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Hitting distributions of geometri Brownian motionby
T. Byczkowski and M. Ryznar (Wroªaw)

Abstrat. Let τ be the �rst hitting time of the point 1 by the geometri Brownianmotion X(t) = x exp(B(t) − 2µt) with drift µ ≥ 0 starting from x > 1. Here B(t) is theBrownian motion starting from 0 with EB2(t) = 2t. We provide an integral formula for thedensity funtion of the stopped exponential funtional A(τ) =
Tτ
0

X2(t) dt and determineits asymptoti behaviour at in�nity. Although we basially rely on methods developed in[BGS℄, the present paper overs the ase of arbitrary drifts µ ≥ 0 and provides a signi�antuni�ation and extension of the results of the above-mentioned paper. As a orollary weprovide an integral formula and give the asymptoti behaviour at in�nity of the Poissonkernel for half-spaes for Brownian motion with drift in real hyperboli spaes of arbitrarydimension.1. Introdution. In this paper, B(t) will denote the Brownian motionstarting from 0 and normalized so that EB2(t) = 2t. Note that this normal-ization is di�erent from the standard one (i.e. EB2(t) = t). The reason forthis hoie is that after subordination (see Setion 5) we want to obtain theappropriate version of the Poisson kernel for a half-spae in H
n. As a result,some formulas (e.g., in Lamperti's representation, in this setion, or (5), inthe Preliminaries) will have a di�erent saling than in the standard setup.Now, onsider the following linear SDE:

dX(t) = X(t)dB(t) − (2µ− 1)X(t)dt, X(0) = x > 0, µ ≥ 0.The strong unique non-exploding solution is given by
X(t) = x exp(B(t) − 2µt).The proess {X(t); t ≥ 0} is alled a geometri Brownian motion or expo-nential Brownian motion and along with the additive funtional from the
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20 T. Byzkowski and M. Ryznarproess X(t),
Ax(t) =

t\
0

X2(v) dv =

t\
0

x2 exp 2(B(s) − 2µs) ds,it is of primary interest in mathematial �nane and insurane theory (see,e.g., [D℄, [GY℄ or [Y2℄). Also there is a onnetion of the above funtionalwith the Brownian motion in hyperboli half-spaes (see, e.g., [Y2℄, [AG℄,[BCF℄, [BCFY℄ and Setion 5).The distribution of Ax(t) for �xed 0 ≤ t ≤ ∞ has been a subjet ofstudy in a substantial number of papers (see, e.g., [B℄, [Y2℄, [AG℄, [M℄).In this paper we investigate the properties of the density funtion qµ ofthe (stopped) additive funtional Ax(τ) where τ is the �rst hitting time ofthe point 1 by the proess X(t) (starting from x > 1). From the strongMarkov property it easily follows that the distribution of Ax(τ) is loselyrelated to the distribution of Ax(∞). The latter is astonishingly simple; itis idential with the distribution of the random variable x2/4Z, where Zis a Γ (µ, 1)-distributed random variable (with the density Γ (µ)−1uµ−1e−u).This fundamental result is due to D. Dufresne [D℄ (see also [Y1℄, [Y2℄) and isof primary importane here. Knowing the Laplae transform of Ax(∞) onean easily derive (via the strong Markov property) the form of the Laplaetransform of the random variable Ax(τ) as a suitable ratio of Bessel funtions.For the reader's onveniene we present this argument in the Preliminaries.On the other hand, the distributions of Ax(τ) and Ax(∞) are loselyrelated to hitting times of Bessel proesses. The main fat here is Lamperti'srepresentation whih states that there exists a Bessel proess R(−µ) with in-dex −µ, starting from x > 1, suh that the proess X(t) admits the followingrepresentation (see [L℄ and Exerise (1.28), Ch. XI, in [RY℄):
X(t) = R(−µ) (2Ax(t)) , t ≥ 0.We refer the reader to [RY℄ for an aount of Bessel proesses (see also[GJY℄). From the Lamperti representation it follows immediately that Ax(τ)and Ax(∞) an be regarded as hitting times of 1 and 0, respetively, of theBessel proess R(−µ) starting from x > 1. Also it is possible to relate Ax(τ)and Ax(∞) to last exit times for appropriate Bessel proesses. There is avast literature on that subjet. Suh hitting or last exit times were studiedby Getoor [G℄, Getoor�Sharpe [GS℄, Kent [K1℄�[K3℄ and Pitman�Yor [PY℄.A useful summary of the last paper is ontained in [PY1℄. Let us remarkthat most of the results in these papers (espeially in [K1℄�[K3℄) are devotedto what Kent alls �left-hitting times� τab for some Bessel proesses (moregenerally di�usions) starting at a and hitting b, with 0 ≤ a < b < ∞. Dis-tributions of left-hitting times are very regular; in partiular they have allmoments, whih makes it possible to work with their moment generating



