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Gagliardo�Nirenberg inequalities in weighted Orliz spaesby
Agnieszka Kałamajska and

Katarzyna Pietruska-Pałuba (Warszawa)Abstrat. We derive inequalities of Gagliardo�Nirenberg type in weighted Orlizspaes on R
n, for maximal funtions of derivatives and for the derivatives themselves. Thisis done by an appliation of pointwise interpolation inequalities obtained previously by the�rst author and of Mukenhoupt�Bloom�Kerman-type theorems for maximal funtions.1. Introdution. Interpolation inequalities for derivatives have beenstudied for a long time. Beginning with the pioneering works by Hadamard[19�21℄, Kneser [32℄, Landau [38�40℄, Hardy, Littlewood and Landau [22�24℄,Kolmogorov's elebrated artile [34℄, and the famous results of Gagliardo [16℄and Nirenberg [45℄, now there is a large body of literature on this subjet(see e.g. [3, 7, 11, 12, 18, 25, 27, 36, 41�43, 46, 49℄ and their referenes).Despite intensive investigation arried out in this area, there are only afew artiles about interpolation inequalities in Orliz spaes. The only oneswe know of are ontributions by Bang and oauthors [3�6℄ and our reentpapers [26�28℄. Here we ontinue the researh in this diretion.Our main goal is to obtain inequalities of the form\

Ψ(|∇(k)u|) dµ ≤
(\

Ψ1(|u|) dµ +
\
Ψ2(|∇

(m)u|) dµ
)(1.1)and also

‖∇(k)u‖LΨ (µ) ≤ c‖u‖
1−k/m

LΨ1(µ)
‖∇(m)u‖

k/m

LΨ2 (µ)
,(1.2)where Ψ, Ψ1 and Ψ2 are N-funtions satisfying ertain onsisteny onditions,

0 < k < m are positive integers, and µ belongs to some lass of weightedRadon measures.2000 Mathematis Subjet Classi�ation: Primary 26D10; Seondary 46E35, 46E30.Key words and phrases: Gagliardo�Nirenberg inequalities, Orliz spaes, maximalfuntion.This researh was done while A.K. was visiting the Institute of Mathematis of thePolish Aademy of Sienes, Warsaw. This author would like to thank IM PAN for hospi-tality.The work of both authors is supported by a KBN grant no. 1-PO3A-008-29.[49℄



50 A. Kaªamajska and K. Pietruska-PaªubaOur results extend those of Bang [3℄ who dealt with inequalities (1.2)for one-variable funtion and the Lebesgue measure. In our previous pa-pers [26�28℄, we have disussed inequalities (1.1), (1.2), together with theirgeneralizations, for the Lebesgue measure. More preisely, in [26℄ and [28℄we have obtained variants of (1.1) and (1.2) in various logarithmi Zygmundspaes (for µ = dx) and our paper [27℄ was devoted to similar inequalities ingeneral Orliz spaes, but for the Lebesgue measure and k = 1, m = 2 only.They have arisen there as speial ases of more general inequalities
(1.3)

\
Ψ(|∇u|) dx ≤

(\
Ψ1(R1(|u|, |∇

(2)u|)) dx+
\
Ψ2(R2(|u|, |∇

(2)u|)) dx
)

and also
(1.4) ‖∇u‖LΨ (µ) ≤ C‖R1(|u|, |∇

(2)u|)‖
1/2

LΨ1(µ)
‖R2(|u|, |∇

(2)u|)‖
1/2

LΨ2(µ)
,where R1, R2 : [0,∞)2 → R+ were ontinuous funtions suh that

R1(λ1, λ2)R2(λ1, λ2) = λ1λ2.Note that inequalities (1.1) and (1.2) for k = 1, m = 2 and the Lebesguemeasure orrespond to R1(λ1, λ2) = λ1 and R2(λ1, λ2) = λ2. The resultsof [26�28℄ were based on the ruial observation that for a smooth funtion
u with bounded support the integral TΨ(|∇u|) dx an be estimated by thequantity TN(|∇u|)|u| |∇(2)u| dx (with a ertain funtion N), whih was thenthe objet of further analysis.Here we also deal with inequalities in the form (1.1) and (1.2), but ourpresent approah is essentially di�erent and brings new results. Namely, ourstarting point is the following pointwise multipliative inequality expressedin terms of the Hardy�Littlewood maximal funtions, obtained by the �rstauthor in [25℄:

M(∇(k)f)(x) ≤ C0(Mf(x))1−k/m(M(∇(m)f)(x))k/m,holding true for every f ∈ Wm,1
loc (Rn) and almost all x ∈ R

n. Then, usingYoung inequalities in Orliz spaes, we obtain ounterparts of (1.1) and (1.2)for maximal funtions (see Theorem 3.1):
(1.5)

\
Rn

Φ(CsM(∇(k)f)) dµ ≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµand
‖M(∇(k)f)‖LΦ(µ) ≤ C1‖Mf‖

1−k/m

LΦ1(µ)
‖M(∇(m)f)‖

k/m

LΦ2(µ)
,(1.6)where Φ, Φ1, Φ2 are ertain funtions, µ is an arbitrary nonnegative Radonmeasure, and s, s1, s2 are ertain positive numbers. Inequality (1.6) requires

Φ, Φ1, Φ2 to be N-funtions, but (1.5) is valid for some nononvex funtionsas well. In Setion 4 inequalities (1.5) and (1.6) are then transformed into



