈ (0,∞)2 : τ2p < q < τ−2p}; then, components
with a lineic density on the half-lines {(p, τ2p)} and {(p, τ−2p)}. We will
give a name to the (surfacic) density component:

Definition 4.5. We denote by Γ̃∞ the absolutely continuous part of the
measure Γ∞ with respect to the Lebesgue measure; in other words, Γ̃∞ is
the measure on (0,∞)2 defined by

dΓ̃∞(p, q) = 1τ2p<q<τ−2p
τ

4p1/2q1/2
dp dq.

We also denote by Γ̃ p∞ the “p-conditional measure” of Γ̃∞, that is, the
measure on (0,∞) defined by

dΓ̃ p∞(q) = 1τ2p<q<τ−2p
τ

4p1/2q1/2
dq,

which is such that Γ̃∞(A×B) =
	
A Γ̃

p
∞(B) dp. (Beware, Γ̃ p∞ is not a proba-

bility measure).

Now we prove two lemmas essential for the proof of Theorem 4.2:

Lemma 4.6. For all A,B ⊂ (0,∞) such that τ2A ⊂ B and τ2|B| ≤
|A| <∞ (|A| denotes the Lebesgue measure of A),

Γ̃∞(A×B) ≤ τ |A|1/2|B|1/2 − τ2(|A|+ |B|)/2.
Proof. We start from the “p-conditional” decomposition of Γ̃∞:

(42) Γ̃∞(A×B) =
�

A

Γ̃ p∞(B) dp.

For x ∈ (0, |A|), we set

(43) π(x) := inf{p ∈ (0,∞) : |(0, p] ∩A| ≥ x},
so that the restriction of the Lebesgue measure to A is the pushforward
by π of the Lebesgue measure on (0, |A|). Then, changing variables on the
right-hand side of (42), one has

(44) Γ̃∞(A×B) =

|A|�

0

Γ̃ π(x)
∞ (B) dx.

Now we are going to bound Γ̃
π(x)
∞ (B). (In the next computations we

abbreviate π(x) to π, not to be confused with Archimedes’ constant, nowhere
involved in this article.) There are three steps:

(1) First, observing that Γ̃ π∞ does not give any mass to (0, τ2π], we have
Γ̃ π∞(B) = Γ̃ π∞(B r (0, τ2π]). Let us denote B r (0, τ2π] =: B×.

(2) For y ∈ (0, |B×|), let us define
(45) κ(y) := inf{q ∈ (τ2π,∞) : |(τ2π, q] ∩B×| ≥ y},
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so that the restriction of the Lebesgue measure to B× is the pushforward by
κ of the Lebesgue measure on (0, |B×|). Then, changing variables,

(46) Γ̃ π∞(B) =
�

B×

1q<τ−2π
τ

4π1/2q1/2
dq =

|B×|�

0

1κ(y)<τ−2π
τ

4π1/2κ(y)1/2
dy.

But κ(y) ≥ τ2π + y for all y (that is obvious from (45)), so that (46)
yields

(47) Γ̃ π∞(B) ≤
|B×|�

0

1τ2π+y<τ−2π
τ

4π1/2(τ2π + y)1/2
dy

=
τ(τ2π + |B×|)1/2

2π1/2
∧ 1/2− τ2/2 ≤ τ(τ2x+ |B×|)1/2

2x1/2
∧ 1/2− τ2/2,

where the last inequality comes from π ≥ x (because of (43)).
(3) Finally, we claim that |B×| ≤ |B| − τ2x: indeed, we have assumed

that B ⊃ τ2A, so |B ∩ (0, τ2π]| ≥ |τ2A ∩ (0, τ2π]| = τ2|A ∩ (0, π]| = τ2x.
Therefore (47) yields

(48) Γ̃ π∞(B) ≤ τ |B|1/2

2x1/2
∧ 1/2− τ2/2.

To conclude, we just have to plug (48) into (44) (it is here that the
assumption τ2|B| ≤ |A| is used):

Γ̃∞(A×B) ≤
|A|�

0

(
τ |B|1/2

2x1/2
∧ 1/2− τ2/2

)
dx

= τ2|B|/2 +

|A|�

τ2|B|

τ |B|1/2

2x1/2
dx− τ2|A|/2 = τ |A|1/2|B|1/2 − τ2(|A|+ |B|)/2.