Hitting distributions of Brownian motion 21funtions. Densities of these distributions were represented by Kent as se-ries with exponential omponents (Theorem 6.1 in [K2℄). In ontrast, we aredealing with the so-alled �right-hitting times� τba, whih are muh less reg-ular. In partiular, we prove in Setion 4 that the densities of right-hittingtimes have preise asymptotis of order t−µ−1 for µ > 0, so they only havemoments of order less than µ. Kent's representation does not over this ase.Let us also remark that in Getoor [G℄, Kent [K1℄ and Getoor�Sharpe[GS℄ the Laplae transform of the distribution of Ax(τ) is derived as a ratioof Bessel funtions (see Preliminaries). For an exhaustive disussion on thatsubjet we refer to [GJY℄.Our main fous in this paper is to provide an integral formula for thedensity of Ax(τ) (see Theorem 3.3). In the ase µ = 1/2 this density iswell known to be the 1/2-stable subordinator. Getoor in [G℄ writes that it ispossible to obtain an expliit form of the density for µ = 3/2 but he providesneither a formula nor any details on that.At this point let us mention that various ratios of Bessel funtions havebeen proved to be ompletely monotoni funtions, hene they are Laplaetransforms of probability distributions (see Ismail [I1℄, [I2℄, Ismail�Kelker[IK℄, Kent [K1℄). For a survey on this theme see Pitman and Yor [PY℄ andalso [GY℄. Regarding the ratio onsidered in our paper, Ismail and Kelker[IK℄ showed by purely analytial methods that it is an in�nitely divisibledistribution.The main purpose of the paper is to obtain a representation for the den-sity funtion qµ of the funtional Ax(τ) along with its asymptoti properties,for arbitrary drift terms µ ≥ 0. Then we apply these results to derive an in-tegral representation of the Poisson kernel for subspaes of real hyperbolispaes, for hyperboli Brownian motion with arbitrary drift, whih extendsand simpli�es the results and proofs from [BGS℄.The paper is organized as follows. In the Preliminaries we ollet basiinformation needed in the following.In Setion 3 we obtain a representation of the density of the funtional
Ax(τ). For this purpose we extend to arbitrary drifts µ ≥ 0 the integralrepresentation given in [BGS℄ for a ratio of Bessel funtions.In Setion 4 we exhibit the exat asymptotis of the density of Ax(τ) atin�nity for all drifts µ ≥ 0. Again, we essentially follow the idea of [BGS℄.However, applying more diret probabilisti arguments, we are able to sim-plify our presentation onsiderably, as well as over the ase of arbitrarydrifts µ ≥ 0.In Setion 5 we show how to apply the results obtained in the preedingsetions to obtain a representation and asymptoti properties of the Poissonkernel on subspaes of real hyperboli spaes of arbitrary dimension, for hy-



22 T. Byzkowski and M. Ryznarperboli Brownian motion with drift. Some of these asymptoti propertieswere studied in [BCF℄ for dimension 2, where it was shown that the distri-bution of the Poisson kernel belongs to the stable domain of attration. Ourasymptoti results may be viewed as an extension of those in [BCF℄. For arelated result see also [BCFY℄.2. Preliminaries. Let 0 < a < x and let τa be the �rst hitting time ofthe point a by the geometri Brownian motion with drift µ≥0 starting at x:
τa = inf{t > 0 : x exp(B(t) − 2µt) = a}.Then τa <∞ a.e. sine inft>0B(t) = −∞.Further, de�ne

Ax(t) = x2
t\
0

exp 2(B(s) − 2µs) ds.By the strong Markov property of Brownian motion we obtainBasi relationship (for µ > 0). Observe that x2 exp 2(B(τa)−2µτa) = a2,hene
(1) Ax(∞) = x2

τa\
0

exp 2(B(s) − 2µs) ds+ x2
∞\
τa

exp 2(B(s) − 2µs) ds

= Ax(τa) + x2 exp 2(B(τa) − 2µτa)

∞\
0

exp 2(B(s+ τa) −B(τa) − 2µs) ds

= Ax(τa) +A′
a(∞),where A′

a(∞) is a opy of Aa(∞), independent of Ax(τa).The relation (1) an also be rewritten as follows:(2) Ax(∞) = Ax(τa) +
a2

x2
A′

x(∞).The preise meaning of (2) is that the distribution of Ax(∞) is self-deomposable (see, e.g., [Sa℄). This relation is of prime importane whenomputing the asymptoti behaviour of the density funtion of Ax(τa) inSetion 4.Dufresne [D℄ (see also Getoor [G℄, Kent [K1℄, Getoor�Sharpe [GS℄, wherethe result is given in the ontext of Bessel proesses) showed that the densityand the Laplae transform of A1(∞) are
hµ(t) =

2−2µ

Γ (µ)

e−1/4t

t1+µ
,(3)

Ee−r2A1(∞) = 2
(r/2)µ

Γ (µ)
Kµ(r), µ > 0.(4)



Hitting distributions of Brownian motion 23From this, the formula (2), and the saling property: Ax(∞) = x2A1(∞),one immediately obtains, by elementary properties of the Laplae transform,(5) Ee−r2Ax(τa) =

(
x

a

)µKµ(xr)

Kµ(ar)
,where Kµ is the modi�ed Bessel funtion of seond type with index µ.The above Laplae transform appears in many papers (see, e.g., Kent [K1℄,Getoor�Sharpe [GS℄, Ismail�Kelker [IK℄); here we followed the derivationfrom [BCF℄.From the ontinuity of both sides of (5) with respet to µ ≥ 0 we inferthat the above formula remains valid also for µ = 0.Let us remark that for µ = 0 the right-hand side of (5) also gives thelassial formula ([S℄) for the Laplae transform of Brownian motion hittingtime Ta of the irle entred at 0 with radius a in R
2 from the point y ∈ R