Gagliardo�Nirenberg inequalities 51(1.1) and (1.2). This is done by an appliation of various Mukenhoupt�Bloom�Kerman-type diret and reverse inequalities for maximal funtionsfrom [8, 30, 31℄, within appropriate lasses of measures.Although inequalities (1.3) and (1.4) do not follow from our new meth-ods, those derived now extend some of the previously obtained ones (for
µ = dx, k = 1, m = 2) to wider lasses of admissible funtions and mea-sures. More preisely, when we restrit ourselves to k = 1, m = 2, µ = dx,then the Gagliardo�Nirenberg inequalities (1.1) and (1.2) are a speial aseof (1.3) and (1.4). These are the inequalities that are generalized presently.See Setion 5 for a detailed disussion.We hope that the results presented here will ontribute to the develop-ment of regularity theory for PDE's in Orliz spaes, similarly to the lassialase. For various regularity results in Orliz�Sobolev spaes and motivationswe refer to the papers [10, 14, 47, 51℄ and their referenes.Aknowledgements. The authors would like to thank Professors: An-drea Cianhi, Amiran Gogatishvili, Miroslav Krbe and Lubo² Pik for dis-ussions.2. Preliminaries and notation. We start by realling preliminaryfats about Orliz spaes, referring e.g. to [35℄ for details.Suppose that µ is a positive Radon measure on R

n and let Φ :
[0,∞) → [0,∞) be an N -funtion, i.e. a stritly onvex funtion satisfying
limλ→0 Φ(λ)/λ = 0 and limλ→∞ Φ(λ)/λ = ∞.The weighted Orliz spae LΦ(µ) is the spae

LΦ(µ) :=
{
f measurable :

\
Rn

Φ(|f(x)|/K) dµ(x) ≤ 1 for some K > 0
}
,equipped with the Luxemburg norm

‖f‖LΦ(µ) = inf
{

K > 0 :
\

Rn

Φ(|f(x)|/K) dµ(x) ≤ 1
}
.This norm is omplete and turns LΦ(µ) into a Banah spae. When µ isthe Lebesgue measure, it is dropped from the notation. For Φ(λ) = λp with

p > 1, the spae LΦ(µ) oinides with the usual Lp(µ) spae.The symbol Φ∗ denotes the Legendre transform of an N-funtion Φ, i.e.
Φ∗(y) = supx>0[xy − Φ(x)], de�ned for y ≥ 0. It is again an N-funtion andfrom its de�nition we get the Young inequality :

xy ≤ Φ(x) + Φ∗(y) for x, y ≥ 0.(2.1)
Φ is said to satisfy the ∆2-ondition if, for some onstant c > 0 and every

λ > 0, we have
Φ(2λ) ≤ cΦ(λ).(2.2)



52 A. Kaªamajska and K. Pietruska-PaªubaIn the lass of di�erentiable onvex funtions the ∆2-ondition is equiv-alent to
λΦ′(λ) ≤ cΦ(λ),(2.3)satis�ed for every λ > 0, with a onstant c independent of λ (see e.g.[35, Theorem 4.1℄).We will need the following two properties of modular funtionals (see[35, formulas (9.20) and (9.4)℄): for every f ∈ LΦ(µ) we have

‖f‖LΦ(µ) ≤
\

Rn

Φ(|f(x)|) dµ(x) + 1,(2.4)and also ([35, formula (9.21)℄)\
Rn

Φ

(
f(x)

‖f‖LΦ(µ)

)
dµ(x) ≤ 1.(2.5)If Φ satis�es the ∆2-ondition, then (2.5) beomes an equality.The funtion Φ1 is said to dominate Φ2 (symbolially: Φ2 ≺ Φ1) if thereexist two positive onstants K1, K2 suh that Φ2(λ) ≤ K1Φ1(K2λ) for every

λ > 0. In that ase we have
‖ · ‖LΦ

2 (µ) ≤ K‖ · ‖LΦ
1 (µ) with K = K2(K1 + 1).(2.6)Funtions Φ1 and Φ2 are alled equivalent (symbolially Φ1 ≍ Φ2) when

Φ2 ≺ Φ1 and Φ1 ≺ Φ2. In partiular equivalent N-funtions give rise toequivalent Luxemburg norms.We use the standard notation: Ck
0 (Rn) for ompatly supported funtionsof lass Ck de�ned on R

n, and Lp(Rn), Lp
loc(R

n), W k,p(Rn), W k,p
loc (Rn) forthe Lp and Sobolev spaes respetively. By C̃0(R

n) we denote the ontinuousfuntions on R
n vanishing at in�nity, while L0,Φ(µ) stands for the ompletionof C̃0(R

n) in the spae LΦ(µ). By ∇(k)f we denote the vetor (Dαf)|α|=k,understood in the lassial sense (we assume that f is of lass Ck). If w is avetor in Eulidean spae then |w| stands for its standard norm.The letter c is reserved to denote a generi onstant, whose value anhange from line to line. The relevant onstants are denoted by upper-aseletters.3. Inequalities involving maximal funtions. Let f ∈ L1
loc(R

n). TheHardy�Littlewood maximal funtion of f is de�ned as
Mf(x) = sup

S : x∈S

1

|S|

\
S

|f(y)| dy,where the supremum is taken over all ubes S in R
n ontaining x with edgesparallel to the axes, and |S| denotes their Lebesgue measure (see e.g. [33, 50℄).



