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Hitting distributions of geometric Brownian motion
by

T. ByczkowskI and M. RyzNAR (Wroctaw)

Abstract. Let 7 be the first hitting time of the point 1 by the geometric Brownian
motion X (t) = xexp(B(t) — 2ut) with drift g > 0 starting from = > 1. Here B(t) is the
Brownian motion starting from 0 with EB?(t) = 2t. We provide an integral formula for the
density function of the stopped exponential functional A(7) = Sg X?(t) dt and determine
its asymptotic behaviour at infinity. Although we basically rely on methods developed in
[BGS], the present paper covers the case of arbitrary drifts ;1 > 0 and provides a significant
unification and extension of the results of the above-mentioned paper. As a corollary we
provide an integral formula and give the asymptotic behaviour at infinity of the Poisson
kernel for half-spaces for Brownian motion with drift in real hyperbolic spaces of arbitrary
dimension.

1. Introduction. In this paper, B(t) will denote the Brownian motion
starting from 0 and normalized so that FB2(t) = 2t. Note that this normal-
ization is different from the standard one (i.e. EB?(t) = t). The reason for
this choice is that after subordination (see Section 5) we want to obtain the
appropriate version of the Poisson kernel for a half-space in H"™. As a result,
some formulas (e.g., in Lamperti’s representation, in this section, or (5), in
the Preliminaries) will have a different scaling than in the standard setup.

Now, consider the following linear SDE:
dX(t) = X(t)dB(t) — (2u— D)X (t)dt, X(0)=z>0, p=>0.
The strong unique non-exploding solution is given by
X(t) =z exp(B(t) — 2ut).

The process {X (t); t > 0} is called a geometric Brownian motion or erpo-
nential Brownian motion and along with the additive functional from the
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process X (1),

A (t) = SX2(’U) dv = S 2exp2(B(s) — 2us) ds,
0 0

it is of primary interest in mathematical finance and insurance theory (see,
e.g., [D], [GY] or [Y2]). Also there is a connection of the above functional
with the Brownian motion in hyperbolic half-spaces (see, e.g., [Y2], [AG],
[BCF], [BCFY] and Section 5).

The distribution of A(t) for fixed 0 < ¢ < oo has been a subject of
study in a substantial number of papers (see, e.g., [B], [Y2], [AG], [M]).
In this paper we investigate the properties of the density function g, of
the (stopped) additive functional Aj;(7) where 7 is the first hitting time of
the point 1 by the process X(¢) (starting from = > 1). From the strong
Markov property it easily follows that the distribution of A,(7) is closely
related to the distribution of A;(c0). The latter is astonishingly simple; it
is identical with the distribution of the random variable z%?/4Z, where Z
is a I'(p1, 1)-distributed random variable (with the density I'(p) tut~te™%).
This fundamental result is due to D. Dufresne [D] (see also [Y1], [Y2]) and is
of primary importance here. Knowing the Laplace transform of A,(occ) one
can easily derive (via the strong Markov property) the form of the Laplace
transform of the random variable A;(7) as a suitable ratio of Bessel functions.
For the reader’s convenience we present this argument in the Preliminaries.

On the other hand, the distributions of A,(7) and A;(cc0) are closely
related to hitting times of Bessel processes. The main fact here is Lamperti’s
representation which states that there exists a Bessel process R(~*) with in-
dex —p, starting from x > 1, such that the process X (¢) admits the following
representation (see |L] and Exercise (1.28), Ch. XI, in |[RY]):

X(t) = R©M (24,(t)), t>0.

We refer the reader to [RY] for an account of Bessel processes (see also
[GJY]). From the Lamperti representation it follows immediately that A, (7)
and A, (o0) can be regarded as hitting times of 1 and 0, respectively, of the
Bessel process R(—H) starting from 2 > 1. Also it is possible to relate Agz(T)
and A,(oc0) to last exit times for appropriate Bessel processes. There is a
vast literature on that subject. Such hitting or last exit times were studied
by Getoor |G|, Getoor—Sharpe [GS], Kent [K1]-[K3| and Pitman-Yor [PY].
A useful summary of the last paper is contained in [PY1]. Let us remark
that most of the results in these papers (especially in [K1]-[K3]) are devoted
to what Kent calls “left-hitting times” 7., for some Bessel processes (more
generally diffusions) starting at a and hitting b, with 0 < a < b < oo. Dis-
tributions of left-hitting times are very regular; in particular they have all
moments, which makes it possible to work with their moment generating
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functions. Densities of these distributions were represented by Kent as se-
ries with exponential components (Theorem 6.1 in [K2]). In contrast, we are
dealing with the so-called “right-hitting times” 73, which are much less reg-
ular. In particular, we prove in Section 4 that the densities of right-hitting
times have precise asymptotics of order t~#~! for x> 0, so they only have
moments of order less than y. Kent’s representation does not cover this case.