2suh that |y| = x > a.From (5) it follows diretly that for t > 0 we have
Atx(τta)

d
= t2Ax(τa),where d

= denotes equality of distribution.Therefore, from now on we may and do assume that a = 1 and x > 1 is�xed. We write τ instead of τ1, and A(τ), A(∞) instead of Ax(τ1), Ax(∞),respetively.We onlude this setion with the following tehnial lemma:Lemma 2.1. For s > 0 we have(6) ∞\
0

e−y2/4ths(t/λ
2) dt =

λ2s+2

(λ2 + y2)s
.Proof. Indeed,

∞\
0

e−y2/4te−λ2/4t λ
2s+2dt

t1+s
=

λ2s+2

(λ2 + y2)s

∞\
0

e−(y2+λ2)/4t dt/(y2 + λ2)

(t/(y2 + λ2))1+s

=
22sλ2s+2

(λ2 + y2)s

∞\
0

Γ (s)hs(u) du =
22sΓ (s)λ2s+2

(λ2 + y2)s
.Throughout the paper we use the following onvention: by c, C we al-ways denote non-negative onstants whih may depend on other onstantparameters only. The value of c or C may hange from line to line in a hainof estimates.The notation p(u) ≈ q(u), u→ u0 means that q/p→ 1 as u→ u0.3. Representation of the density of A(τ). In this setion we give arepresentation formula for the density funtion of the funtional A(τ), for



24 T. Byzkowski and M. Ryznararbitrary µ ≥ 0, where τ is the hitting time introdued in the preedingsetion.We begin by stating a more general version of a lemma from [BGS℄. Theproof is idential and is omitted.Lemma 3.1. Let µ ≥ 0 and λ = x− 1. Suppose that
Q(z) = z − (µ2 − 1/4)

λ

2x
, z ∈ C.De�ne Fλ(z) by(7) λFλ(z) =

zeλzxµKµ(xz) − xµ−1/2Q(z)Kµ(z)

Kµ(z)
.Then(8) Fλ(z) = O(z−1), z → ∞,and there exists a funtion wλ suh that(9) Fλ(z) =

∞\
0

e−zvwλ(v) dv, ℜ(z) > 0.Moreover ,(10) xµ−1/2(µ2 − 1/4)/2x =

∞\
0

wλ(v) dv,and , for µ > 1/2,(11) 2xµ−1/2 =

∞\
0

κwλ(v) dv,where κ = κ(v) = (λ+ v)2 − λ2 = v(2λ+ v).For µ = 1/2 we have Fλ(z) ≡ 0.An expliit formula for the funtion wλ will be provided later on.The following formula is ruial for our onsiderations:Lemma 3.2. Let ϕ : [0,∞) → R
+ belong to L1(0,∞) and suppose thatits Laplae transform ϕ̂ has the following property :

t−1/2ϕ̂(t) ∈ L1(0,∞).Then(12) ∞\
0

ϕ̂(r2) cos(ry) dr =
√
π/2

∞\
0

e−y2/4tϕ(t)
dt√
t
.Proof. Let A be a random variable with absolutely ontinuous distribu-tion with the density funtion ϕ and let B(t) be Brownian motion startingfrom 0 (suh that EB2(t) = 2t), independent of A. It is easy to see that thevalue of the Laplae transform of A at the point r2, that is, ϕ̂(r2), is equal



Hitting distributions of Brownian motion 25to the Fourier (or osine) transform of B(A) at the point r. Observe that ourassumption ensures that this Fourier transform belongs to L1(0,∞). Thus,the left-hand side of (12) is the inversion formula applied for the Fouriertransform and gives the density of B(A). The right-hand side results fromthe diret omputation of this density, taking into aount the independeneof B and A and the partiular form of the (gaussian) density of B(t).We are ready to state our representation formula for the density funtionof A(τ).Theorem 3.3. Let qµ denote the density funtion of A(τ). Then for
µ ≥ 0 we have(13) qµ(t) = λ

e−λ2/4t

√
πt

(
xµ−1/2/2t+

∞\
0

(e−κ/4t − 1)wλ(v) dv
)
,where κ = κ(v) = (λ+ v)2 −λ2 = v(2λ+ v), and λ = x− 1. For µ > 1/2 wehave(14) qµ(t) = λ

e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)wλ(v) dv.Proof. The proof relies on an appliation of the formula (12) to the fun-tion
ϕ̂(r2) = xµ Kµ(xr)

Kµ(r)
.Note that by (7) and (10) it follows that

rxµ Kµ(xr)

Kµ(r)
= e−λrλFλ(r) + e−λrxµ−1/2Q(r)

= e−λrxµ−1/2r + e−λrλFλ(r) − e−λrxµ−1/2(µ2 − 1/4)λ/2x

= e−λrxµ−1/2r + λe−λr
∞\
0

(e−rv − 1)wλ(v) dv.We reall that Q(r) = r− (µ2 − 1/4)λ/2x and Fλ(r) =
T∞
0 e−rvwλ(v) dv. Tosimplify the proof we set

w#
λ (v) = −

∞\
v

wλ(ν) dν, that is, dw#
λ (v)

dv
= wλ(v).Then by integration by parts we obtain

∞\
0

(e−rv − 1)wλ(v) dv = (e−rv − 1)w#
λ (v)|∞0 + r

∞\
0

e−rvw#
λ (v) dv

= r

∞\
0

e−rvw#
λ (v) dv.