Gagliardo�Nirenberg inequalities 53For a vetor-valued funtion f , the symbol Mf stands for the maximalfuntion of |f |.The main result of this setion reads as follows.Theorem 3.1. Let k, m ∈ Z+ with 0 < k < m. Suppose that µ is an ar-bitrary positive Radon measure on R
n, Φ : [0,∞) → [0,∞) is a nondereasingfuntion, and F : [0,∞) → [0,∞) an N-funtion. Set

Φ1(λ) = Φ(F (λ1−k/m)), Φ2(λ) = Φ(F ∗(λk/m)).(3.1)Then there exists a onstant C = C(n) > 0 suh that for every f ∈ Cm
0 (Rn)and any numbers s, s1, s2 > 0 whih satisfy s = s

1−k/m
1 s

k/m
2 one has

(3.2)
\

Rn

Φ(CsM(∇(k)f)) dµ ≤
\

Rn

Φ1(s1Mf) dµ+
\

Rn

Φ2(s2M(∇(m)f)) dµ.Moreover , if Φ, Φ1 and Φ2 are N-funtions, then also
‖M(∇(k)f)‖LΦ(µ) ≤ C1‖Mf‖

1−k/m

LΦ1(µ)
‖M(∇(m)f)‖

k/m

LΦ2(µ)
,(3.3)with a onstant C1 independent of f ∈ Cm

0 (Rn).Proof. Our result is based on the following version of the Gagliardo�Nirenberg inequality obtained by the �rst author in [25℄ (see also [41, 42℄ forother related inequalities):
M(∇(k)f)(x) ≤ C0(Mf(x))1−k/m(M(∇(m)f)(x))k/m,(3.4)holding for every f ∈ Wm,1

loc (Rn) and almost every x (with respet to theLebesgue measure), with a onstant C0 > 0 depending on dimension only.It is not hard to show that for f ∈ C0(R
n) one has Mf ∈ C̃0(R

n). Inpartiular, for f ∈ Cm
0 (Rn) all the funtions

g(x) =
1

2C0
M(∇(k)f)(x), g1(x) = Mf(x), g2(x) = M(∇(m)f)(x)belong to C̃0(R

n), so that the inequality (3.4) holds true for every x ∈ R
n.Let s1, s2 be arbitrary positive numbers, α1 = 1 − k/m, α2 = k/m,

s = sα1
1 sα2

2 , g̃ = sg, g̃1 = s1g1, g̃2 = s2g2. Then (3.4) an be rewritten as
g̃(x) ≤

1

2
g̃1(x)α1 g̃2(x)α2 .(3.5)Sine Φ is monotone, (3.4) ombined with the Young inequality (2.1) impliesthat

Φ(g̃(x)) ≤ Φ

(
1

2
(F (g̃1(x)α1) + F ∗(g̃2(x)α2))

)(3.6)
≤ Φ(max{F (g̃1(x)α1), F ∗(g̃2(x)α2)})

≤ Φ1(g̃1(x)) + Φ2(g̃2(x)).



54 A. Kaªamajska and K. Pietruska-PaªubaIntegrating this over R
n with respet to µ gives

(3.7)
\

Rn

Φ

(
s

2C0
M(∇(k)f)

)
dµ

≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµ.

For C = (2C0)
−1, this is (3.2).To prove (3.3), assume that both ‖Mf‖LΦ1 (µ) and ‖M(∇(m)f)‖LΦ2(µ)are nonzero. This an be done without loss of generality, as otherwise f ≡ 0.Then take s1 = (‖Mf‖LΦ1(µ))

−1 and s2 = (‖M(∇(m)f)‖LΦ2(µ))
−1. Us-ing (2.5), from (3.7) we obtain TΦ(

s
2C0

M(∇(k)f)
)
dµ ≤ 2, whih furthergives that TΦ0

(
s

2C0
M(∇(k)f)

)
dµ ≤ 1, where we put Φ0(λ) = 1

2Φ(λ). Conse-quently, from the very de�nition of the Luxemburg norm,
‖M(∇(k)f)‖LΦ0(µ) ≤ 2C0s

−1 = 2C0s
−α1
1 s−α2

2 .(3.8)As equivalent N-funtions give rise to equivalent norms, this gives (3.3). Morepreisely, one applies (2.6) to get
‖M(∇(k)f)‖LΦ(µ) ≤ 3‖M(∇(k)f)‖LΦ0(µ),whih together with (3.8) implies (3.3) with C1 = 6C0.The ∆2-ondition permits to move the onstant C in (3.2) outside theintegral. In this ase we have the following result.Corollary 3.1. Let k, m ∈ Z with 0 < k < m. Suppose that µ isan arbitrary nonnegative Radon measure on R

n, F : [0,∞) → [0,∞) is anN-funtion, Φ : [0,∞) → [0,∞) is a nondereasing funtion, Φ1 and Φ2are given by (3.1), and additionally at least one of the funtions Φ, Φ1, Φ2satis�es the ∆2-ondition. Then there exists a onstant C̃ > 0 suh that forevery f ∈ Cm
0 (Rn) one has\

Rn

Φ(M(∇(k)f)) dµ ≤ C̃
( \

Rn

Φ1(Mf) dµ +
\

Rn

Φ2(M(∇(m)f)) dµ
)
.(3.9)

Proof. If Φ satis�es the ∆2-ondition, then we apply (3.7) with s = s1 =
s2 = 1 and then the ∆2-ondition. On the other hand, when one of thefuntions Φ1, Φ2, say Φ1, satis�es the ∆2-ondition, one applies (3.7) for
s1 = (2C0)

m/(m−k), s2 = 1, s = 2C0. To onlude, one uses the ∆2-ondition(2.2) for the funtion Φ1.Remark 3.1. Note that the Radon measure admissible in inequalities(3.2), (3.3), and (3.9) an be taken arbitrary. In partiular it need not beabsolutely ontinuous with respet to the Lebesgue measure. Also, we do not