Let us also remark that in Getoor [G], Kent [K1] and Getoor-Sharpe
|GS] the Laplace transform of the distribution of A,(7) is derived as a ratio
of Bessel functions (see Preliminaries). For an exhaustive discussion on that
subject we refer to [GJY].

Our main focus in this paper is to provide an integral formula for the
density of A,(7) (see Theorem 3.3). In the case u = 1/2 this density is
well known to be the 1/2-stable subordinator. Getoor in [G] writes that it is
possible to obtain an explicit form of the density for u = 3/2 but he provides
neither a formula nor any details on that.

At this point let us mention that various ratios of Bessel functions have
been proved to be completely monotonic functions, hence they are Laplace
transforms of probability distributions (see Ismail [I1], [12], Ismail-Kelker
[IK], Kent [K1]). For a survey on this theme see Pitman and Yor [PY] and
also [GY]. Regarding the ratio considered in our paper, Ismail and Kelker
[IK] showed by purely analytical methods that it is an infinitely divisible
distribution.

The main purpose of the paper is to obtain a representation for the den-
sity function g, of the functional A, (7) along with its asymptotic properties,
for arbitrary drift terms p > 0. Then we apply these results to derive an in-
tegral representation of the Poisson kernel for subspaces of real hyperbolic
spaces, for hyperbolic Brownian motion with arbitrary drift, which extends
and simplifies the results and proofs from [BGS].

The paper is organized as follows. In the Preliminaries we collect basic
information needed in the following.

In Section 3 we obtain a representation of the density of the functional
Az (7). For this purpose we extend to arbitrary drifts g > 0 the integral
representation given in [BGS| for a ratio of Bessel functions.

In Section 4 we exhibit the exact asymptotics of the density of A,(7) at
infinity for all drifts 4 > 0. Again, we essentially follow the idea of [BGS].
However, applying more direct probabilistic arguments, we are able to sim-
plify our presentation considerably, as well as cover the case of arbitrary
drifts p > 0.

In Section 5 we show how to apply the results obtained in the preceding
sections to obtain a representation and asymptotic properties of the Poisson
kernel on subspaces of real hyperbolic spaces of arbitrary dimension, for hy-



22 T. Byczkowski and M. Ryznar

perbolic Brownian motion with drift. Some of these asymptotic properties
were studied in [BCF] for dimension 2, where it was shown that the distri-
bution of the Poisson kernel belongs to the stable domain of attraction. Our
asymptotic results may be viewed as an extension of those in [BCF|. For a
related result see also [BCFY].

2. Preliminaries. Let 0 < a < x and let 7, be the first hitting time of
the point a by the geometric Brownian motion with drift >0 starting at x:

7o = Iinf{t > 0: xexp(B(t) — 2ut) = a}.
Then 7, < 0o a.e. since inf;~o B(t) = —oc.
Further, define
t
Ay (t) = 22 S exp 2(B(s) — 2us) ds.
0
By the strong Markov property of Brownian motion we obtain

Basic relationship (for g1 > 0). Observe that 22 exp 2(B(7,) — 2uT,) = a2,
hence
o0

(1)  Ag(oco) = 22 Sa exp 2(B(s) — 2us) ds + 2> S exp 2(B(s) — 2us) ds
0 Ta

= Ay(1a) + 22 exp2(B(1,) — 2u7a) S exp 2(B(s 4 74) — B(14) — 2us) ds
0

= Ax(7a) + A:z(oo)a

where A/ (c0) is a copy of A,(00), independent of A, (7).
The relation (1) can also be rewritten as follows:

a2
(2) Ag(o0) = Ag(Ta) + 22 A;(oo)

The precise meaning of (2) is that the distribution of A, (co) is self-
decomposable (see, e.g., [Sa]). This relation is of prime importance when
computing the asymptotic behaviour of the density function of A, (7,) in
Section 4.

Dufresne [D] (see also Getoor [|G], Kent [K1], Getoor-Sharpe [GS], where
the result is given in the context of Bessel processes) showed that the density
and the Laplace transform of A;(co) are

92 o—1/4t
(3) h’/l(t) = F(,U/) t1+u 9
-7 o0 r 2 H
(4) Be-r i) _ o (1/2) Ku(r), p>0.
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From this, the formula (2), and the scaling property: A, (c0) = x2A;(00),
one immediately obtains, by elementary properties of the Laplace transform,

(5) Fe—r*Aa(ra) _ <§>“§ZEZ;

where K, is the modified Bessel function of second type with index .
The above Laplace transform appears in many papers (see, e.g., Kent [K1],
Getoor-Sharpe [GS], Ismail-Kelker [IK]); here we followed the derivation
from [BCF].