26 T. Byzkowski and M. RyznarThus, the left-hand side of (12) is now of the form
∞\
0

rxµ Kµ(xr)

Kµ(r)
cos(ry)/r dr

= xµ−1/2
∞\
0

e−λr cos(ry) dr +

∞\
0

λe−λr
(∞\

0

(e−rv−1)wλ(v) dv
)

cos(ry)/r dr

= xµ−1/2
∞\
0

e−λr cos(ry) dr +

∞\
0

λe−λr
(∞\

0

e−rvw#
λ (v) dv

)
cos(ry) dr

= H(1)
µ (y) +H(2)

µ (y) = Hµ(y).Using the standard formula for the Laplae transform of the osine fun-tion we obtain
H(1)

µ (y) = xµ−1/2 λ

λ2 + y2
, H(2)

µ (y) = λ

∞\
0

(λ+ v)w#
λ (v)

(λ+ v)2 + y2
dv.Hene by (6) (applied for s = 1), (10) and (11) we obtain

H(1)
µ (y) =

xµ−1/2λ

22

∞\
0

e−y2/4te−λ2/4t dt

t2
.

Analogously, for H(2)
µ we obtain

H(2)
µ (y) =

λ

22

∞\
0

e−y2/4t
(∞\

0

(λ+ v)w#
λ (v)e−(λ+v)2/4t dv

) dt
t2

=
λ

2

∞\
0

e−y2/4t

(∞\
0

d(−e−(λ+v)2/4t)

dv
w#

λ (v) dv

)
dt

t
.

Observe now that
∞\
0

d(−e−(λ+v)2/4t)

dv
w#

λ (v) dv

= − e−(λ+v)2/4tw#
λ (v)|∞0 +

∞\
0

e−(λ+v)2/4t dw
#
λ (v)

dv
dv

= e−λ2/4tw#
λ (0) +

∞\
0

e−(λ+v)2/4twλ(v) dv.We also have
w#

λ (0) = −
∞\
0

dw#
λ (v)

dv
dv = −

∞\
0

wλ(v) dv.



Hitting distributions of Brownian motion 27By the above identities and the form of H(2)
µ we obtain

H(2)
µ (y) =

λ

2

∞\
0

e−y2/4t
(∞\

0

(e−κ/4t − 1)wλ(v) dv
)dt
t
.Combining the above identities we onlude that the left-hand side of(12) takes the form

Hµ(y) =
λ

2

∞\
0

e−y2/4te−λ2/4t
(
xµ−1/2/2t+

∞\
0

(e−κ/4t − 1)wλ(v) dv
)dt
t
.Taking into aount the right-hand side of (12) and ontinuity of qµ withrespet to t (see properties of wλ below), we obtain (13). When µ > 1/2,then using (11) we obtain (14).Below we give a desription of the funtion wλ. We rely on the results of[BGS℄. The formulas depend on the zeros of Kµ(z).Even if in general these zeros are not given expliitly, we are able to provesome important properties (like boundedness or asymptotis) of wλ, whihare essential in appliations. Moreover, for some values of µ we do provideexpliit formulas (see Corollary 3.5).The funtion zµKµ(z) extends to an entire funtion when µ− 1/2 is aninteger, and has a holomorphi extension to C \ (−∞, 0] when µ− 1/2 is notan integer. Denote the set of zeros of Kµ(z) by Z = {z1, . . . , zkµ

}. We reallsome information about these zeros (f. [E, p. 62℄). We have kµ = µ − 1/2when µ−1/2 ∈ N. For µ−1/2 /∈ N, kµ is the even number losest to µ−1/2.In partiular, kµ = 0 for 0 ≤ µ < 3/2, and kµ = 2 for µ = 2 and 3. Thefuntions Kµ and Kµ−1 have no ommon zeros.As in [BGS℄, we need an additional notation to desribe the funtion wλ.For µ > 0 de�ne(15) w1,λ(v) = −x
µ

λ

kµ∑

i=1

zie
λziKµ(xzi)

Kµ−1(zi)
eziv.When µ+ 1/2 /∈ N and µ ≥ 0 we de�ne

(16) w2,λ(v) = − cos(πµ)
xµ

λ

×
∞\
0

Iµ (xu)Kµ(u) − Iµ(u)Kµ(xu)

cos2(πµ)K2
µ(u) + (πIµ(u) + sin(πµ)Kµ(u))2

e−λue−vuu du.We now formulate our representation theorem for the funtion wλ. Theproof of the main part is the same as in [BGS℄ and is omitted; we only showthe asymptoti properties of w2,λ. For µ = 0 this is new; the behaviour for
µ = (n − 1)/2 was shown in [BGS℄. Nevertheless, we present a new anduni�ed proof based on Tauberian theorems.