Lemma 4.7. Let A,B ⊂ (0,∞) with |A| ≥ τ2|B|. Then there exists
A′ ⊂ (0,∞) such that |A′| = |A|, Γ∞(A′ × B) ≥ Γ∞(A × B) and A′ ⊃
τ2B.

Proof. Denote A1 := A ∩ τ2B. Since we have assumed that |A| ≥ τ2|B|,
we have |Ar A1| = |A| − |A1| ≥ τ2|B| − |A1| = |τ2B r A1|, so we can find
A2 ⊂ |ArA1| such that |A2| = |τ2B rA1|. Now denote A3 := ArA1 rA2

and A′2 := τ2BrA1, and define A′ := A1∪A′2∪A3. It is clear by construction
that |A′| = |A| and A′ ⊃ τ2B; and still by construction,

Γ∞(A′ ×B) = Γ∞(A×B)− Γ∞(A2 ×B) + Γ∞(A′2 ×B),

so it remains to show that Γ∞(A2 ×B) ≤ Γ∞(A′2 ×B).
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Using the “p-conditional” decomposition of Γ∞, one has

Γ∞(A2 ×B) =
�

A2

Γ p∞(B) dp,(49)

Γ∞(A′2 ×B) =
�

A′2

Γ p∞(B) dp.(50)

But, recalling the structure of Γ p∞ (cf. Definition 4.3), we see that Γ p∞(B) ≥
1/2 as soon as τ−2p ∈ B, and thus also Γ p∞(B) ≤ 1− 1/2 = 1/2 as soon as
τ−2p /∈ B. Since, by construction, τ−2A2 ∩B = ∅ and τ−2A′2 ⊂ B, one has

Γ∞(A2 ×B) =
�

A2

Γ p∞(B) dp ≤ |A2|/2,(51)

Γ∞(A′2 ×B) =
�

A′2

Γ p∞(B) dp ≥ |A′2|/2 = |A2|/2,(52)

so that Γ∞(A2 ×B) ≤ Γ∞(A′2 ×B), which is the desired result.

As the function Z∞(p, q) used to define Γ∞ is invariant under switching
p and q, we see that Γ∞(A×B) = Γ∞(B ×A) for all A,B, so that Lemma
4.7 yields the following corollary:

Lemma 4.8. Let A,B ⊂ (0,∞) with |B| ≥ τ2|A|. Then there exists
B′ ⊂ (0,∞) such that |B′| = |B|, Γ∞(A×B′) ≥ Γ∞(A×B) and B′ ⊃ τ2A.

Thanks to Lemmas 4.6 and 4.8, we can prove the main result of this
subsection:

Lemma 4.9. For all A,B ⊂ (0,∞),

Γ∞(A×B) ≤ τ |A|1/2|B|1/2.

Proof. First observe that automatically Γ∞(A×B) ≤ |A|∧|B| (since both
marginals of Γ∞ are equal to the Lebesgue measure), so that the conclusion
is immediate if |A| ≤ τ2|B| or |B| ≤ τ2|A|; we therefore assume that τ2|A| ≤
|B| ≤ τ−2|A|. Then the assumptions of Lemma 4.8 are satisfied, so that up
to replacing B by B′ we can assume that τ2A ⊂ B, and then apply Lemma
4.6 to get

(53) Γ̃∞(A×B) ≤ τ |A|1/2|B|1/2 − τ2(|A|+ |B|)/2.

So we have bounded the absolutely continuous component of Γ∞(A×B).
Now we have to bound the lineic density components. The first of these is

(54) Γ∞({(p, q) ∈ A×B : q = τ2p}) ≤ Γ∞({(p, q) : p ∈ A and q = τ2p}),

which, using the “p-conditional” decomposition of Γ∞ and the structure of
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Γ p∞, is equal to |A| × τ2/2. Likewise, the second lineic density component is

Γ∞({(p, q) ∈ A×B : q = τ−2p})(55)

≤ Γ∞({(p, q) : p ∈ τ2B and q = τ−2p}) = τ2|B| × 1/2.

Summing (53)–(55) yields the desired result.