From the continuity of both sides of (5) with respect to > 0 we infer
that the above formula remains valid also for p = 0.

Let us remark that for ;1 = 0 the right-hand side of (5) also gives the
classical formula ([S]) for the Laplace transform of Brownian motion hitting
time T, of the circle centred at 0 with radius a in R? from the point y € R?
such that |y| = x > a.

From (5) it follows directly that for ¢ > 0 we have

Atr (thz) i tQAw(Ta)a

where < denotes equality of distribution.

Therefore, from now on we may and do assume that a =1 and z > 1 is
fixed. We write 7 instead of 71, and A(7), A(co) instead of A (71), Az(00),
respectively.

We conclude this section with the following technical lemma:

LEMMA 2.1. For s > 0 we have

fe’e) 2542
(6) [ e v/ (1/22) dt = %
0 (A% +y?)°
Proof. Indeed,
Te*y2/4teﬂ2/4t N A ogoe*(y%v)/zu dt/(y* + \?)
) t1+s (A2 + 2)s ) (t/(y2 + A2))1+s
925 \25+2 o0 22SF(S))\2S+2
2 2\s S 2 2\s
(A2 +y2)* 3 (A +97)

Throughout the paper we use the following convention: by ¢, C' we al-
ways denote non-negative constants which may depend on other constant
parameters only. The value of ¢ or C may change from line to line in a chain
of estimates.

The notation p(u) ~ q(u), u — up means that ¢/p — 1 as u — wuy.

3. Representation of the density of A(7). In this section we give a
representation formula for the density function of the functional A(7), for
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arbitrary pu > 0, where 7 is the hitting time introduced in the preceding
section.

We begin by stating a more general version of a lemma from [BGS]|. The
proof is identical and is omitted.

LEMMA 3.1. Let u >0 and A = x — 1. Suppose that
A
2
— (WP 1/4) 2> C.
Q) =z— (" —1/4) 5, z€
Define Fy(z) by
2Nl K, (v2) — 27 2Q(2) K, (2)

7 )\F)\ Z) =
(7 (%) 0
Then
(8) R(z) =0(z""), z— o0,
and there exists a function wy such that
(9) Fa(z) = | e ™ wa(v)dv,  R(z) > 0.
0
Moreover,
(10) V2 —1/4) /22 = S w) (v) dv,
0
and, for p>1/2,
(11) 2aH 12 = S kw)(v) dv,
0

where = K(v) = (A+v)2 = A2 =02\ +v).
For 1 = 1/2 we have F)\(z) = 0.
An explicit formula for the function wy will be provided later on.
The following formula is crucial for our considerations:

LEMMA 3.2. Let ¢ : [0,00) — RT belong to L'(0,00) and suppose that
its Laplace transform @ has the following property:

t7125(t) € L0, 0).
Then

(12) | 3(r%) cos(ry) dr = v/m/2 | e V" /Hp(t) —.
0 0 \/E
Proof. Let A be a random variable with absolutely continuous distribu-
tion with the density function ¢ and let B(t) be Brownian motion starting
from 0 (such that EB?(t) = 2t), independent of A. It is easy to see that the
value of the Laplace transform of A at the point 72, that is, $(r?), is equal
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to the Fourier (or cosine) transform of B(A) at the point 7. Observe that our
assumption ensures that this Fourier transform belongs to L'(0, 00). Thus,
the left-hand side of (12) is the inversion formula applied for the Fourier
transform and gives the density of B(A). The right-hand side results from
the direct computation of this density, taking into account the independence
of B and A and the particular form of the (gaussian) density of B(t). m

We are ready to state our representation formula for the density function
of A(T).
THEOREM 3.3. Let q, denote the density function of A(t). Then for
© > 0 we have
—N\2/4¢ [ele]
(37“*1/2/215 + S (e /4 — 1wy (v) dv),
0
where k = k(v) = (A +v)2 = A2 =v(2A+v), and A =z — 1. For u > 1/2 we
have

(14) qu(t) = A

(&

(13) qu(t) = A

e~ A?/4t © Jat

e I — 1+ k/4t)wy(v) do.