28 T. Byzkowski and M. RyznarTheorem 3.4. Let λ = x− 1 > 0. In the ase µ− 1/2 ∈ N,
wλ(v) = w1,λ(v),while in the ase µ− 1/2 /∈ N,

wλ(v) = w1,λ(v) + w2,λ(v).Moreover , supv≥0 |wλ(v)| <∞, and
− cos(πµ)w2,λ(v) ≥ 0, v ≥ 0 (µ− 1/2 /∈ N);

∞\
0

vk|w1,λ(v)| dv <∞, k = 1, 2, . . . ;

lim
v→∞

vkw1,λ(v) = 0, k = 1, 2, . . . ;

lim
v→∞

v2µ+2w2,λ(v) =
− cos(πµ)Γ (2µ+ 2)

22µ−3Γ (µ)Γ (µ+ 1)

x2µ − 1

λ
(µ− 1/2 /∈ N, µ > 0);

lim
v→∞

(v log v)2w2,λ(v) = − 1

2λ
log x for µ = 0.Proof. De�ne(17) hµ,λ(u) =

Iµ(xu)Kµ(u) − Iµ(u)Kµ(xu)

cos2(πµ)K2
µ(u) + (πIµ(u) + sin(πµ)Kµ(u))2

e−λuu.Observe that the funtion hµ,λ(u) is non-negative (Iµ(u)/Kµ(u) is inreasingfor u > 0) and w2,λ(v) is the Laplae transform of − cos(πµ)xµ

λ hµ,λ at v. Welaim that for u→ 0+ we have the following asymptotis for hµ,λ:
(18) hµ,λ(u) ≈




xµ cµ

c′µ
(1 − x−2µ)u2µ+1 for µ > 0,

u log x (log u)−2 for µ = 0.Applying Karamata's Tauberian theorem (see, e.g., [Fe, Ch. XIII, 5, p. 422℄)we �nd that
lim

v→∞
w2,λ(v)

( 1/v\
0

hµ,λ(u) du
)−1

=
− cos(πµ)

λ
Γ (2 + 2µ)xµ.This together with (18) implies

lim
v→∞

v2µ+2w2,λ(v) =
− cos(πµ)Γ (2µ+ 2)

22µ−3Γ (µ)Γ (µ+ 1)

x2µ − 1

λ
(µ− 1/2 /∈ N, µ > 0),

lim
v→∞

(v log v)2w2,λ(v) = − 1

2λ
log x, µ = 0.To prove (18) we apply the following asymptotis. When u→ 0 we have:

Iµ(u) ≈ cµu
µ, Kµ(u) ≈ c′µu

−µ;(19)
I0(u) = 1 + o(1), K0(u) = log(2/u)I0(u) + ψ(1) + o(1),(20)



Hitting distributions of Brownian motion 29with cµ = 2−µ/Γ (µ+ 1), c′µ = 2µ−1Γ (µ) and where ψ is the Euler funtion.Then
eλuu−1hµ,λ(u)

=
Iµ(xu)Kµ(u)

K2
µ(u) + (πIµ(u))2 + 2π sin(πµ)Kµ(u)Iµ(u)

(
1 − Iµ(u)Kµ(xu)

Iµ(xu)Kµ(u)

)

≈ Iµ(xu)

Kµ(u)

(
1 − Iµ(u)Kµ(xu)

Iµ(xu)Kµ(u)

)

≈





u2µxµ cµ
c′µ

(1 − x−2µ) for µ > 0,
log x

(log u)2
for µ = 0.

Examples. To illustrate the representation theory developed so far wewrite down expliit integral formulas for the density qµ in some speial asesof µ. All these formulas follow diretly from Theorems 3.3 and 3.4. If 0 ≤ µ <
3/2 then wλ = w2,λ and the funtions wλ have onstant sign. For µ = 0 and
µ = 1 the funtion wλ has a simpler form, whih we exhibit here. If µ = 1/2then Fλ = 0 and qµ(t) redues to the standard 1/2-stable subordinator. For
µ + 1/2 ∈ N we have wλ = w1,λ, and w1,λ an be omputed by alulatingresidues of simple rational funtions (see the formula for w1,λ or alulationsin [BGS℄). Again, we give the expliit form of wλ for µ = 3/2 and µ = 5/2.Corollary 3.5. Let κ = κ(v) = (λ + v)2 − λ2 = v(2λ + v), where
λ = x− 1 > 0. If µ = 0 then

−wλ(v) =
1

λ

∞\
0

I0(xu)K0(u) −K0(xu)I0(u)

K2
0 (u) + π2I2

0 (u)
e−uλe−vuu du,

qµ(t) = λ
e−λ2/4t

√
πt

(
(λ+ 1)−1/2/2t+

∞\
0

(1 − e−κ/4t)(−wλ(v)) dv
)
.

If µ = 1/2 then
qµ(t) = λ

e−λ2/4t

2
√
πt3

.If µ = 1 then
wλ(v) =

λ+ 1

λ

∞\
0

I1(xu)K1(u) −K1(xu)I1(u)

K2
1 (u) + π2I2

1 (u)
e−uλe−vuu du,

qµ(t) = λ
e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)wλ(v) dv.



30 T. Byzkowski and M. RyznarIf µ = 3/2 then wλ(v) = e−v and
qµ(t) = λ

e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)e−v dv.If µ = 5/2 then
wλ(v) = 3e−3v/2[(2λ+ 1) cos(

√
3 v/2) +

√
3 sin(

√
3 v/2)],

qµ(t) = λ
e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)wλ(v) dv.

4. Asymptoti behaviour of A(τ). In this setion we prove the fol-lowingTheorem 4.1. The density qµ of A(τ) satis�es:
lim
t→∞

tµ+1qµ(t) = Cµ if µ > 0,

lim
t→∞

(log t)2tqµ(t) = C0 if µ = 0,for some positive Cµ.The above theorem provides the following important information aboutintegrability of A(τ):Corollary 4.2. For µ > 0 the following holds:
EAp(τ) <∞ if and only if p < µ.