Gagliardo�Nirenberg inequalities 55require the funtion Φ to be onvex in order for (3.2) and (3.9) to hold. Itsmonotoniity is su�ient.Remark 3.2. We already know from the proof of Theorem 3.1 that (3.4)implies (3.2). On the other hand, if (3.2) is satis�ed for an arbitrary Radonmeasure µ and arbitrary Φ, F , s, s1, s2 as in the statement of Theorem 3.1,then (3.2) implies (3.4). Indeed, one we take µ = δ{x} to be the Dirameasure, Φ = id, s = s1 = s2 = 1 and F (λ) = λm/(m−k), we arrive at
M(∇(k)f)(x) ≤ C(Mf(x) + M(∇(m)f)(x)).Then (3.4) is obtained by the lassial resaling argument: �rst substitute

ft(x) = f(tx) in the inequality above and then optimize with respet to
t > 0.Remark 3.3. An obvious orollary of (3.4) is the following inequality,holding for an arbitrary nondereasing funtion Φ and f ∈ Cm

0 (Rn):\
Rn

Φ(M(∇(k)f)) dµ ≤
\

Rn

Φ(C0(Mf)1−k/m(M(∇(m)f))k/m)) dµ,(3.10)where µ is an arbitrary Radon measure, k, m ∈ N, 0 < k < m, and theonstant C0 is independent of f . In [26℄ we have shown that if Φ satis�es the�di�erential� ∆2-ondition (2.3) (but is not neessarily onvex) and moreover
Φ(λ)/λ2 is nondereasing, then for every f ∈ C∞

0 (Rn) we have\
Rn

Φ(|∇f |) dx ≤
\

Rn

Φ(C
√

|f | |∇(2)f |) dx.(3.11)Obviously, as |h| ≤ Mh almost everywhere, we see that both inequalities(3.10) (onsidered for µ = dx, k = 1, m = 2) and (3.11) imply\
Rn

Φ(|∇f |) dx ≤
\

Rn

Φ(C
√

Mf · M(∇(2)f)) dx,but (3.10) (for µ = dx, k = 1, m = 2) and (3.11) do not seem to be equivalent.4. Inequalities for derivatives. We now aim at transforming inequal-ities (3.2) and (3.3) into orresponding inequalities of Gagliardo�Nirenbergtype involving derivatives rather than maximal funtions.As a tool we present below some strong type inequalities for the Hardy�Littlewood maximal operator between Orliz spaes. The results summarizedin Setion 4.1 are known.4.1. Strong-type inequalities for maximal funtions. Summary of knownresults. In this setion we deal with positive absolutely ontinuous Radonmeasures on R
n, µ(dx) = w(x)dx, where w(x) is a weight funtion (a non-negative, loally integrable funtion w : R

n → [0,∞)) satisfying ertainonditions desribed below.



56 A. Kaªamajska and K. Pietruska-PaªubaThe following de�nition and the subsequent theorem are due to Bloomand Kerman (see [8℄).Definition 4.1 (the lass WΦ). Suppose that Φ : [0,∞) → [0,∞) is anN-funtion. We say that a weight w : R
n → [0,∞) of a measure µ(dx) =

w(x)dx belongs to the lass WΦ if for all ubes S ⊂ R
n and all λ > 0,\

S

Φ∗

(
Φ(λ)µ(S)

cλ|S|w(x)

)
w(x) dx ≤ Φ(λ)µ(S) < ∞,with a onstant c > 0 independent of S.If Φ(λ) = λp, p > 1, then the lass WΦ oinides with the lass of Ap-weights (see e.g. [50℄ for the de�nition).Theorem 4.1. Suppose that Φ is an N-funtion and let w be a nonneg-ative weight on R

n. Then the following two statements are equivalent :(a) For all measurable u,\
Rn

Φ(Mu(x))w(x) dx ≤
\

Rn

Φ(B|u(x)|)w(x) dx,(4.1)
with some onstant B = BΦ not depending on u.(b) Φ∗ satis�es the ∆2-ondition and w ∈ WΦ.Following [8℄, if Φ∗ satis�es the ∆2-ondition, then we write Φ ∈ ∆c

2.This theorem ompletely desribes the lass of weights for whih the in-equality (4.1) holds. In partiular, if Φ∗ does not satisfy the ∆2-ondition,then there is no weight w for whih (4.1) ould possibly hold for all mea-surable funtions u. Theorem 4.1 generalizes the Mukenhoupt theorem (seee.g. [44℄), whih asserts that the maximal operator is of strong type (p, p)if and only if the weight onsidered is an Ap-weight. After Mukenhoupt,variants of Theorem 4.1 were addressed also by Kerman and Torhinsky un-der the assumption that both Φ and Φ∗ satisfy the ∆2-ondition (see [29℄),Kokilashvili and Krbe (Theorem 8.3.1 on page 339 in [33℄) and Lai [37℄. Seealso the referenes in those papers.Remark 4.1. If Φ1 ≍ Φ2, then also Φ∗
1 ≍ Φ∗

2, and so the ∆c
2-property isshared by all equivalent funtions. It is also easy to see that if Φ1 ≍ Φ2 and

Φ1 ∈ ∆c
2, then WΦ1 = WΦ2 . Indeed, suppose that Φ1 ≍ Φ2 and w ∈ WΦ1 .Then aording to Theorem 4.1 we have\