Proof. The proof relies on an application of the formula (12) to the func-
tion

_ Ky(zr)
2 p
pre) = =t
Kyu(r)
Note that by (7) and (10) it follows that
K
rat Igfgj;) = e VARN(r) + e Mt 2Q(r)
= e Mph2p 4 e ANE (1) — e Mt Y212 — 1/4)N /22
= e M gh 2 4 \e™ S (e = Dwy(v) dv.
0

We recall that Q(r) = r — (u? — 1/4)A/2z and F)\(r) = {" e " wy(v) dv. To
simplify the proof we set

[e’e} d #
wf(v) =— S wy(v)dv, that is, wji‘v(v) = wy(v).
Then by integration by parts we obtain
(e = Dwsw)dv = (e = Dw] )5+ | e w] (v) dv
0 0

=r S e_”’wf\%(v) dv.
0
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Thus, the left-hand side of (12) is now of the form

S rat Ku(:m") cos(ry)/r dr
0 u(r)
= M 1/2 S " cos ry) T+ S )\e_)‘r< S (e—rv_l)w)\<v) d'l}) COS(Ty)/T dr
0 0 0
= gh—1/2 S e " cos(ry) dr + S )\e_)‘r< S 641)@0}%(”) dv) cos(ry) dr
0 0 0

= HV(y) + HP (y) = Hu(y).

Using the standard formula for the Laplace transform of the cosine func-
tion we obtain
T Ot vl

A
, HP(y) =2\ 2 do.
Erge W) §)(A+v)2+y2 °

Hence by (6) (applied for s = 1), (10) and (11) we obtain
gh=12) T

—y?/4t ,—A2 /4t ﬂ
92 S (& e 2

1 —1/2
HO (y) = 2

1
H )(y) =
0

Analogously, for H, ELQ) we obtain

HO () = 2 e‘“/‘”(oﬂo (A v)uf ()em i gy ) ?
0 0
j &
0

_2 [ oot
2
0

Observe now that
o0 d(_ef()\+v)2/4t)
S dv

e_()‘+”)2/4t) dt

i il
- wi (v) dv> .

wj‘\#(v) dv
0

d
= —6_(/\+U)2/4twf(v)\8°+ S —(A\4v)2/4t U’)\( )dv

5 dv

e_)‘2/4tw§’£(0) + S e_(’\+”)2/4tw>\(v)dv.
0
We also have
© dw? (v T
wf\#(O) =— S %dv =— S wy(v) dv.
0
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By the above identities and the form of H ,22) we obtain

Hl(f)(y) = %OSOB_Z/Q/LR(OSO(C_H/M — Dwy(v) dv) %
0 0

Combining the above identities we conclude that the left-hand side of
(12) takes the form

AT T dt
Ho(y) = 2 S o~ V2 /At =22 /4t (xu71/2/2t i S(efn/mt ~ 1w (v) dv)7.
0 0

Taking into account the right-hand side of (12) and continuity of g, with
respect to t (see properties of wy below), we obtain (13). When p > 1/2,
then using (11) we obtain (14). =

Below we give a description of the function wy. We rely on the results of
[BGS]. The formulas depend on the zeros of K,(2).

Even if in general these zeros are not given explicitly, we are able to prove
some important properties (like boundedness or asymptotics) of w)y, which
are essential in applications. Moreover, for some values of p we do provide
explicit formulas (see Corollary 3.5).

The function 2#K,(z) extends to an entire function when p —1/2 is an
integer, and has a holomorphic extension to C\ (—o0, 0] when g —1/2 is not
an integer. Denote the set of zeros of K,,(z) by Z = {z1,..., 2, }. We recall
some information about these zeros (cf. |E, p. 62]). We have k, = p — 1/2
when ©—1/2 € N. For p—1/2 ¢ N, k,, is the even number closest to —1/2.
In particular, k, = 0 for 0 < 1 < 3/2, and k, = 2 for p = 2 and 3. The
functions K, and K, 1 have no common zeros.

As in [BGS], we need an additional notation to describe the function wy.
For p > 0 define

k
ot Oz R (2z)
)\ i1 Ku_l(zi)

When p+1/2 ¢ N and p > 0 we define
oM

(16)  war(v) = —cos(mp) Y

% S Ty (zu) Ky(u) — 1y (u) Ky (wu)
5 cos?(mp) K2(u) + (w1 (u) + sin(mp) K, (u))?