Remark. The above orollary an be stated equivalently in terms ofBessel proesses as follows: the �rst hitting time of level 1 for a Bessel proesswith index −µ, µ > 0, starting at x > 1, has �nite positive moments of order
p if and only if p < µ.The proof of Theorem 4.1 is ontained in a series of lemmas.Lemma 4.3. Let µ > 0. There exists a onstant C > 1 suh that

C−1t−µ ≤ P (A(τ) > t) ≤ Ct−µ, t > 1.Proof. We write the basi formula (2) for the ase we work with, that is,when x > 1 and a = 1:
A(∞) = A(τ) + x−2A′(∞).We reall that A(∞), A(τ) denote Ax(∞), Ax(τ1), respetively, and, as be-fore, A′(∞) is a opy of A(∞), independent of A(τ). Applying the aboveformula we obtain

P (A(∞) > t) ≤ P (A(τ) > (1 − x−1)t) + P (A(∞) > xt),whih implies(21) P (t ≤ A(∞) ≤ xt) ≤ P (A(τ) > (1 − x−1)t).



Hitting distributions of Brownian motion 31Moreover,(22) P (A(τ) > t) ≤ P (A(∞) > t).Now the lemma follows from (21) and (22) sine P (A(∞) > t) ≈ ct−µ forsome c > 0 by (3).Reall that κ = κ(v) = (λ+ v)2 − λ2, where λ = x− 1 > 0.Lemma 4.4. Let m ∈ N be suh that 2 ≤ m ≤ µ+ 1/2. Then
(23) lim

t→∞
tm

∞\
0

wλ(v)

(
e−κ/4t −

∑

0≤j≤m−1

(−1)j 1

j!

(
κ

4t

)j)
dv

=
(−1)m

4mm!

∞\
0

κmwλ(v) dv = Cm.Moreover , Cm = 0 for 2 ≤ m < µ+ 1/2, and Cm > 0 if m = µ+ 1/2 ∈ N.Proof. De�ne
ψ(t,m) = tmwλ(v)

(
e−κ/4t −

∑

0≤j≤m−1

(−1)j 1

j!

(
κ

4t

)j)
.By elementary alulations,

∣∣∣∣e
−κ/4t −

∑

0≤j≤m−1

(−1)j 1

j!

(
κ

4t

)j∣∣∣∣ ≤
1

m!

(
κ

4t

)m

.Hene
|ψ(t,m)| ≤ |wλ(v)| κ

m

m!
.Under the assumption on m the funtion |wλ(v)|κm is integrable so theformula (23) follows from the bounded onvergene theorem.Suppose that Cm 6= 0 for some m with 2 ≤ m ≤ µ+ 1/2, and set

m0 = inf{m ∈ N : 2 ≤ m ≤ µ+ 1/2, Cm 6= 0}.Then from the �rst part of the proof we have
lim
t→∞

tm0+1/2qµ(t) = Cm0
> 0,whih implies that

lim
t→∞

tm0−1/2P (A(τ) > t) = Cm0
(m0 − 1/2)−1.From Lemma 4.3 we infer that Cm0

> 0 if and only if m0 − 1/2 = µ. Inpartiular, we then have µ+ 1/2 ∈ N, and Cm = 0 if m < µ+ 1/2.
Remark. The above lemma shows, in partiular, that for m ∈ N, 2 ≤

m < µ+ 1/2, ∞\
0

κmwλ(v) dv = 0.



32 T. Byzkowski and M. RyznarThus, the representation formula for the density qµ an be written for µ ≥
1/2 as follows:(24) qµ(t) = λ

e−λ2/4t

√
πt

∞\
0

(
e−κ/4t −

∑

0≤j≤l

(−1)j 1

j!

(
κ

4t

)j)
wλ(v) dv,where l = [µ+ 1/2] if µ− 1/2 /∈ N, and l = µ− 1/2 otherwise.We now prove our theorem.Proof of Theorem 4.1. For µ = 1/2 the density qµ has a partiularlysimple form (see Corollary 3.5) and the theorem learly holds true. Hene,we assume throughout the remainder of the proof that µ 6= 1/2. Next, if

µ − 1/2 ∈ N then the remark above together with Lemma 4.4 yield ourtheorem at one.Thus, we assume that µ− 1/2 /∈ N and let l = [µ+ 1/2]. De�ne
I(t) =

∞\
0

wλ(v)tµ+1/2

(
e−κ/4t −

∑

0≤j≤l

(−1)j 1

j!

(
κ

4t

)j)
dv.We prove that

lim
t→∞

I(t) = C > 0 if µ > 0,(25)

lim
t→∞

(log t)2I(t) = C > 0 if µ = 0.(26)Applying the hange of variable κ = 4st we obtain
v =

√
4st+ λ2 − λ, dv =

2t√
4st+ λ2

ds,so
I(t) =

∞\
0

ψλ(s, t)

(
e−s −

∑

0≤j≤l

(−1)j s
j

j!

)
ds,where

ψλ(s, t) = wλ(
√

4st+ λ2 − λ)
2tµ+3/2

√
4st+ λ2

.We laim that for µ>0 and t, s∈R
+ there is a onstant C > 0 suh that(27) |ψλ(s, t)| ≤ Cs−µ−3/2,and for µ = 0 and t, s ∈ R+,(28) (log t)2|ψλ(s, t)| ≤ Cmax{1, (log s)2}s−3/2.The above laims prove the relations (25) and (26). Indeed, onsider �rst thease µ > 0. Then the absolute value of the integrand in I(t) an be estimatedby the integrable funtion

C

∣∣∣∣e
−s−

∑

0≤j≤l

(−1)j s
j

j!

