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Hitting distributions of geometri
 Brownian motionby
T. Byczkowski and M. Ryznar (Wro
ªaw)

Abstra
t. Let τ be the �rst hitting time of the point 1 by the geometri
 Brownianmotion X(t) = x exp(B(t) − 2µt) with drift µ ≥ 0 starting from x > 1. Here B(t) is theBrownian motion starting from 0 with EB2(t) = 2t. We provide an integral formula for thedensity fun
tion of the stopped exponential fun
tional A(τ) =
Tτ
0

X2(t) dt and determineits asymptoti
 behaviour at in�nity. Although we basi
ally rely on methods developed in[BGS℄, the present paper 
overs the 
ase of arbitrary drifts µ ≥ 0 and provides a signi�
antuni�
ation and extension of the results of the above-mentioned paper. As a 
orollary weprovide an integral formula and give the asymptoti
 behaviour at in�nity of the Poissonkernel for half-spa
es for Brownian motion with drift in real hyperboli
 spa
es of arbitrarydimension.1. Introdu
tion. In this paper, B(t) will denote the Brownian motionstarting from 0 and normalized so that EB2(t) = 2t. Note that this normal-ization is di�erent from the standard one (i.e. EB2(t) = t). The reason forthis 
hoi
e is that after subordination (see Se
tion 5) we want to obtain theappropriate version of the Poisson kernel for a half-spa
e in H
n. As a result,some formulas (e.g., in Lamperti's representation, in this se
tion, or (5), inthe Preliminaries) will have a di�erent s
aling than in the standard setup.Now, 
onsider the following linear SDE:

dX(t) = X(t)dB(t) − (2µ− 1)X(t)dt, X(0) = x > 0, µ ≥ 0.The strong unique non-exploding solution is given by
X(t) = x exp(B(t) − 2µt).The pro
ess {X(t); t ≥ 0} is 
alled a geometri
 Brownian motion or expo-nential Brownian motion and along with the additive fun
tional from the
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ess X(t),
Ax(t) =

t\
0

X2(v) dv =

t\
0

x2 exp 2(B(s) − 2µs) ds,it is of primary interest in mathemati
al �nan
e and insuran
e theory (see,e.g., [D℄, [GY℄ or [Y2℄). Also there is a 
onne
tion of the above fun
tionalwith the Brownian motion in hyperboli
 half-spa
es (see, e.g., [Y2℄, [AG℄,[BCF℄, [BCFY℄ and Se
tion 5).The distribution of Ax(t) for �xed 0 ≤ t ≤ ∞ has been a subje
t ofstudy in a substantial number of papers (see, e.g., [B℄, [Y2℄, [AG℄, [M℄).In this paper we investigate the properties of the density fun
tion qµ ofthe (stopped) additive fun
tional Ax(τ) where τ is the �rst hitting time ofthe point 1 by the pro
ess X(t) (starting from x > 1). From the strongMarkov property it easily follows that the distribution of Ax(τ) is 
loselyrelated to the distribution of Ax(∞). The latter is astonishingly simple; itis identi
al with the distribution of the random variable x2/4Z, where Zis a Γ (µ, 1)-distributed random variable (with the density Γ (µ)−1uµ−1e−u).This fundamental result is due to D. Dufresne [D℄ (see also [Y1℄, [Y2℄) and isof primary importan
e here. Knowing the Lapla
e transform of Ax(∞) one
an easily derive (via the strong Markov property) the form of the Lapla
etransform of the random variable Ax(τ) as a suitable ratio of Bessel fun
tions.For the reader's 
onvenien
e we present this argument in the Preliminaries.On the other hand, the distributions of Ax(τ) and Ax(∞) are 
loselyrelated to hitting times of Bessel pro
esses. The main fa
t here is Lamperti'srepresentation whi
h states that there exists a Bessel pro
ess R(−µ) with in-dex −µ, starting from x > 1, su
h that the pro
ess X(t) admits the followingrepresentation (see [L℄ and Exer
ise (1.28), Ch. XI, in [RY℄):
X(t) = R(−µ) (2Ax(t)) , t ≥ 0.We refer the reader to [RY℄ for an a