We now formulate our representation theorem for the function w). The
proof of the main part is the same as in [BGS] and is omitted; we only show
the asymptotic properties of wy ). For = 0 this is new; the behaviour for
p = (n —1)/2 was shown in [BGS|. Nevertheless, we present a new and
unified proof based on Tauberian theorems.

zZiv

(15) wi A (v) =

[e.e]
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THEOREM 3.4. Let A\=x—1> 0. In the case p—1/2 € N,
wa(v) = wi(v),
while in the case p—1/2 ¢ N,
wx(v) = wy \(v) + wa i (v).
Moreover, sup,q |wx(v)| < oo, and

—cos(rpwaa(v) 20, v=0  (u—1/2¢ N);

[e.9]

Svk\w17>\(v)|dv<oo, E=1,2,...;
0
lim Ukwl,)\(v) =0, k=12,...;
vV—00
, — r2u+2) 2% -1
lim o2 +2 _ Zcos(mn) —1/2¢N, > 0);
vlglov ’UJZ)\(U) 22M_3F(M)F<M + 1) 2 (ﬂ / ¢ ) B> )7
1
lim (vlogv)?wy\(v) = —=<logz  for u = 0.
v—00 ’ 2
Proof. Define
Ty (zu) Ky (u) — Ty (u) Ky (zu) —u

17 h =
(7 pA (1) cos? (mp) K2 (u) + (mLu(u) + sin(mp) K, (u))?

Observe that the function h, \(u) is non-negative (1, (u)/K,(u) is increasing
for u > 0) and wy (v) is the Laplace transform of — cos(mu)%-hy, 5 at v. We
claim that for 4 — 0+ we have the following asymptotics for A, x:

xt C—/“ (1 — 2202+ for > 0,
(18) hua(u) = Cu

ulogz (logu)™
Applying Karamata’s Tauberian theorem (see, e.g., [Fe, Ch. XIII, 5, p. 422])
we find that

2 for = 0.

1/v
—1 _
lim wy ,\(v)( S by (u) du) = — cos(mn) I'(242u)x.
V—00 ’ 0 ’ A
This together with (18) implies
) - I2p+2) 2% —1
lim o20+2 _ —cos(mp) “1/2¢N, 4>0
ergoU ’UJZ)\(U) 22”_3F(M)F</L T 1) \ (ﬂ / ¢ N )7
1
lim (vlogv)?wy \(v) = —=logz, pu=0.
V—00 ’ 2\
To prove (18) we apply the following asymptotics. When u — 0 we have:
(19) Ty(u) = cput, Ky(u) = cu™

(20)  fo(u) =1+o0(1), Ko(u)=log(2/u)lo(u) + (1) + o(1),
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with ¢, = 27#/I'(u+1), ¢}, = 27" (1) and where ¢ is the Euler function.
Then

e/\“u_lhu,,\ (u)

_ Ly (zu) Ky (u) (1 _ IH(U)K#(QW))
K2(0) + (1, ()2 + 2 sin(mp) K(w) Tu(w) \ Lu(au) K, (u)

Au(zw) (0 Lu(w) Ky (zu)
¥ Kl (1 @(wum(u))

uH gt C—/” (1—272#) for u >0,
~ Cu
~ log

(logu)?

ExAmMPLES. To illustrate the representation theory developed so far we
write down explicit integral formulas for the density g, in some special cases
of p. All these formulas follow directly from Theorems 3.3 and 3.4. If 0 < p <
3/2 then wy = wy ) and the functions wy have constant sign. For = 0 and
p = 1 the function w) has a simpler form, which we exhibit here. If = 1/2
then F\ =0 and ¢, (t) reduces to the standard 1/2-stable subordinator. For
p+1/2 € N we have wy = wy ), and wy ) can be computed by calculating
residues of simple rational functions (see the formula for w; ) or calculations
in [BGS]). Again, we give the explicit form of wy for 4 = 3/2 and p = 5/2.

for y =0. m

COROLLARY 3.5. Let k = k(v) = (A +v)2 — A2 = v(2\ + v), where
A=z2—-1>0.If u=0 then

o 1 T IO(xU)K()(u) B Ko(acu)fo(u) —u\  —vu
—wy(v) = 5 é K200) + 2 2(u) u du,
6_)‘2/4t —1/2 T —rK/4t
alt) =2~ (()\ +1)7Y2 9 4 §(1 — eHY (—wy (v)) dv).
If w=1/2 then
e~ A7/t
q#(t) =A 2\/@
If =1 then
o A+1 T Il(ﬂj‘u)Kl(U) - Kl(xu)ll(u) —u\ —vu
0= 57 T v
e—)\2/4t o0
qu(t) = A S (e /% — 1 4 k/4t)wy (v) do.

vt o
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If w=3/2 then wy(v) = e " and

e_A2/4t T —k/4t —v
qu(t) = A T S(e — 14 k/4t)e” " dv.
0

If w=>5/2 then
wx(v) = 3¢ 322X + 1) cos(V3v/2) + V3sin(vV3v/2)],

e~ A?/4t © e/t
qu(t) = A N S (e — 1+ r/4t)wy(v) dv.
0

4. Asymptotic behaviour of A(7). In this section we prove the fol-
lowing

THEOREM 4.1. The density q,, of A(T) satisfies:
Jlim g, () =Cy if u>0,
— 00

lim (log t)tqu(t) =Co  if p=0,
—00
for some positive C,,.