Rn

Φ1(Mu(x))w(x) dx ≤
\

Rn

Φ1(Bu(x))w(x) dx,with a onstant B independent of u. This implies\
Rn

Φ2(C1Mu(x))w(x) dx ≤ C2

\
Rn

Φ2(C3u(x))w(x) dx,



Gagliardo�Nirenberg inequalities 57with onstants C1, C2, C3 independent of u. Substitution ũ = C1u leads toa similar inequality with C1 = 1 (and possibly di�erent C3). We may alsoassume that C2 > 1. Next, the onvexity of Φ2 together with the property
Φ2(0) = 0 give C2Φ2(λ) ≤ Φ2(C2λ), whih implies\

Rn

Φ2(Mu(x))w(x) dx ≤
\

Rn

Φ2(Cu(x))w(x) dx,with a onstant C independent of u. Finally, again from Theorem 4.1, weget w ∈ WΦ2 (and Φ2 ∈ ∆c
2), whih is exatly what we laimed.As it is usually not possible to express Φ∗ in a losed form, below wepresent a quantitative tool whih permits one to deide whether a givenfuntion belongs to the lass ∆c

2. It is basially taken from [35, Theorem 4.3℄.Sine slight modi�ations are needed, the proof is given in the Appendix.Proposition 4.1. Suppose that Φ : [0,∞) → [0,∞) is a ontinuouslydi�erentiable N -funtion. Then the following three statements are equiva-lent :(D1) Φ ∈ ∆c
2,(D2) there exists a onstant α > 1 suh that for all t > 0 we have

tΦ′(t)/Φ(t) ≥ α,(D3) there exists a onstant α > 1 suh that Φ(t)/tα is nondereas-ing.Results similar to Theorem 4.1 are also available when Φ∗ does not satisfythe ∆2-ondition. In this ase one has to deal with two distint Orliz spaes
LΦ and LΨ . For related results we refer to [2, 8, 13, 17, 29�31, 33, 37, 48℄.Below (Theorem 4.2) we present two results whih were inluded in Kita'spapers [30, 31℄. For ompleteness, also the proof of Theorem 4.2 is given inthe Appendix.To ontinue, we reall two further lasses of weights.Definition 4.2. We say that a weight funtion w : R

n → [0,∞) belongsto the A1-lass (w ∈ A1) if there exists a onstant C > 0 suh that for everyopen ube S ⊆ R
n we have

1

|S|

\
S

w(y) dy ≤ C ess inf
x∈S

w(x).

Definition 4.3. We say that a weight funtion w : R
n → [0,∞) belongsto the A′

∞-lass (w ∈ A′
∞) if there exists a onstant C > 0 suh that forevery open ube S ⊆ R

n we have
1

|S|

\
2S

w(y) dy ≥ C ess sup
x∈S

w(x).



58 A. Kaªamajska and K. Pietruska-PaªubaFollowing Kita, for a weight funtion w : R
n → [0,∞), we write

(4.2) R0(w) =
{
f measurable: \

{|f |>t}

|f(x)|w(x) dx < ∞ for every t > 0
}
.

Theorem 4.2. Suppose that a, b : [0,∞) → [0,∞) are funtions suhthat a(s)/s is loally integrable on (0,∞),
1\
0

a(t)

t
dt < ∞ and b(t) =

t\
0

a(s)

s
ds.Set

Φ(t) =

t\
0

a(s) ds and Ψ(t) =

t\
0

b(s) ds.(4.3)Then the following two statements hold true:
1. If w ∈ A1, then for every f ∈ L1

loc ∩R0(w),\
Rn

Φ(Mf(x))w(x) dx ≤ K1

\
Rn

Ψ(|f(x)|)w(x) dx.(4.4)
2. If w ∈ A′

∞, then for every f ∈ L1
loc ∩R0(w),\

Rn

Ψ(|f(x)|)w(x) dx ≤ K2

\
Rn

Φ(Mf(x))w(x) dx.(4.5)The onstants K1, K2 > 0 do not depend on f nor on Φ and Ψ , but only onthe weight funtion w.Inequality (4.5) is an example of a reverse strong-type inequality for theHardy�Littlewood maximal funtion. Observe that sine |u| ≤ |Mu| a.e., itis always true with Φ = Ψ and an arbitrary weight funtion w. Other resultsin this diretion, for logarithmi spaes L(log L)k, were previously obtainedby Favo, Gatto and Gutiérrez [15℄ and by Anderson and Young [1℄.It remains an open problem to desribe the lass of weights that appearin (4.4) with Φ and Ψ as in (4.3).4.2. Interpolation inequalities for derivatives. Using Theorems 4.1 and4.2 we an now obtain the Gagliardo�Nirenberg inequalities for derivativesin Orliz spaes.Our �rst theorem �ts the Bloom�Kerman setting.Theorem 4.3. Suppose that Φ : [0,∞) → [0,∞) and F : [0,∞) →
[0,∞) are two N-funtions. Let µ(dx) = w(x)dx, where w is a nonnegativeweight on R

n. Take k, m ∈ Z+, 0 < k < m, and de�ne
Φ1(λ) = Φ(F (λ1−k/m)), Φ2(λ) = Φ(F ∗(λk/m)).(4.6)If Φ1, Φ2 are N-funtions of lass ∆c

2 and w ∈ WΦ1∩WΦ2 (see De�nition 4.1),then for every f ∈ Cm
0 (Rn), and arbitrary positive numbers s, s1, s2 suh that
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s = s