ount of Bessel pro
esses (see also[GJY℄). From the Lamperti representation it follows immediately that Ax(τ)and Ax(∞) 
an be regarded as hitting times of 1 and 0, respe
tively, of theBessel pro
ess R(−µ) starting from x > 1. Also it is possible to relate Ax(τ)and Ax(∞) to last exit times for appropriate Bessel pro
esses. There is avast literature on that subje
t. Su
h hitting or last exit times were studiedby Getoor [G℄, Getoor�Sharpe [GS℄, Kent [K1℄�[K3℄ and Pitman�Yor [PY℄.A useful summary of the last paper is 
ontained in [PY1℄. Let us remarkthat most of the results in these papers (espe
ially in [K1℄�[K3℄) are devotedto what Kent 
alls �left-hitting times� τab for some Bessel pro
esses (moregenerally di�usions) starting at a and hitting b, with 0 ≤ a < b < ∞. Dis-tributions of left-hitting times are very regular; in parti
ular they have allmoments, whi
h makes it possible to work with their moment generating
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tions. Densities of these distributions were represented by Kent as se-ries with exponential 
omponents (Theorem 6.1 in [K2℄). In 
ontrast, we aredealing with the so-
alled �right-hitting times� τba, whi
h are mu
h less reg-ular. In parti
ular, we prove in Se
tion 4 that the densities of right-hittingtimes have pre
ise asymptoti
s of order t−µ−1 for µ > 0, so they only havemoments of order less than µ. Kent's representation does not 
over this 
ase.Let us also remark that in Getoor [G℄, Kent [K1℄ and Getoor�Sharpe[GS℄ the Lapla
e transform of the distribution of Ax(τ) is derived as a ratioof Bessel fun
tions (see Preliminaries). For an exhaustive dis
ussion on thatsubje
t we refer to [GJY℄.Our main fo
us in this paper is to provide an integral formula for thedensity of Ax(τ) (see Theorem 3.3). In the 
ase µ = 1/2 this density iswell known to be the 1/2-stable subordinator. Getoor in [G℄ writes that it ispossible to obtain an expli
it form of the density for µ = 3/2 but he providesneither a formula nor any details on that.At this point let us mention that various ratios of Bessel fun
tions havebeen proved to be 
ompletely monotoni
 fun
tions, hen
e they are Lapla
etransforms of probability distributions (see Ismail [I1℄, [I2℄, Ismail�Kelker[IK℄, Kent [K1℄). For a survey on this theme see Pitman and Yor [PY℄ andalso [GY℄. Regarding the ratio 
onsidered in our paper, Ismail and Kelker[IK℄ showed by purely analyti
al methods that it is an in�nitely divisibledistribution.The main purpose of the paper is to obtain a representation for the den-sity fun
tion qµ of the fun
tional Ax(τ) along with its asymptoti
 properties,for arbitrary drift terms µ ≥ 0. Then we apply these results to derive an in-tegral representation of the Poisson kernel for subspa
es of real hyperboli
spa
es, for hyperboli
 Brownian motion with arbitrary drift, whi
h extendsand simpli�es the results and proofs from [BGS℄.The paper is organized as follows. In the Preliminaries we 
olle
t basi
information needed in the following.In Se
tion 3 we obtain a representation of the density of the fun
tional
Ax(τ). For this purpose we extend to arbitrary drifts µ ≥ 0 the integralrepresentation given in [BGS℄ for a ratio of Bessel fun
tions.In Se
tion 4 we exhibit the exa
t asymptoti
s of the density of Ax(τ) atin�nity for all drifts µ ≥ 0. Again, we essentially follow the idea of [BGS℄.However, applying more dire
t probabilisti
 arguments, we are able to sim-plify our presentation 
onsiderably, as well as 
over the 
ase of arbitrarydrifts µ ≥ 0.In Se
tion 5 we show how to apply the results obtained in the pre
edingse
tions to obtain a representation and asymptoti
 properties of the Poissonkernel on subspa
es of real hyperboli
 spa
es of arbitrary dimension, for hy-
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 Brownian motion with drift. Some of these asymptoti
 propertieswere studied in [BCF℄ for dimension 2, where it was shown that the distri-bution of the Poisson kernel belongs to the stable domain of attra
tion. Ourasymptoti
 results may be viewed as an extension of those in [BCF℄. For arelated result see also [BCFY℄.2. Preliminaries. Let 0 < a < x and let τa be the �rst hitting time ofthe point a by the geometri
 Brownian motion with drift µ≥0 starting at x:
τa = inf{t > 0 : x exp(B(t) − 2µt) = a}.Then τa <∞ a.e. sin
e inft>0B(t) = −∞.Further, de�ne

Ax(t) = x2
t\
0

exp 2(B(s) − 2µs) ds.By the strong Markov property of Brownian motion we obtainBasi
 relationship (for µ > 0). Observe that x2 exp 2(B(τa)−2µτa) = a2,hen
e
(1) Ax(∞) = x2

τa\
0

exp 2(B(s) − 2µs) ds+ x2
∞\
τa

exp 2(B(s) − 2µs) ds

= Ax(τa) + x2 exp 2(B(τa) − 2µτa)

∞\
0

exp 2(B(s+ τa) −B(τa) − 2µs) ds

= Ax(τa) +A′
a(∞),where A′

a(∞) is a 
opy of Aa(∞), independent of Ax(τa).The relation (1) 
an also be rewritten as follows:(2) Ax(∞) = Ax(τa) +
a2

x2
A′

x(∞).The pre
ise meaning of (2) is that the distribution of Ax(∞) is self-de
omposable (see, e.g., [Sa℄). This relation is of prime importan
e when
omputing the asymptoti
 behaviour of the density fun
tion of Ax(τa) inSe
tion 4.Dufresne [D℄ (see also Getoor [G℄, Kent [K1℄, Getoor�Sharpe [GS℄, wherethe result is given in the 
ontext of Bessel pro
esses) showed that the densityand the Lapla
e transform of A1(∞) are
hµ(t) =

2−2µ

Γ (µ)

e−1/4t

t1+µ
,(3)

Ee−r2A1(∞) = 2
(r/2)µ

Γ (µ)
Kµ(r), µ > 0.(4)
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aling property: Ax(∞) = x2A1(∞),one immediately obtains, by elementary properties of the Lapla
e transform,(5) Ee−r2Ax(τa) =

(
x

a

)µKµ(xr)

Kµ(ar)
,where Kµ is the modi�ed Bessel fun
tion of se
ond type with index µ.The above Lapla
e transform appears in many papers (see, e.g., Kent [K1℄,Getoor�Sharpe [GS℄, Ismail�Kelker [IK℄); here we followed the derivationfrom [BCF℄.From the 
ontinuity of both sides of (5) with respe
t to µ ≥ 0 we inferthat the above formula remains valid also for µ = 0.Let us remark that for µ = 0 the right-hand side of (5) also gives the
lassi
al formula ([S℄) for the Lapla
e transform of Brownian motion hittingtime Ta of the 
ir
le 
entred at 0 with radius a in R
2 from the point y ∈ R