∣∣∣∣s
−µ−3/2 ≤ Cmin{1, s}sls−µ−3/2 = Cmin{1, s}s−δ−1,



Hitting distributions of Brownian motion 33where δ = µ+1/2− [µ+1/2], 0 < δ < 1. Then the proof of (25) is onludedby letting t→ ∞ and using the asymptotis of wλ (see Theorem 3.4).Now, onsider the ase µ = 0. Observe that the absolute value of theintegrand in (log t)2I(t) is estimated by the integrable funtion
Cmax{1, (log s)2}s−3/2|e−s − 1|,so

lim
t→∞

(log t)2I(t) =
log x

2λ

∞\
0

(1 − e−s)s−3/2 ds.Here we take into aount
(log t)2ψλ(s, t) ≈ − log x

2λ

(log t)2

s3/2(log st)2
≈ − log x

2λs3/2
, t→ ∞,by using the asymptotis of wλ (see Theorem 3.4).Now we an onlude the proof of the asymptoti behaviour of qµ(t) inthe ase µ− 1/2 /∈ N. Note that for 0 < µ < 1/2 we have

tµ+1qµ(t) = λ
e−λ2/4t

√
πt

(
tµxµ−1/2/2 + tµ+1

∞\
0

(e−κ/4t − 1)wλ(v) dv
)

= λ
e−λ2/4t

√
π

(tµ−1/2xµ−1/2/2 + I(t)) → λC/
√
π,where C is the onstant from (25). The same argument for µ = 0 shows that

(log t)2tqµ(t) → λC/
√
π,where C omes from (26). For µ > 1/2 the asymptotis of qµ(t) followsdiretly from (25).We now justify our laims (27) and (28). We use the notation introduedin the proof of the theorem.Lemma 4.5. If µ > 0 there is c > 0 suh that

|ψλ(s, t)| ≤ cs−µ−3/2.For µ = 0 there is C > 0 suh that
(log t)2|ψλ(s, t)| ≤ Cmax{1, (log s)2}s−3/2.Proof. Let µ > 0. Sine wλ is bounded, for ts ≤ 1 we have

|ψλ(s, t)| ≤ sup
v≥0

|wλ(v)| tµ+3/2

√
4st+ λ2

≤ Cs−µ−3/2.For ts≥1 we use the asymptotis of wλ at ∞ (see Theorem 3.4) to arrive at
|ψλ(s, t)| ≤ Ctµ+3/2(st)−µ−3/2 = Cs−µ−3/2.



34 T. Byzkowski and M. RyznarFor µ = 0, again using the boundedness of wλ we estimate for ts ≤ 2:
|ψλ(s, t)| ≤ sup

v≥0
|wλ(v)| t3/2

√
4st+ λ2

≤ Cs−3/2.For ts ≥ 2 we use the asymptotis of wλ to get
(log t)2|ψλ(s, t)| ≤ Ct3/2(st)−3/2 (log t)2

(log st)2
≤

{
Cs−3/2(log t)2, 2 ≤ ts ≤

√
t,

Cs−3/2, ts ≥
√
t.Next observe that for 2 ≤ ts ≤

√
t we have (log t)2 ≤ 4(log s)2.5. Hyperboli Brownian motion with drift. Consider the half-spaemodel of the n-dimensional real hyperboli spae

H
n = {(x1, . . . , xn−1, xn) ∈ R

n−1 × R : xn > 0}.The Riemannian metri, the volume element and the Laplae�Beltrami op-erator are given by
ds2 =

dx2
1 + · · · + dx2

n−1 + dx2
n

x2
n

,

dV =
dx1 · · · dxn−1dxn

xn
n

,

∆ = x2
n

n∑

i=1

∂2
i − (n− 2)xn∂n,respetively (here ∂i = ∂/∂xi, i = 1, . . . , n). For µ ≥ 0 let α = 2µ − n + 1.We also introdue the operator

∆µ = ∆− αxn∂n = x2
n

n∑

i=1

∂2
i − (2µ− 1)xn∂n.Let (Bi(t))i=1,...,n be a family of independent lassial Brownian motionson R with the generator d2

dx2 (and not 1
2

d2

dx2 ), i.e. E0B2
i (t) = 2t. Then theBrownian motion on H

n, X = (Xi)i=1,...,n, an be desribed by the followingsystem of stohasti di�erential equations:




dX1(t) = Xn(t)dB1(t),

dX2(t) = Xn(t)dB2(t),. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dXn(t) = Xn(t)dBn(t) − (n− 2)Xn(t)dt.More generally, if we replae n−2 by α+n−2 = 2µ−1 then the orrespondingproess will be alled the Brownian motion on H

n with drift α. By using theIt� formula one veri�es that the generator of the solution of this system



Hitting distributions of Brownian motion 35is ∆µ. Moreover, it an be easily heked that the solution is given by