1−k/m
1 s

k/m
2 , one has

(4.7)
\

Rn

Φ(s|∇(k)f |) dµ ≤
\

Rn

Φ1(s1B1|f |) dµ +
\

Rn

Φ2(s2B2|∇
(m)f |) dµ,

(4.8) ‖∇(k)f‖LΦ(µ) ≤ B3‖f‖
1−k/m

LΦ1(µ)
‖∇(m)f‖

k/m

LΦ2(µ)
,where the onstants Bi are independent of f and si.Proof. As Φ is inreasing, and for every measurable funtion u one has

|u| < Mu a.e., using (3.7) we obtain\
Rn

Φ

(
s

2C0
|∇(k)f |

)
dµ ≤

\
Rn

Φ

(
s

2C0
M(∇(k)f)

)
dµ

≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµ,

where s1, s2 > 0 are arbitrary and s = s
1−k/m
1 s

k/m
2 . Aording to Theo-rem 4.1, for all measurable u we have T

Rn Φi(Mu) dµ ≤
T
Rn Φi(BΦi

|u|) dµ for
i = 1, 2, whih gives\

Rn

Φ

(
s

2C0
|∇(k)f |

)
dµ ≤

\
Rn

Φ1(s1BΦ1 |f |) dµ +
\

Rn

Φ2(s2BΦ2 |∇
(m)f |) dµ.

Now it su�es to substitute f̃ = 2C0f in the equation above, whih resultsin (4.7) with Bi = 2C0BΦi
where BΦi

are the onstants from Theorem 4.1and C0 is taken from (3.4).For the proof of (4.8) �rst note that the inequality |u| ≤ Mu implies
‖u‖LΦ(µ) ≤ ‖Mu‖LΦ(µ). Next, it an be derived from Theorem 4.1 thatfor an arbitrary measurable funtion u one has ‖Mu‖LΦi (µ) ≤ B̃i‖u‖LΦi(µ),with B̃i independent of u, provided Φi ∈ ∆c

2 and µ ∈ WΦ. Now (4.8) followsdiretly from (3.3).Remark 4.2.(i) Choosing s = s1 = s2 = 1 (resp. s1 = B−1
1 , s2 = B−1

2 ) in (4.7) underthe assumptions of Theorem 4.3 we get, for all f ∈ Cm
0 (Rn),\

Rn

Φ(|∇(k)f |) dµ ≤
\

Rn

Φ1(B1|f |) dµ +
\

Rn

Φ2(B2|∇
(m)f |) dµ(4.9) and \

Rn

Φ(B̃|∇(k)f |) dµ ≤
\

Rn

Φ1(|f |) dµ +
\

Rn

Φ2(|∇
(m)f |) dµ.(4.10)

The onstants B̃, B1, B2 do not depend on f .



60 A. Kaªamajska and K. Pietruska-Paªuba(ii) If additionally at least one of the funtions Φ, Φ1 or Φ2 satis�es the
∆2-ondition, then\

Rn

Φ(|∇(k)f |) dµ ≤ C
( \

Rn

Φ1(|f |) dµ +
\

Rn

Φ2(|∇
(m)f |) dµ

)
,(4.11) with a onstant C independent of f . See the proof of Corollary 3.1.If either Φ∗

1 or Φ∗
2 does not satisfy the ∆2-ondition, then the Bloom�Kerman theorem is not appliable. Instead, we use Kita's results summarizedin Theorem 4.2. This leads to the following theorem.Theorem 4.4. Let k, m ∈ Z+ with 0 < k < m and µ(dx) = w(x)dx,where w ∈ A1 ∩ A′

∞. Suppose that Φ0 : [0,∞) → [0,∞) is an inreasingfuntion of lass C1((0,∞)) suh that Φ0(0) = (Φ0)
′
+(0) = 0, and that F :

[0,∞) → [0,∞) is an N-funtion of lass C1 Set
Φ1(λ) = Φ0(F (λ1−k/m)), Φ2(λ) = Φ0(F

∗(λk/m)).Assume further that T10 Φi(v)
v2 dv < ∞ for i = 0, 1, 2, and de�ne

Ψi(λ) =

1\
0

Φi(λv)

v2
dv, i = 0, 1, 2.(4.12)Then there exist onstants C, K > 0 suh that for every f ∈ Cm

0 (Rn) andfor any positive numbers s, s1, s2 suh that s = s
1−k/m
1 s

k/m
2 one has\

Rn

Ψ0(Cs|∇(k)f |) dµ ≤ K
( \

Rn

Ψ1(s1|f |) dµ +
\

Rn

Ψ2(s2|∇
(m)f |) dµ

)
.(4.13)Moreover , if Ψ1 and Ψ2 are N-funtions, then also

‖∇(k)f‖LΨ0(µ) ≤ K̃‖f‖
1−k/m

LΨ1(µ)
‖∇(m)f‖

k/m

LΨ2(µ)
,(4.14)with the onstant K̃ independent of f .Remark 4.3. The onstant C in (4.13) is taken from (3.2) and dependson n only.Proof. By (3.7), we have

I :=
\

Rn

Φ0

(
s

2C0
M(∇(k)f)

)
dµ

≤
\

Rn

Φ1(s1Mf) dµ +
\

Rn

Φ2(s2M(∇(m)f)) dµ =: I1 + I2,

where s1, s2 > 0 are arbitrary and s = s
1−k/m
1 s

k/m
2 . An easy omputationshows that Ψ ′

i(λ) =
Tλ
0(Φ′

i(τ)/τ) dτ , and Ψ ′′
i (λ) = Φ′

i(λ)/λ for i = 0, 1, 2.