2su
h that |y| = x > a.From (5) it follows dire
tly that for t > 0 we have
Atx(τta)

d
= t2Ax(τa),where d

= denotes equality of distribution.Therefore, from now on we may and do assume that a = 1 and x > 1 is�xed. We write τ instead of τ1, and A(τ), A(∞) instead of Ax(τ1), Ax(∞),respe
tively.We 
on
lude this se
tion with the following te
hni
al lemma:Lemma 2.1. For s > 0 we have(6) ∞\
0

e−y2/4ths(t/λ
2) dt =

λ2s+2

(λ2 + y2)s
.Proof. Indeed,

∞\
0

e−y2/4te−λ2/4t λ
2s+2dt

t1+s
=

λ2s+2

(λ2 + y2)s

∞\
0

e−(y2+λ2)/4t dt/(y2 + λ2)

(t/(y2 + λ2))1+s

=
22sλ2s+2

(λ2 + y2)s

∞\
0

Γ (s)hs(u) du =
22sΓ (s)λ2s+2

(λ2 + y2)s
.Throughout the paper we use the following 
onvention: by c, C we al-ways denote non-negative 
onstants whi
h may depend on other 
onstantparameters only. The value of c or C may 
hange from line to line in a 
hainof estimates.The notation p(u) ≈ q(u), u→ u0 means that q/p→ 1 as u→ u0.3. Representation of the density of A(τ). In this se
tion we give arepresentation formula for the density fun
tion of the fun
tional A(τ), for
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zkowski and M. Ryznararbitrary µ ≥ 0, where τ is the hitting time introdu
ed in the pre
edingse
tion.We begin by stating a more general version of a lemma from [BGS℄. Theproof is identi
al and is omitted.Lemma 3.1. Let µ ≥ 0 and λ = x− 1. Suppose that
Q(z) = z − (µ2 − 1/4)

λ

2x
, z ∈ C.De�ne Fλ(z) by(7) λFλ(z) =

zeλzxµKµ(xz) − xµ−1/2Q(z)Kµ(z)

Kµ(z)
.Then(8) Fλ(z) = O(z−1), z → ∞,and there exists a fun
tion wλ su
h that(9) Fλ(z) =

∞\
0

e−zvwλ(v) dv, ℜ(z) > 0.Moreover ,(10) xµ−1/2(µ2 − 1/4)/2x =

∞\
0

wλ(v) dv,and , for µ > 1/2,(11) 2xµ−1/2 =

∞\
0

κwλ(v) dv,where κ = κ(v) = (λ+ v)2 − λ2 = v(2λ+ v).For µ = 1/2 we have Fλ(z) ≡ 0.An expli
it formula for the fun
tion wλ will be provided later on.The following formula is 
ru
ial for our 
onsiderations:Lemma 3.2. Let ϕ : [0,∞) → R
+ belong to L1(0,∞) and suppose thatits Lapla
e transform ϕ̂ has the following property :

t−1/2ϕ̂(t) ∈ L1(0,∞).Then(12) ∞\
0

ϕ̂(r2) cos(ry) dr =
√
π/2

∞\
0

e−y2/4tϕ(t)
dt√
t
.Proof. Let A be a random variable with absolutely 
ontinuous distribu-tion with the density fun
tion ϕ and let B(t) be Brownian motion startingfrom 0 (su
h that EB2(t) = 2t), independent of A. It is easy to see that thevalue of the Lapla
e transform of A at the point r2, that is, ϕ̂(r2), is equal
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osine) transform of B(A) at the point r. Observe that ourassumption ensures that this Fourier transform belongs to L1(0,∞). Thus,the left-hand side of (12) is the inversion formula applied for the Fouriertransform and gives the density of B(A). The right-hand side results fromthe dire
t 
omputation of this density, taking into a

ount the independen
eof B and A and the parti
ular form of the (gaussian) density of B(t).We are ready to state our representation formula for the density fun
tionof A(τ).Theorem 3.3. Let qµ denote the density fun
tion of A(τ). Then for
µ ≥ 0 we have(13) qµ(t) = λ

e−λ2/4t

√
πt

(
xµ−1/2/2t+

∞\
0

(e−κ/4t − 1)wλ(v) dv
)
,where κ = κ(v) = (λ+ v)2 −λ2 = v(2λ+ v), and λ = x− 1. For µ > 1/2 wehave(14) qµ(t) = λ

e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)wλ(v) dv.Proof. The proof relies on an appli
ation of the formula (12) to the fun
-tion
ϕ̂(r2) = xµ Kµ(xr)

Kµ(r)
.Note that by (7) and (10) it follows that

rxµ Kµ(xr)

Kµ(r)
= e−λrλFλ(r) + e−λrxµ−1/2Q(r)

= e−λrxµ−1/2r + e−λrλFλ(r) − e−λrxµ−1/2(µ2 − 1/4)λ/2x

= e−λrxµ−1/2r + λe−λr
∞\
0

(e−rv − 1)wλ(v) dv.We re
all that Q(r) = r− (µ2 − 1/4)λ/2x and Fλ(r) =
T∞
0 e−rvwλ(v) dv. Tosimplify the proof we set

w#
λ (v) = −

∞\
v

wλ(ν) dν, that is, dw#
λ (v)

dv
= wλ(v).Then by integration by parts we obtain

∞\
0

(e−rv − 1)wλ(v) dv = (e−rv − 1)w#
λ (v)|∞0 + r

∞\
0

e−rvw#
λ (v) dv

= r

∞\
0

e−rvw#
λ (v) dv.
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zkowski and M. RyznarThus, the left-hand side of (12) is now of the form
∞\
0

rxµ Kµ(xr)