The above theorem provides the following important information about
integrability of A(7):

COROLLARY 4.2. For p > 0 the following holds:
EAP(1T) < oo if and only if p < p.

REMARK. The above corollary can be stated equivalently in terms of
Bessel processes as follows: the first hitting time of level 1 for a Bessel process
with index —u, p > 0, starting at « > 1, has finite positive moments of order
p if and only if p < p.

The proof of Theorem 4.1 is contained in a series of lemmas.
LEMMA 4.3. Let i > 0. There exists a constant C' > 1 such that
CUm<PA(T)>t)<Ct™, t>1.
Proof. We write the basic formula (2) for the case we work with, that is,
when z > 1 and a = 1:
Ao0) = A(7) + 272 A'(c0).
We recall that A(o0), A(7) denote A, (c0), Ay(71), respectively, and, as be-
f

fore, A’(c0) is a copy of A(c0), independent of A(7). Applying the above
formula we obtain

P(A(00) > t) < P(A(T) > (1 — 2~ 1)t) + P(A(00) > xt),
which implies
(21) P(t < A(oo) < at) < P(A(T) > (1 —z~M)t).
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Moreover,
(22) P(A(1) > t) < P(A(c0) > t).
Now the lemma follows from (21) and (22) since P(A(c0) > t) ~ ct™# for
some ¢ >0 by (3). =
Recall that £ = k(v) = (A +v)? — A2, where A =2 — 1 > 0.
LEMMA 4.4. Let m € N be such that 2 <m < u+ 1/2. Then

: moo —kK /4t 1 K !
(23) tllglot S wy(v) <e /4t Z (—1) ilm dv
0 0<5<m—1

= (_ﬂoso/@mwA(v)dv—C’
= ' =C,,.
4mm) 5
Moreover, Cy,, =0 for2<m < pu+1/2, and Cp, >0 if m=p+1/2 € N.

Proof. Define

k 1 (k)
viem) =) (e - S ().
By elementary calculations,

|
0<j<m—1 J:
1/ k\’
—Kk/4t Y A
‘ 2. (1) j!(4t)

/ 1/ r\™

<—(=2) .
, — m!\ 4t
0<j<m—1

Hence
Klm
[9(t, m)| < wx(v) T

Under the assumption on m the function |wy(v)|x™ is integrable so the
formula (23) follows from the bounded convergence theorem.
Suppose that Cy, # 0 for some m with 2 < m < p+ 1/2, and set

mo=inf{m e N:2<m < pu+1/2, C,, # 0}
Then from the first part of the proof we have
lim ™0+ 2, () = Cppy > 0,
t—o0
which implies that
lim tm0=Y2P(A(T) > t) = Cyng(mo — 1/2) 1.
—00
From Lemma 4.3 we infer that C,,, > 0 if and only if mg — 1/2 = p. In
particular, we then have y+1/2 € N, and C,,, =0if m < p+1/2. =

REMARK. The above lemma shows, in particular, that for m € N, 2 <
m<p+1/2, .
S K™ wy (v) dv = 0.
0
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Thus, the representation formula for the density g, can be written for p >
1/2 as follows:

(24)  qu(t) = A jﬂ—/: | </ -2 % (ft)j)w(v) v,

0 0<5<!
where [ = [u+1/2] if p—1/2 ¢ N, and | = p — 1/2 otherwise.

We now prove our theorem.

Proof of Theorem 4.1. For p = 1/2 the density ¢, has a particularly
simple form (see Corollary 3.5) and the theorem clearly holds true. Hence,
we assume throughout the remainder of the proof that u # 1/2. Next, if
i — 1/2 € N then the remark above together with Lemma 4.4 yield our
theorem at once.

Thus, we assume that p—1/2 ¢ N and let | = [p + 1/2]. Define

I(t) = Oﬁowx(v)t““ﬂ (e“/‘“ - > (-1y . (%)J) dv.

il

0 0<j<
We prove that
(25) tlim It)y=C >0 if u>0,
(26) Jlim (log t)2It)=C>0 if u=0.