Gagliardo�Nirenberg inequalities 61Therefore the assumptions of Theorem 4.2 are satis�ed for pairs (Φi, Ψi)with i = 0, 1, 2. This implies\
Rn

Ψ0

(
s

2C0
|∇(k)f |

)
dµ ≤ K2I,

I1 ≤ K1

\
Rn

Ψ1(s1|f |) dµ, I2 ≤ K1

\
Rn

Ψ2(s2|∇
(m)f |) dµ,and (4.13) follows with K = K1K2, where K1 and K2 are the onstantsfrom (4.4) and (4.5). To get (4.14), we assume that both summands on theright-hand side of (4.13) are nonzero; then we use (4.13), hoosing s1 =

(‖f‖LΨ1(µ))
−1 and s2 = (‖∇(m)f‖LΨ2(µ))

−1. This results in
1

2K

\
Rn

Φ0

(
s|∇(k)f |

2C0

)
dµ ≤ 1.Clearly 1

2K Ψ0(
λ

2C0
) ≍ Ψ0(λ), and so (4.14) follows diretly from (2.6), with

K̃ = 2C0(2K + 1).Remark 4.4.(i) Taking s1 = s2 = 1 in (4.13) we get\
Rn

Ψ0(C|∇(k)f |) dµ ≤ K
( \

Rn

Ψ1(|f |) dµ +
\

Rn

Ψ2(|∇
(m)f |) dµ

)
,(4.15) where C and K are independent of f .(ii) If the assumptions of Theorem 4.4 are satis�ed, and additionally atleast one of the funtions Ψ0, Ψ1 or Ψ2 satis�es the ∆2-ondition, then\

Rn

Ψ0(|∇
(k)f |) dµ ≤ C

( \
Rn

Ψ1(|f |) dµ +
\

Rn

Ψ2(|∇
(m)f |) dµ

)
,(4.16) with a onstant C independent of f . Arguments are similar to thosein Corollary 3.1 and Remark 4.2.Examples of triples (Ψ0, Ψ1, Ψ2) satisfying (4.13) and (4.14) are given inSetion 6.5. Further disussion. Comments and remarks5.1. Additional omments onerning Theorems 4.3 and 4.4. We startwith the following auxiliary observations onerning funtions that appearin Kita's theorem (Theorem 4.2).Proposition 5.1. Suppose that Φ and Ψ are de�ned by (4.3), with aand b satisfying the assumptions of Theorem 4.2. Then we have:(1) Φ is nondereasing , Ψ is onvex , and Φ(0) = Ψ(0) = 0. For every

t > 0 we have Φ ∈ W 1,1(0, t) and Ψ ∈ W 2,1(0, t).



62 A. Kaªamajska and K. Pietruska-Paªuba(2) Φ and Ψ an be related through
Φ(t) = tΨ ′(t) − Ψ(t).(5.1) If Ψ is stritly onvex , then Φ(t) = Ψ∗(Ψ ′(t)).(3) Φ and Ψ an also be related through an integral identity

Ψ(λ) = λ

λ\
0

Φ(v)

v2
dv =

1\
0

Φ(λv)

v2
dv.(5.2)(4)

Φ(t) ≤ Ψ(2t) for all t > 0.(5.3)(5) If a(t) > 0 for t > 0, then Ψ∗ satis�es the ∆2-ondition if and onlyif Φ(t) ≥ βΨ(t) for some β > 0.(6) If a(t) > 0 for t > 0, then Ψ ∈ ∆c
2 if and only if Φ and Ψ areequivalent N-funtions.(7) If a(t) > 0 for t > 0, then Φ ∈ ∆c

2 if and only if Ψ ∈ ∆c
2.Proof. (1) follows diretly from the de�nition and (2) is veri�ed by ele-mentary di�erentiation.Let us prove (3). Reversing the order of integration in the de�nition of Ψ ,we have

Ψ(λ) =

λ\
0

t\
0

Φ′(u)

u
du dt = λ

λ\
0

Φ′(u)

u
du − Φ(λ).(5.4)As

Φ(λ)

λ
=

1

λ

λ\
0

a(τ) dτ ≤

λ\
0

a(τ)

τ
dτ,we see that limλ→0 Φ(λ)/λ = 0. Integrating (5.4) by parts we obtain Ψ(λ) =

λ
Tλ
0(Φ(u)/u2) du. A simple substitution u = λv in this integral gives (5.2).To see (4), observe that

Φ(t) = tΨ ′(t) − Ψ(t) ≤

2t\
t

Ψ ′(u) du − Ψ(t) = Ψ(2t) − 2Ψ(t),i.e. Φ(t) + 2Ψ(t) ≤ Ψ(2t).(5) follows from the identity
tΨ ′(t)

Ψ(t)
=

Φ(t) + Ψ(t)

Ψ(t)
= 1 +

Φ(t)

Ψ(t)and Proposition 4.1.The �if� part of (6) is obtained diretly from (4) and (5). For the onverse,assume that Φ ≍ Ψ . Sine the Lebesgue measure belongs to A1, from Kita's
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Φ(Mf(x)) dx ≤ K1

\
Ψ(|f(x)|) dx,whih yields \

Φ(Mf(x)) dx ≤ K̃1

\
Φ(C|f(x)|) dx.Next, as for every onvex funtion suh that Φ(0) = 0 and for every N > 1one has Φ(Nλ) ≥ NΦ(λ), the onstant K̃1 an be inorporated into theonstant C inside the argument of Φ, and we obtain exatly (4.1). Thereforefrom the Bloom�Kerman theorem (Theorem 4.1) we an infer that Φ ∈ ∆c

2.As Φ ≍ Ψ , we have Ψ ∈ ∆c
2, whih follows from (D3) of Proposition 4.1.So (6) is proven.To see (7), we only need to show that Φ ∈ ∆c

2 implies Φ ≍ Ψ . But this islear: the inequality Φ(t) ≤ Ψ(2t) is always true, and the reverse dominationfollows from Proposition 4.1. Indeed, Φ ∈ ∆c
2 is equivalent to the fat that

Φ(λ)/λα is nondereasing for some α > 1. Therefore
Ψ(λ) = λ

λ\
0

Ψ(t)

tα
1

t2−α
dt ≤ λ1−αΦ(λ)

λ\
0

1

t2−α
dt =

1

α − 1
Φ(λ).