Kµ(r)
cos(ry)/r dr

= xµ−1/2
∞\
0

e−λr cos(ry) dr +

∞\
0

λe−λr
(∞\

0

(e−rv−1)wλ(v) dv
)

cos(ry)/r dr

= xµ−1/2
∞\
0

e−λr cos(ry) dr +

∞\
0

λe−λr
(∞\

0

e−rvw#
λ (v) dv

)
cos(ry) dr

= H(1)
µ (y) +H(2)

µ (y) = Hµ(y).Using the standard formula for the Lapla
e transform of the 
osine fun
-tion we obtain
H(1)

µ (y) = xµ−1/2 λ

λ2 + y2
, H(2)

µ (y) = λ

∞\
0

(λ+ v)w#
λ (v)

(λ+ v)2 + y2
dv.Hen
e by (6) (applied for s = 1), (10) and (11) we obtain

H(1)
µ (y) =

xµ−1/2λ

22

∞\
0

e−y2/4te−λ2/4t dt

t2
.

Analogously, for H(2)
µ we obtain

H(2)
µ (y) =

λ

22

∞\
0

e−y2/4t
(∞\

0

(λ+ v)w#
λ (v)e−(λ+v)2/4t dv

) dt
t2

=
λ

2

∞\
0

e−y2/4t

(∞\
0

d(−e−(λ+v)2/4t)

dv
w#

λ (v) dv

)
dt

t
.

Observe now that
∞\
0

d(−e−(λ+v)2/4t)

dv
w#

λ (v) dv

= − e−(λ+v)2/4tw#
λ (v)|∞0 +

∞\
0

e−(λ+v)2/4t dw
#
λ (v)

dv
dv

= e−λ2/4tw#
λ (0) +

∞\
0

e−(λ+v)2/4twλ(v) dv.We also have
w#

λ (0) = −
∞\
0

dw#
λ (v)

dv
dv = −

∞\
0

wλ(v) dv.
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µ we obtain

H(2)
µ (y) =

λ

2

∞\
0

e−y2/4t
(∞\

0

(e−κ/4t − 1)wλ(v) dv
)dt
t
.Combining the above identities we 
on
lude that the left-hand side of(12) takes the form

Hµ(y) =
λ

2

∞\
0

e−y2/4te−λ2/4t
(
xµ−1/2/2t+

∞\
0

(e−κ/4t − 1)wλ(v) dv
)dt
t
.Taking into a

ount the right-hand side of (12) and 
ontinuity of qµ withrespe
t to t (see properties of wλ below), we obtain (13). When µ > 1/2,then using (11) we obtain (14).Below we give a des
ription of the fun
tion wλ. We rely on the results of[BGS℄. The formulas depend on the zeros of Kµ(z).Even if in general these zeros are not given expli
itly, we are able to provesome important properties (like boundedness or asymptoti
s) of wλ, whi
hare essential in appli
ations. Moreover, for some values of µ we do provideexpli
it formulas (see Corollary 3.5).The fun
tion zµKµ(z) extends to an entire fun
tion when µ− 1/2 is aninteger, and has a holomorphi
 extension to C \ (−∞, 0] when µ− 1/2 is notan integer. Denote the set of zeros of Kµ(z) by Z = {z1, . . . , zkµ

}. We re
allsome information about these zeros (
f. [E, p. 62℄). We have kµ = µ − 1/2when µ−1/2 ∈ N. For µ−1/2 /∈ N, kµ is the even number 
losest to µ−1/2.In parti
ular, kµ = 0 for 0 ≤ µ < 3/2, and kµ = 2 for µ = 2 and 3. Thefun
tions Kµ and Kµ−1 have no 
ommon zeros.As in [BGS℄, we need an additional notation to des
ribe the fun
tion wλ.For µ > 0 de�ne(15) w1,λ(v) = −x
µ

λ

kµ∑

i=1

zie
λziKµ(xzi)

Kµ−1(zi)
eziv.When µ+ 1/2 /∈ N and µ ≥ 0 we de�ne

(16) w2,λ(v) = − cos(πµ)
xµ

λ

×
∞\
0

Iµ (xu)Kµ(u) − Iµ(u)Kµ(xu)

cos2(πµ)K2
µ(u) + (πIµ(u) + sin(πµ)Kµ(u))2

e−λue−vuu du.We now formulate our representation theorem for the fun
tion wλ. Theproof of the main part is the same as in [BGS℄ and is omitted; we only showthe asymptoti
 properties of w2,λ. For µ = 0 this is new; the behaviour for
µ = (n − 1)/2 was shown in [BGS℄. Nevertheless, we present a new anduni�ed proof based on Tauberian theorems.
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zkowski and M. RyznarTheorem 3.4. Let λ = x− 1 > 0. In the 
ase µ− 1/2 ∈ N,
wλ(v) = w1,λ(v),while in the 
ase µ− 1/2 /∈ N,

wλ(v) = w1,λ(v) + w2,λ(v).Moreover , supv≥0 |wλ(v)| <∞, and
− cos(πµ)w2,λ(v) ≥ 0, v ≥ 0 (µ− 1/2 /∈ N);