Applying the change of variable k = 4st we obtain

2t
v=+4st+ X2 -\, dv=—r—ds,

Vst + N2
S0 s .
s ;s
I(t) = | ¥a(s,t) <e - > (-1y ﬁ) ds,
0 0<j<i ‘
where
otit3/2
5,t) = wy(Vdst + A2 — \) ——.
w)\( ) /\( ) \/m
We claim that for >0 and ¢, s € R™ there is a constant C' > 0 such that
(27) [a(s, )] < Cs™ 002,
and for 4 =0 and t,s € R,
(28) (log t)2|1hx(s, )| < Cmax{1, (logs)?}s~3/2.

The above claims prove the relations (25) and (26). Indeed, consider first the
case i > 0. Then the absolute value of the integrand in I(¢) can be estimated
by the integrable function

Y
Cle™®— Z (—1)/ 5—' sTH73/2 < Cmin{1, s}sls™#3/2 = Cmin{1, s}s7071,



Hitting distributions of Brownian motion 33

where § = u+1/2—[p+1/2], 0 < § < 1. Then the proof of (25) is concluded
by letting ¢ — oo and using the asymptotics of w) (see Theorem 3.4).

Now, consider the case u = 0. Observe that the absolute value of the
integrand in (logt)2I(t) is estimated by the integrable function

Cmax{1, (logs)?}s™3/%|e™* — 1],

SO
00

1
_ 8% S (1—e%)s 32 ds.
0

lim (logt)*I(t) =
Jim (log ¢)°1(¢) = —3

Here we take into account

logxz  (log 75)2 logz
log t)*yx(s,t) ~ — =
(logt)“a(s, 1) 2\ 53/2(log st)? 2\s3/2’

by using the asymptotics of w)y (see Theorem 3.4).

t — o0,

Now we can conclude the proof of the asymptotic behaviour of ¢,(t) in
the case u — 1/2 ¢ N. Note that for 0 < p < 1/2 we have

t“*lq (t) - 6_)\2/475 (t“%u_1/2/2 + t}H‘l Oso(e—r{/élt _ 1)11))\(1)) d’l))
g vt o
—\2/4t
(&

=\ (1 2gh =12 19 4 1)) — AC/ /T,

where C' is the constant from (25). The same argument for ;1 = 0 shows that

(log t)*tqu(t) — AC/V/m,

where C' comes from (26). For p > 1/2 the asymptotics of g,(t) follows
directly from (25). =

We now justify our claims (27) and (28). We use the notation introduced
in the proof of the theorem.

LEMMA 4.5. If u > 0 there is ¢ > 0 such that
(s, 8)] < es 92,
For =0 there is C' > 0 such that
(log t)2|1hx(s, )| < Cmax{1, (logs)?}s~3/2.

Proof. Let p > 0. Since w), is bounded, for ts < 1 we have

tht3/2
[¥a(s, )] < sup [wa (v)]

—_— <
v>0 Vst + X2 T

For ts>1 we use the asymptotics of w) at co (see Theorem 3.4) to arrive at

W})\(S?t” < Ctu+3/2(3t)_:“_3/2 — CS_M_B/Q,

CsH3/2,
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For p = 0, again using the boundedness of w) we estimate for ts < 2:

£3/2
(s, )| < sup [wx(v)]

—_— <
v>0 Vst + 22 T

For ts > 2 we use the asymptotics of wy to get

03*3/2(10gt)2, 2 < ts </,
03_3/2, ts > \/t.
Next observe that for 2 < ts < v/t we have (logt)? < 4(logs)?2. =

5_3/2.

2 3/2,.—3/2 (logt)?
(o0 (s.1) < o 2(st) 92 L2 <

5. Hyperbolic Brownian motion with drift. Consider the half-space
model of the n-dimensional real hyperbolic space

H" = {(z1,...,Zn-1,2n) € R ! xR: xy > 0},
The Riemannian metric, the volume element and the Laplace—Beltrami op-
erator are given by
daf + -+ da?_| + da?

ds® = 5
‘Tn

)

JV — dry - -drn,—1dz,

)
n
xn

A :xiZ@f — (n —2)z,0n,
i=1

respectively (here 9; = 0/0x;, i =1,...,n). For p > 0let « = 2u —n + 1.
We also introduce the operator

A, =A—ar,d, =22 2812 — (20 — 1)z, 0.
i=1

Let (Bj(t))i=1,..n be a family of independent classical Brownian motions
on R with the generator % (and not %%), i.e. EOB2(t) = 2t. Then the
Brownian motion on H", X = (X;)i=1,.. n, can be described by the following
system of stochastic differential equations:

dX1(t) = Xp(t)dBi(t),
dXs(t) = Xn(t)dBa(t),

dXo(t) = Xp(t)dBn(t) — (n — 2) X, (t)dt.