X1(t) = X1(0) +

t\
0

Xn(t) dB1(s),

X2(t) = X2(0) +

t\
0

Xn(t) dB2(s),. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xn(t) = Xn(0) exp(Bn(t) − 2µt).De�ne the projetion ˜: R

n ∋ u = (u1, . . . , un) 7→ ũ = (u1, . . . , un−1)∈R
n−1.In partiular, X̃(t) = (X1(t), . . . , Xn−1(t)). From the representation aboveone may easily verify (e.g. by omputing Fourier transforms) that(29) X̃(t)

d
= X̃(0) + B̃

( t\
0

X2
n(s) ds

)
, t ≥ 0,

where B̃(t) = (B1(t), . . . , Bn−1(t)) is an (n− 1)-dimensional Brownian mo-tion independent of the proess Xn(t). Consider a half-spae D = {u ∈ H
n :

un > a} for some �xed a > 0. To simplify the notation we hoose a = 1.De�ne
τ = inf{t ≥ 0 : X(t) /∈ D} = inf{t ≥ 0 : Xn(t) = 1}.We denote by P1(u, y), u = (u1, . . . , un) ∈ D, y = (y1, . . . , yn−1, 1) ∈ ∂D thePoisson kernel of D, i.e. the density of the distribution of X(τ) starting at u(sine Xn(τ) = 1 it is enough to onsider the distribution of X̃(τ)). From(29) it is obvious that

X̃(τ)
d
= ũ+ B̃(A(τ)),where the funtional A(τ) (starting from un > 1) is independent of B̃(t). Forfurther onsiderations we may take ũ = 0 and un = x > 1, so the startingpoint of the n-dimensional proess X(·) is (0, . . . , 0, x) ∈ D. Sine A(τ) and

B̃(t) are independent, we have the following representation of the Poissonkernel:Corollary 5.1.
P1(x, y) =

1

(4π)(n−1)/2

∞\
0

e−|y|2/4tqµ(t)
dt

t(n−1)/2
.Observe that for µ = 1/2 the funtional A(τ) has the standard asym-metri 1/2-stable distribution and the Poisson kernel is exatly the (n− 1)-dimensional Cauhy density, so in what follows, we onsider µ 6= 1/2.Taking into aount the formula (3) and Lemma 2.1 we obtain the fol-lowing representation of the Poisson kernel of the set D:



36 T. Byzkowski and M. RyznarTheorem 5.2. Set ̺ = |y|. Let κ = κ(v) = (λ + v)2 − λ2, where λ =
x− 1 > 0. For 0 ≤ µ < 1/2 we have

P1(x, y) =
Γ (n/2 − 1)

2πn/2

λ

(λ2 + ̺2)n/2

×
[
(n− 2)(λ+ 1)µ−1/2 −

∞\
0

wλ(v)L#(λ, ̺, v) dv

((λ+ v)2 + ̺2)n/2−1

]
,

where L#(λ, ̺, v) is de�ned by
L#(λ, ̺, v)

(λ2 + ̺2)((λ+ v)2 + ̺2)n/2−1
= 1 −

(
λ2 + ̺2

(λ+ v)2 + ̺2

)n/2−1

.For µ > 1/2 we obtain
P1(x, y) =

Γ (n/2 − 1)

2πn/2

λ

(λ2 + ̺2)n/2

∞\
0

wλ(v)L(λ, ̺, v) dv

((λ+ v)2 + ̺2)n/2−1
,

with L(λ, ̺, v) de�ned by
L(λ, ̺, v)

(λ2 + ̺2)((λ+ v)2 + ̺2)n/2−1

=

(
λ2 + ̺2

(λ+ v)2 + ̺2

)n/2−1

− 1 +

(
n

2
− 1

)
v(2λ+ v)

λ2 + ̺2
.Proof. By (6) we obtain

∞\
0

e−̺2/4te−λ2/4t dt

t1+s
=

22sΓ (s)

(λ2 + ̺2)s
.

Applying the above formula (with di�erent onstants) to the three termsappearing in the representation of qµ we obtain
∞\
0

e−̺2/4te−λ2/4t dt

t1+n/2
=

2nΓ (n/2)

(λ2 + ̺2)n/2
,

∞\
0

e−̺2/4te−λ2/4te−κ/4t dt

tn/2
=

2n−2Γ (n/2 − 1)

((λ+ v)2 + ̺2)n/2−1
,

∞\
0

e−̺2/4te−λ2/4t dt

tn/2
=

2n−2Γ (n/2 − 1)

(λ2 + ̺2)n/2−1
.

Taking into aount appropriate onstants, we obtain the formulas for thePoisson kernel.
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lim

|y|→∞
|y|n+2µ−1P1(x, y) = cµ, µ > 0,

lim
|y|→∞

(log |y|)2|y|n−1P1(x, y) = c0, µ = 0,for some positive cµ.Proof. From Corollary 5.1, Theorem 4.1 and arguments presented in itsproof (boundedness of tµ+1qµ(t) for µ > 0 and of (log t)2qµ(t) for µ = 0) wededue that P1(x, y) has the same asymptoti behaviour (up to a positiveonstant) as
∞\
0

t−1−µ−(n−1)/2e−|y|2/4t dt = 22µ+n−1|y|−2µ−n+1
∞\
0

uµ+(n−3)/2e−u dufor µ > 0, and similarly for µ = 0.Aknowledgements. We are grateful to the referee, whose remarks andomments allowed us to improve the presentation of the paper. We wouldalso like to thank T. �ak for stimulating onversations on the subjet.
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