∞\
0

vk|w1,λ(v)| dv <∞, k = 1, 2, . . . ;

lim
v→∞

vkw1,λ(v) = 0, k = 1, 2, . . . ;

lim
v→∞

v2µ+2w2,λ(v) =
− cos(πµ)Γ (2µ+ 2)

22µ−3Γ (µ)Γ (µ+ 1)

x2µ − 1

λ
(µ− 1/2 /∈ N, µ > 0);

lim
v→∞

(v log v)2w2,λ(v) = − 1

2λ
log x for µ = 0.Proof. De�ne(17) hµ,λ(u) =

Iµ(xu)Kµ(u) − Iµ(u)Kµ(xu)

cos2(πµ)K2
µ(u) + (πIµ(u) + sin(πµ)Kµ(u))2

e−λuu.Observe that the fun
tion hµ,λ(u) is non-negative (Iµ(u)/Kµ(u) is in
reasingfor u > 0) and w2,λ(v) is the Lapla
e transform of − cos(πµ)xµ

λ hµ,λ at v. We
laim that for u→ 0+ we have the following asymptoti
s for hµ,λ:
(18) hµ,λ(u) ≈




xµ cµ

c′µ
(1 − x−2µ)u2µ+1 for µ > 0,

u log x (log u)−2 for µ = 0.Applying Karamata's Tauberian theorem (see, e.g., [Fe, Ch. XIII, 5, p. 422℄)we �nd that
lim

v→∞
w2,λ(v)

( 1/v\
0

hµ,λ(u) du
)−1

=
− cos(πµ)

λ
Γ (2 + 2µ)xµ.This together with (18) implies

lim
v→∞

v2µ+2w2,λ(v) =
− cos(πµ)Γ (2µ+ 2)

22µ−3Γ (µ)Γ (µ+ 1)

x2µ − 1

λ
(µ− 1/2 /∈ N, µ > 0),

lim
v→∞

(v log v)2w2,λ(v) = − 1

2λ
log x, µ = 0.To prove (18) we apply the following asymptoti
s. When u→ 0 we have:

Iµ(u) ≈ cµu
µ, Kµ(u) ≈ c′µu

−µ;(19)
I0(u) = 1 + o(1), K0(u) = log(2/u)I0(u) + ψ(1) + o(1),(20)



Hitting distributions of Brownian motion 29with cµ = 2−µ/Γ (µ+ 1), c′µ = 2µ−1Γ (µ) and where ψ is the Euler fun
tion.Then
eλuu−1hµ,λ(u)

=
Iµ(xu)Kµ(u)

K2
µ(u) + (πIµ(u))2 + 2π sin(πµ)Kµ(u)Iµ(u)

(
1 − Iµ(u)Kµ(xu)

Iµ(xu)Kµ(u)

)

≈ Iµ(xu)

Kµ(u)

(
1 − Iµ(u)Kµ(xu)

Iµ(xu)Kµ(u)

)

≈





u2µxµ cµ
c′µ

(1 − x−2µ) for µ > 0,
log x

(log u)2
for µ = 0.

Examples. To illustrate the representation theory developed so far wewrite down expli
it integral formulas for the density qµ in some spe
ial 
asesof µ. All these formulas follow dire
tly from Theorems 3.3 and 3.4. If 0 ≤ µ <
3/2 then wλ = w2,λ and the fun
tions wλ have 
onstant sign. For µ = 0 and
µ = 1 the fun
tion wλ has a simpler form, whi
h we exhibit here. If µ = 1/2then Fλ = 0 and qµ(t) redu
es to the standard 1/2-stable subordinator. For
µ + 1/2 ∈ N we have wλ = w1,λ, and w1,λ 
an be 
omputed by 
al
ulatingresidues of simple rational fun
tions (see the formula for w1,λ or 
al
ulationsin [BGS℄). Again, we give the expli
it form of wλ for µ = 3/2 and µ = 5/2.Corollary 3.5. Let κ = κ(v) = (λ + v)2 − λ2 = v(2λ + v), where
λ = x− 1 > 0. If µ = 0 then

−wλ(v) =
1

λ

∞\
0

I0(xu)K0(u) −K0(xu)I0(u)

K2
0 (u) + π2I2

0 (u)
e−uλe−vuu du,

qµ(t) = λ
e−λ2/4t

√
πt

(
(λ+ 1)−1/2/2t+

∞\
0

(1 − e−κ/4t)(−wλ(v)) dv
)
.

If µ = 1/2 then
qµ(t) = λ

e−λ2/4t

2
√
πt3

.If µ = 1 then
wλ(v) =

λ+ 1

λ

∞\
0

I1(xu)K1(u) −K1(xu)I1(u)

K2
1 (u) + π2I2

1 (u)
e−uλe−vuu du,

qµ(t) = λ
e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)wλ(v) dv.
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zkowski and M. RyznarIf µ = 3/2 then wλ(v) = e−v and
qµ(t) = λ

e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)e−v dv.If µ = 5/2 then
wλ(v) = 3e−3v/2[(2λ+ 1) cos(

√
3 v/2) +

√
3 sin(

√
3 v/2)],

qµ(t) = λ
e−λ2/4t

√
πt

∞\
0

(e−κ/4t − 1 + κ/4t)wλ(v) dv.