More generally, if we replace n—2 by a+n—2 = 2u—1 then the corresponding
process will be called the Brownian motion on H" with drift a. By using the
It6 formula one verifies that the generator of the solution of this system
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is A,. Moreover, it can be easily checked that the solution is given by

Define the projection ~: R™ 3 u = (u1,...,up) — U = (u1,...,Uy_1) ER? L,
In particular, X (t) = (X1(¢),..., Xn—1(¢)). From the representation above
one may easily verify (e.g. by computing Fourier transforms) that

t

X i~ B 28 S, = U,
_me+BQX“)d> t>0

(29) X(1)

where B(t) = (Bi(t), ..., B,_1(t)) is an (n — 1)-dimensional Brownian mo-
tion independent of the process X,,(t). Consider a half-space D = {u € H" :
un, > a} for some fixed a > 0. To simplify the notation we choose a = 1.
Define

T=inf{t >0: X(t) ¢ D} =inf{t > 0: X,,(t) = 1}.

We denote by P (u,y), u = (ui,...,un) € D,y = (y1,...,Yn—1,1) € 0D the
Poisson kernel of D, i.e. the density of the distribution of X (7) starting at u
(since X, (7) = 1 it is enough to consider the distribution of X(7)). From
(29) it is obvious that

X(r) L%+ B(A(r)),

where the functional A(7) (starting from w, > 1) is independent of B(t). For
further considerations we may take u = 0 and uw, = x > 1, so the starting
point of the n-dimensional process X (-) is (0,...,0,z) € D. Since A(7) and
E(t) are independent, we have the following representation of the Poisson
kernel:

COROLLARY 5.1.
o

1 2 dt
Py(z,y) = (4m) 172 (S) e W/ g, (1) tn—1)/2"

Observe that for p = 1/2 the functional A(7) has the standard asym-
metric 1/2-stable distribution and the Poisson kernel is exactly the (n —1)-
dimensional Cauchy density, so in what follows, we consider p # 1/2.

Taking into account the formula (3) and Lemma 2.1 we obtain the fol-
lowing representation of the Poisson kernel of the set D:
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THEOREM 5.2. Set o = |y|. Let k = k(v) = (A + v)? — A2, where \ =
x—1>0. For 0 < p < 1/2 we have

rn/2—1) A
2n/2 ()\2 + Q2)n/2

Pl(‘rvy) =

o« [(n = 20 1z - | 2 )L#()\aQ,U)dv}
0

O+ 2+ 221

where L7 (X, o,v) is defined by

L# (X, 0,v) _ _< A2 + o? )”/H
(A2 + ) (A +v)2+?)"/>1 (A+v)2 402 '

For x> 1/2 we obtain

_ I(n/2-1) AT LA ov)dv
Pi(z,y) = 22 (A2 4 g2)n/2 §) (X + )2 + g2)n/2-1’

with L(\, 0,v) defined by

L(X, 0,v)
(A2 4+ 02)((A + )2 + g?)n/2-1

_ AN+ 0? n/271_1+ n_ g v(2X\ +v)
(A+v)?+0° 2 N2+ 0?

Proof. By (6) we obtain

OSO —0% /4t ,—N?/4t dt _ 22°I(s)
0 t1+s ()\2 + 92)5'

Applying the above formula (with different constants) to the three terms
appearing in the representation of g, we obtain

[e.9]

S 6_92/4t6_)‘2/4t dt _ 2"F(n/2)
0 751—{—71/2 ()\2 + Q2)n/2’
OSO —0%/4t —>\2/4t —k/4t dt _ 27172[‘(”/2 — 1)
0 tn/2 (()\ + U)2 + 92)n/2—1’

S 6792/4tei/\2/4t dt o 2"_2F(n/2 — 1)

n/2 2 2\n/2—1 °
0 tn/ (A2 + o)/

Taking into account appropriate constants, we obtain the formulas for the
Poisson kernel. =
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THEOREM b5.3.
lim ]y\””“_lPl(:c,y) =cu  p>0,

ly|—o0

lim (log|y)?y|" ' Pi(z,y) = co, p=0,

m
ly|—o0
for some positive c,,.

Proof. From Corollary 5.1, Theorem 4.1 and arguments presented in its
proof (boundedness of t**1¢,(¢) for u > 0 and of (logt)?q,(t) for u = 0) we
deduce that P;(z,y) has the same asymptotic behaviour (up to a positive
constant) as

oo o0

X t—l—u—(n—l)/2e—|y\2/4t dt — 22u+n—1’y’—2,u—n+1 S uPrtn=3)/2-u g,
0 0
for p > 0, and similarly for 4y =0. =
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