4.3. Proof of optimality. Now that we are equipped with Lemma 4.9,
we can at last prove Theorem 4.2. The measurable space we are going to
consider is the square {(p, q) ∈ (0, 1)2}, on which the σ-algebras A and B
will be the ones spanned by p resp. q, so that the A-measurable events are
those of the form A× (0, 1), while the B-measurable events are those of the
form (0, 1)×B; and the A-measurable functions are those of the form f(p),
while the B-measurable functions are those of the form g(q).

The probability measure P we are going to build on (0, 1)2 will be devised
so that both its p- and q-marginals are equal to the Lebesgue measure on
(0, 1), in order to simplify computations. The principle of the definition we
are now going to give is that the probability P—which we will call Γb—
coincides with Γ∞ in some neighborhood of (0, 0):

Definition 4.10. Take a parameter ε ∈ (0, 1). On (0, 1)2, we define the
probability measure Γb by

Γb(A×B) =



Γ∞(A×B) for A×B ⊂ (0, ε]× (0, ε],
|B|

1− ε
(
|A| − Γ∞(A× (0, ε])

)
for A×B ⊂ (0, ε]× (ε, 1),

|A|
1− ε

(
|B| − Γ∞((0, ε]×B)

)
for A×B ⊂ (ε, 1)× (0, ε],

|A| |B|
(1− ε)2

(
1− 2ε+ Γ∞((0, ε)2)

)
for A×B ⊂ (ε, 1)× (ε, 1).

(56)

(See Figure 4.)

We see that outside (0, ε]2, the measure Γb is absolutely continuous with
respect to the Lebesgue measure. For (p, q) ∈ (0, ε]× (ε, 1), we can compute
the density of Γb to be

(57)
dΓb(p, q)

dp dq
=

{
0 if p ≤ τ2ε,
(1− τε1/2/(2p1/2))/(1− ε) if p > τ2ε.

So, provided ε was chosen so that ε ≤ τ/2—which we will assume from now
on—that density is bounded by 1 on the whole set (0, ε] × (ε, 1), and thus,
using the symmetry of Γb under switching p and q, also on (ε, 1) × (0, ε].
Moreover, for (p, q) ∈ (ε, 1) × (ε, 1) we compute that the density of Γb at
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ε

Fig. 4. A schematic representation of the measure Γb

(p, q) is

(58)
dΓb(p, q)

dp dq
=

1− 2ε+ τε

(1− ε)2
.

Now let us consider A,B ⊂ (0, 1). We denote A1 := A ∩ (0, ε] and A2 :=
A ∩ (ε, 1), B1 := B ∩ (0, ε], B2 := B ∩ (ε, 1). Using the above density com-
putations, we obtain Γb(A1 × B2) ≤ |A1| |B2| and Γb(A2 × B1) ≤ |A2| |B1|.
Thus, splitting A×B into A1 ×B1 ∪A1 ×B2 ∪A2 ×B1 ∪A2 ×B2, we get

Γb(A×B)− |A| |B| ≤ Γb(A1 ×B1)− |A1| |B1|+ Γb(A2 ×B2)− |A2| |B2|

(59)

≤ τ |A1|1/2|B1|1/2 +
τε− ε2

(1− ε)2
|A2| |B2|,

where the second inequality using simultaneously Lemma 4.9, nonnegativity
of |A1| |B1|, and the value of the density of Γb on (ε, 1)2.

Our goal is to prove that for P = Γb, one has τ ′(A,B) ≤ τ1 (where τ1 > τ
is the arbitrary number which was fixed in the statement of Theorem 4.2).
In other words, we want to show that
(60)
∀A,B ⊂ (0, 1)

∣∣Γb(A×B)−|A| |B|
∣∣ ≤ τ1|A|1/2|B|1/2(1−|A|)1/2(1−|B|)1/2.

First, we notice that it suffices to prove (60) with no absolute value on the
left-hand side:
(61)
∀A,B ⊂ (0, 1) Γb(A×B)−|A| |B| ≤ τ1|A|1/2|B|1/2(1−|A|)1/2(1−|B|)1/2;

indeed, if one replaces B by its complement Bc := (0, 1) r B, the left-hand
side of (61) just changes sign while the right-hand side remains unchanged.
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It is even sufficient to prove (61) only for |A| ≤ 1/2, since none of the sides
of (61) changes when one replaces simultaneously A by Ac and B by Bc.
Therefore, from now on we will assume that |A| ≤ 1/2. But then (61) is
automatic for |B| ≥ 1/(1 + τ2

1 ), since in that case

Γb(A×B)− |A| |B| ≤ Γb(A× (0, 1))− |A| |B| = |A|(1− |B|)
≤ |A|1/2(1− |A|)1/2 × τ1|B|1/2(1− |B|)1/2.