4. Asymptoti
 behaviour of A(τ). In this se
tion we prove the fol-lowingTheorem 4.1. The density qµ of A(τ) satis�es:
lim
t→∞

tµ+1qµ(t) = Cµ if µ > 0,

lim
t→∞

(log t)2tqµ(t) = C0 if µ = 0,for some positive Cµ.The above theorem provides the following important information aboutintegrability of A(τ):Corollary 4.2. For µ > 0 the following holds:
EAp(τ) <∞ if and only if p < µ.

Remark. The above 
orollary 
an be stated equivalently in terms ofBessel pro
esses as follows: the �rst hitting time of level 1 for a Bessel pro
esswith index −µ, µ > 0, starting at x > 1, has �nite positive moments of order
p if and only if p < µ.The proof of Theorem 4.1 is 
ontained in a series of lemmas.Lemma 4.3. Let µ > 0. There exists a 
onstant C > 1 su
h that

C−1t−µ ≤ P (A(τ) > t) ≤ Ct−µ, t > 1.Proof. We write the basi
 formula (2) for the 
ase we work with, that is,when x > 1 and a = 1:
A(∞) = A(τ) + x−2A′(∞).We re
all that A(∞), A(τ) denote Ax(∞), Ax(τ1), respe
tively, and, as be-fore, A′(∞) is a 
opy of A(∞), independent of A(τ). Applying the aboveformula we obtain

P (A(∞) > t) ≤ P (A(τ) > (1 − x−1)t) + P (A(∞) > xt),whi
h implies(21) P (t ≤ A(∞) ≤ xt) ≤ P (A(τ) > (1 − x−1)t).



Hitting distributions of Brownian motion 31Moreover,(22) P (A(τ) > t) ≤ P (A(∞) > t).Now the lemma follows from (21) and (22) sin
e P (A(∞) > t) ≈ ct−µ forsome c > 0 by (3).Re
all that κ = κ(v) = (λ+ v)2 − λ2, where λ = x− 1 > 0.Lemma 4.4. Let m ∈ N be su
h that 2 ≤ m ≤ µ+ 1/2. Then
(23) lim

t→∞
tm

∞\
0

wλ(v)

(
e−κ/4t −

∑

0≤j≤m−1

(−1)j 1

j!

(
κ

4t

)j)
dv

=
(−1)m

4mm!

∞\
0

κmwλ(v) dv = Cm.Moreover , Cm = 0 for 2 ≤ m < µ+ 1/2, and Cm > 0 if m = µ+ 1/2 ∈ N.Proof. De�ne
ψ(t,m) = tmwλ(v)

(
e−κ/4t −

∑

0≤j≤m−1

(−1)j 1

j!

(
κ

4t

)j)
.By elementary 
al
ulations,

∣∣∣∣e
−κ/4t −

∑

0≤j≤m−1

(−1)j 1

j!

(
κ

4t

)j∣∣∣∣ ≤
1

m!

(
κ

4t

)m

.Hen
e
|ψ(t,m)| ≤ |wλ(v)| κ

m

m!
.Under the assumption on m the fun
tion |wλ(v)|κm is integrable so theformula (23) follows from the bounded 
onvergen
e theorem.Suppose that Cm 6= 0 for some m with 2 ≤ m ≤ µ+ 1/2, and set

m0 = inf{m ∈ N : 2 ≤ m ≤ µ+ 1/2, Cm 6= 0}.Then from the �rst part of the proof we have
lim
t→∞

tm0+1/2qµ(t) = Cm0
> 0,whi
h implies that

lim
t→∞

tm0−1/2P (A(τ) > t) = Cm0
(m0 − 1/2)−1.From Lemma 4.3 we infer that Cm0

> 0 if and only if m0 − 1/2 = µ. Inparti
ular, we then have µ+ 1/2 ∈ N, and Cm = 0 if m < µ+ 1/2.
Remark. The above lemma shows, in parti
ular, that for m ∈ N, 2 ≤

m < µ+ 1/2, ∞\
0

κmwλ(v) dv = 0.
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zkowski and M. RyznarThus, the representation formula for the density qµ 
an be written for µ ≥
1/2 as follows:(24) qµ(t) = λ

e−λ2/4t

√
πt

∞\
0

(
e−κ/4t −

∑

0≤j≤l

(−1)j 1

j!

(
κ

4t

)j)
wλ(v) dv,where l = [µ+ 1/2] if µ− 1/2 /∈ N, and l = µ− 1/2 otherwise.We now prove our theorem.Proof of Theorem 4.1. For µ = 1/2 the density qµ has a parti
ularlysimple form (see Corollary 3.5) and the theorem 
learly holds true. Hen
e,we assume throughout the remainder of the proof that µ 6= 1/2. Next, if

µ − 1/2 ∈ N then the remark above together with Lemma 4.4 yield ourtheorem at on
e.Thus, we assume that µ− 1/2 /∈ N and let l = [µ+ 1/2]. De�ne
I(t) =

∞\
0

wλ(v)tµ+1/2

(
e−κ/4t −

∑

0≤j≤l

(−1)j 1

j!

(
κ

4t

)j)
dv.We prove that

lim
t→∞

I(t) = C > 0 if µ > 0,(25)

lim
t→∞

(log t)2I(t) = C > 0 if µ = 0.(26)Applying the 
hange of variable κ = 4st we obtain
v =

√
4st+ λ2 − λ, dv =

2t√
4st+ λ2

ds,so
I(t) =

∞\
0

ψλ(s, t)

(
e−s −

∑

0≤j≤l

(−1)j s
j

j!

)
ds,where

ψλ(s, t) = wλ(
√

4st+ λ2 − λ)
2tµ+3/2

√
4st+ λ2

.We 
laim that for µ>0 and t, s∈R
+ there is a 
onstant C > 0 su
h that(27) |ψλ(s, t)| ≤ Cs−µ−3/2,and for µ = 0 and t, s ∈ R+,(28) (log t)2|ψλ(s, t)| ≤ Cmax{1, (log s)2}s−3/2.The above 
laims prove the relations (25) and (26). Indeed, 
onsider �rst the
ase µ > 0. Then the absolute value of the integrand in I(t) 
an be estimatedby the integrable fun
tion

C

∣∣∣∣e
−s−

∑

0≤j≤l

(−1)j s
j

j!

∣∣∣∣s
−µ−3/2 ≤ Cmin{1, s}sls−µ−3/2 = Cmin{1, s}s−δ−1,



Hitting distributions of Brownian motion 33where δ = µ+1/2− [µ+1/2], 0 < δ < 1. Then the proof of (25) is 
on
ludedby letting t→ ∞ and using the asymptoti
s of wλ (see Theorem 3.4).Now, 
onsider the 
ase µ = 0. Observe that the absolute value of theintegrand in (log t)2I(t) is estimated by the integrable fun
tion
Cmax{1, (log s)2}s−3/2|e−s − 1|,so

lim
t→∞

(log t)2I(t) =
log x

2λ

∞\
0

(1 − e−s)s−3/2 ds.Here we take into a

ount
(log t)2ψλ(s, t) ≈ − log x

2λ

(log t)2

s3/2(log st)2
≈ − log x

2λs3/2
, t→ ∞,by using the asymptoti
s of wλ (see Theorem 3.4).Now we 
an 
on
lude the proof of the asymptoti
 behaviour of qµ(t) inthe 
ase µ− 1/2 /∈ N. Note that for 0 < µ < 1/2 we have

tµ+1qµ(t) = λ
e−λ2/4t

√
πt

(
tµxµ−1/2/2 + tµ+1

∞\
0

(e−κ/4t − 1)wλ(v) dv
)

= λ
e−λ2/4t

√
π

(tµ−1/2xµ−1/2/2 + I(t)) → λC/
√
π,where C is the 
onstant from (25). The same argument for µ = 0 shows that

(log t)2tqµ(t) → λC/
√
π,where C 
omes from (26). For µ > 1/2 the asymptoti
s of qµ(t) followsdire
tly from (25).We now justify our 
laims (27) and (28). We use the notation introdu
edin the proof of the theorem.Lemma 4.5. If µ > 0 there is c > 0 su
h that

|ψλ(s, t)| ≤ cs−µ−3/2.For µ = 0 there is C > 0 su
h that
(log t)2|ψλ(s, t)| ≤ Cmax{1, (log s)2}s−3/2.Proof. Let µ > 0. Sin
e wλ is bounded, for ts ≤ 1 we have

|ψλ(s, t)| ≤ sup
v≥0

|wλ(v)| tµ+3/2

√
4st+ λ2

≤ Cs−µ−3/2.For ts≥1 we use the asymptoti
s of wλ at ∞ (see Theorem 3.4) to arrive at
|ψλ(s, t)| ≤ Ctµ+3/2(st)−µ−3/2 = Cs−µ−3/2.
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zkowski and M. RyznarFor µ = 0, again using the boundedness of wλ we estimate for ts ≤ 2:
|ψλ(s, t)| ≤ sup

v≥0
|wλ(v)| t3/2

√
4st+ λ2

≤ Cs−3/2.For ts ≥ 2 we use the asymptoti
s of wλ to get
(log t)2|ψλ(s, t)| ≤ Ct3/2(st)−3/2 (log t)2

(log st)2
≤

{
Cs−3/2(log t)2, 2 ≤ ts ≤

√
t,

Cs−3/2, ts ≥
√
t.Next observe that for 2 ≤ ts ≤

√
t we have (log t)2 ≤ 4(log s)2.5. Hyperboli
 Brownian motion with drift. Consider the half-spa
emodel of the n-dimensional real hyperboli
 spa
e

H
n = {(x1, . . . , xn−1, xn) ∈ R

n−1 × R : xn > 0}.The Riemannian metri
, the volume element and the Lapla
e�Beltrami op-erator are given by
ds2 =

dx2
1 + · · · + dx2

n−1 + dx2
n

x2
n

,

dV =
dx1 · · · dxn−1dxn

xn
n

,

∆ = x2
n

n∑

i=1

∂2
i − (n− 2)xn∂n,respe
tively (here ∂i = ∂/∂xi, i = 1, . . . , n). For µ ≥ 0 let α = 2µ − n + 1.We also introdu
e the operator

∆µ = ∆− αxn∂n = x2
n

n∑

i=1

∂2
i − (2µ− 1)xn∂n.Let (Bi(t))i=1,...,n be a family of independent 
lassi
al Brownian motionson R with the generator d2

dx2 (and not 1
2

d2

dx2 ), i.e. E0B2
i (t) = 2t. Then theBrownian motion on H

n, X = (Xi)i=1,...,n, 
an be des
ribed by the followingsystem of sto
hasti
 di�erential equations:




dX1(t) = Xn(t)dB1(t),

dX2(t) = Xn(t)dB2(t),. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dXn(t) = Xn(t)dBn(t) − (n− 2)Xn(t)dt.More generally, if we repla
e n−2 by α+n−2 = 2µ−1 then the 
orrespondingpro
ess will be 
alled the Brownian motion on H

n with drift α. By using theIt� formula one veri�es that the generator of the solution of this system
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an be easily 
he
ked that the solution is given by