So, it will be enough to prove (61) for |A| ≤ 1/2 and |B| ≤ 1/(1 + τ2
1 ).

We start from (59):

(62) Γb(A×B)− |A| |B| ≤ τ |A1|1/2|B1|1/2 +
τε− ε2

(1− ε)2
|A2| |B2|.

Our goal is to bound above the right-hand side of (62) by some multiple of
|A|1/2|B|1/2(1 − |A|)1/2(1 − |B|)1/2. Recall that A1 := A ∩ (0, ε] and B1 :=
B ∩ (0, ε], so that |A1|, |B1| ≤ ε. First we have

|A1|1/2 ≤ |A1|1/2
(1− |A1|)1/2

(1− ε)1/2
≤ (1− ε)−1/2|A|1/2(1− |A|)1/2,

where the second inequality comes from the fact that |A1| ≤ |A| and that
p 7→ p1/2(1− p)1/2 is increasing on [0, 1/2]. Similarly, provided ε was chosen
small enough,

|B1|1/2 ≤ |B1|1/2
(1− |B1|)1/2

(1− ε)1/2
≤ (1− ε)−1/2(|B| ∧ ε)1/2(1− |B| ∧ ε)1/2

≤ (1− ε)−1/2|B|1/2(1− |B|)1/2,

where the last inequality is a consequence of the fact that ε1/2(1 − ε)1/2 ≤
q1/2(1 − q)1/2 for all q ∈ [ε, 1 − ε], hence for all q ∈ [ε, 1/(1 + τ2

1 )] provided
ε ≤ τ2

1 /(1 + τ2
1 ) (which we will assume from now on). Next,

|A2| ≤ |A| ≤ |A|1/2(1− |A|)1/2

(using again that |A| ≤ 1/2), and similarly

|B2| ≤ |B| ≤ τ−1
1 |B|

1/2(1− |B|)1/2.

Putting the previous bounds into (62), we find that for all A,B such that
|A| ≤ 1/2, |B| ≤ 1/(1 + τ2

1 ) (and provided ε was chosen small enough),

(63)

Γb(A×B)−|A| |B| ≤
(

τ

1− ε
+

ετ − ε2

τ1(1− ε)2

)
|A|1/2|B|1/2(1−|A|)1/2(1−|B|)1/2.

The numerical factor on the right-hand side of (63) tends to τ as ε↘ 0, so
it is actually ≤ τ1 provided ε was chosen small enough. In the end we have
proved that for P = Γb, one has τ ′(A,B) ≤ τ1.
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To end the proof of Theorem 4.2, it remains to show that ρ(A,B) ≥
τ(1− log τ). That will be easier, as it suffices to find A- resp. B-measurable
L2 r.v. X and Y such that |Cov(X,Y )|/Var(X)1/2 Var(Y )1/2 is arbitrarily
close to τ(1− log τ). To do that, we take l ∈ (0, ε) and we set

X := 1l≤p≤εp
−1/2, Y := 1l≤q≤εq

−1/2.

Since both p- and q-marginals of Γb are equal to the Lebesgue measure, we
have E(X) = E(Y ) = 2ε1/2 − 2l1/2 and E(X2) = E(Y 2) = log ε − log l,
whence Var(X),Var(Y ) ∼ |log l| as l ↘ 0. On the other hand, XY is zero
outside (0, ε]2, so by the structure of Γb we have

E(XY ) =
�
1l≤p,q≤εp

−1/2q−1/2 dΓ∞(p, q).

According to the structure of Γ∞, we compute that quantity to be equal to

E(XY ) = τ(log τ log l − log τ log ε− log2 τ − log l + 2 log τ + log ε)

∼l↘0 τ(1− log τ)|log l|.
(In our computation we assumed that l ≤ τ4ε.) So, when l↘ 0, the Pearson
correlation betweenX and Y tends to τ(1−log τ). This shows that ρ(A,B) ≥
τ(1− log τ), thus ending the proof of Theorem 4.2.
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