X1(t) = X1(0) +

t\
0

Xn(t) dB1(s),

X2(t) = X2(0) +

t\
0

Xn(t) dB2(s),. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xn(t) = Xn(0) exp(Bn(t) − 2µt).De�ne the proje
tion ˜: R

n ∋ u = (u1, . . . , un) 7→ ũ = (u1, . . . , un−1)∈R
n−1.In parti
ular, X̃(t) = (X1(t), . . . , Xn−1(t)). From the representation aboveone may easily verify (e.g. by 
omputing Fourier transforms) that(29) X̃(t)

d
= X̃(0) + B̃

( t\
0

X2
n(s) ds

)
, t ≥ 0,

where B̃(t) = (B1(t), . . . , Bn−1(t)) is an (n− 1)-dimensional Brownian mo-tion independent of the pro
ess Xn(t). Consider a half-spa
e D = {u ∈ H
n :

un > a} for some �xed a > 0. To simplify the notation we 
hoose a = 1.De�ne
τ = inf{t ≥ 0 : X(t) /∈ D} = inf{t ≥ 0 : Xn(t) = 1}.We denote by P1(u, y), u = (u1, . . . , un) ∈ D, y = (y1, . . . , yn−1, 1) ∈ ∂D thePoisson kernel of D, i.e. the density of the distribution of X(τ) starting at u(sin
e Xn(τ) = 1 it is enough to 
onsider the distribution of X̃(τ)). From(29) it is obvious that

X̃(τ)
d
= ũ+ B̃(A(τ)),where the fun
tional A(τ) (starting from un > 1) is independent of B̃(t). Forfurther 
onsiderations we may take ũ = 0 and un = x > 1, so the startingpoint of the n-dimensional pro
ess X(·) is (0, . . . , 0, x) ∈ D. Sin
e A(τ) and

B̃(t) are independent, we have the following representation of the Poissonkernel:Corollary 5.1.
P1(x, y) =

1

(4π)(n−1)/2

∞\
0

e−|y|2/4tqµ(t)
dt

t(n−1)/2
.Observe that for µ = 1/2 the fun
tional A(τ) has the standard asym-metri
 1/2-stable distribution and the Poisson kernel is exa
tly the (n− 1)-dimensional Cau
hy density, so in what follows, we 
onsider µ 6= 1/2.Taking into a

ount the formula (3) and Lemma 2.1 we obtain the fol-lowing representation of the Poisson kernel of the set D:



36 T. By
zkowski and M. RyznarTheorem 5.2. Set ̺ = |y|. Let κ = κ(v) = (λ + v)2 − λ2, where λ =
x− 1 > 0. For 0 ≤ µ < 1/2 we have

P1(x, y) =
Γ (n/2 − 1)

2πn/2

λ

(λ2 + ̺2)n/2

×
[
(n− 2)(λ+ 1)µ−1/2 −

∞\
0

wλ(v)L#(λ, ̺, v) dv

((λ+ v)2 + ̺2)n/2−1

]
,

where L#(λ, ̺, v) is de�ned by
L#(λ, ̺, v)

(λ2 + ̺2)((λ+ v)2 + ̺2)n/2−1
= 1 −

(
λ2 + ̺2

(λ+ v)2 + ̺2

)n/2−1

.For µ > 1/2 we obtain
P1(x, y) =

Γ (n/2 − 1)

2πn/2

λ

(λ2 + ̺2)n/2

∞\
0

wλ(v)L(λ, ̺, v) dv

((λ+ v)2 + ̺2)n/2−1
,

with L(λ, ̺, v) de�ned by
L(λ, ̺, v)

(λ2 + ̺2)((λ+ v)2 + ̺2)n/2−1

=

(
λ2 + ̺2

(λ+ v)2 + ̺2

)n/2−1

− 1 +

(
n

2
− 1

)
v(2λ+ v)

λ2 + ̺2
.Proof. By (6) we obtain

∞\
0

e−̺2/4te−λ2/4t dt

t1+s
=

22sΓ (s)

(λ2 + ̺2)s
.

Applying the above formula (with di�erent 
onstants) to the three termsappearing in the representation of qµ we obtain
∞\
0

e−̺2/4te−λ2/4t dt

t1+n/2
=

2nΓ (n/2)

(λ2 + ̺2)n/2
,

∞\
0

e−̺2/4te−λ2/4te−κ/4t dt

tn/2
=

2n−2Γ (n/2 − 1)

((λ+ v)2 + ̺2)n/2−1
,

∞\
0

e−̺2/4te−λ2/4t dt

tn/2
=

2n−2Γ (n/2 − 1)

(λ2 + ̺2)n/2−1
.

Taking into a

ount appropriate 
onstants, we obtain the formulas for thePoisson kernel.
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lim

|y|→∞
|y|n+2µ−1P1(x, y) = cµ, µ > 0,

lim
|y|→∞

(log |y|)2|y|n−1P1(x, y) = c0, µ = 0,for some positive cµ.Proof. From Corollary 5.1, Theorem 4.1 and arguments presented in itsproof (boundedness of tµ+1qµ(t) for µ > 0 and of (log t)2qµ(t) for µ = 0) wededu
e that P1(x, y) has the same asymptoti
 behaviour (up to a positive
onstant) as
∞\
0

t−1−µ−(n−1)/2e−|y|2/4t dt = 22µ+n−1|y|−2µ−n+1
∞\
0

uµ+(n−3)/2e−u dufor µ > 0, and similarly for µ = 0.A
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