Now we make the following remarks.Remark 5.1. The representation (5.2) was used in formula (4.12).Remark 5.2. Let dµ(x) = w(x)dx be a weighted measure and let Ψ ∈∆c
2be an inreasing funtion. Then from Proposition 5.1(6), we an infer that Φand Ψ are equivalent. Aording to Kita's results (Theorem 4.2) we see thatthe Hardy�Littlewood maximal operator satis�es an inequality of the form\

Rn

Ψ(Mf(x))w(x) dx ≤ C1

\
Rn

Ψ(C2|f(x)|)w(x) dx(5.5)

≤
\

Rn

Ψ(C3|f(x)|)w(x) dx,

with onstants C1, C2, C3 independent of f , provided w ∈ A1∩A′
∞. Theorem4.1 gives more, namely that (5.5) is satis�ed whenever w ∈ WΨ .Note that, as A1 =

⋂
Ψ WΨ , the lass WΨ is substantially larger than

A1 ∩ A′
∞. Therefore, when Ψ ∈ ∆c

2, Theorem 4.1 extends Theorem 4.2 to awider lass of measures.Remark 5.3. For measures µ ∈ A1∩A′
∞, Theorem 4.4 implies the resultsof Theorem 4.3.Indeed, suppose that (Φ0, Φ1, Φ2) and (Ψ0, Ψ1, Ψ2) are two triples of fun-tions that appear in Theorem 4.4. Assume µ(dx) = w(x)dx, w ∈ A1 ∩ A′

∞,
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1 < k < m, s1, s1 > 0, s = s

1−k/m
1 s

k/m
2 . Then the inequalities\

Rn

Ψ0(Cs|∇(k)f |) dµ ≤ K
( \

Rn

Ψ1(s1|f |) dµ +
\

Rn

Ψ2(s2|∇
(m)f |) dµ

)

and
‖∇(k)f‖LΨ0(µ) ≤ K̃‖f‖

1−k/m

LΨ1(µ)
‖∇(m)f‖

k/m

LΨ2(µ)
,hold with onstants C, K, K̃ independent of f . By Proposition 5.1(4), forevery λ > 0 one has Φ0(λ) ≤ Ψ0(2λ), and so\

Φ0

(
Cs

2
|∇(k)f |

)
dµ ≤

\
Ψ0(Cs|∇(k)f |) dµ.Suppose additionally that Φ1, Φ2 ∈ ∆c

2, so that the assumptions of Theo-rem 4.4 are satis�ed. By Proposition 5.1(6) we have Ψi ≍ Φi, thus Ψi ∈ ∆c
2as well. Therefore, by Proposition 5.1(5), we get βiΨi(λ) ≤ Φi(λ). Theseobservations (used for (2/C)f instead of f) lead to the inequalities\

Φ0(s|∇
(k)f |) dµ ≤ K1

(\
Φ1(s1B̃1|f |) dµ +

\
Φ2(s2B̃2|∇

(m)f |) dµ
)

and
‖∇(k)f‖LΦ0(µ) ≤ K̃1‖f‖

1−k/m

LΦ1(µ)
‖∇(m)f‖

k/m

LΦ2(µ)
,whih are the same as (4.7) and (4.8), up to multipliative onstants.Remark 5.4. For some funtions Φ for whih the assumptions of The-orem 4.3 fail, Theorem 4.4 an still be applied. For example, suppose thatthe funtion Φ in Theorem 4.3 does not satisfy the ∆c

2-ondition. Choose
F (λ) = λm/(m−k). Then Φ1(λ) = Φ(λ) and Φ2(λ) = Φ(cλ) do not satisfythe ∆c

2-ondition either. Therefore Theorem 4.3 annot be applied to obtainGagliardo�Nirenberg inequalities within the single Orliz spae LΦ(µ) (theLandau�Kolmogorov inequalities). But in this ase Theorem 4.4 an be usedand yields the desired inequality, at least for measures µ ∈ A1 ∩ A′
∞.6. Examples. We start with a single Orliz spae LΨ (µ).Example 6.1 (Kolmogorov�Stein inequalities). Suppose that µ(dx) =

w(x)dx and either {Ψ ∈ ∆c
2 and w ∈ WΨ} or {Ψ is an arbitrary N-funtionand w ∈ A1 ∩ A′

∞}. Take F (λ) = λm/(m−k), so that F ∗(λ) = cλm/k with
c = ck,m < 1. Then we get Ψ1(λ) = Ψ(λ) and Ψ2(λ) = Ψ(cλ) with a onstant
c < 1. Therefore it follows from Theorems 4.3 and 4.4 that in either ase wehave \

Rn

Ψ(Cs|∇(k)f |) dµ ≤ K
( \

Rn

Ψ(s1|f |) dµ +
\

Rn

Ψ(s2|∇
(m)f |) dµ

)(6.1)



Gagliardo�Nirenberg inequalities 65for every f ∈ Cm
0 (Rn) and arbitrary s, s1, s2 > 0 suh that s = s

1−k/m
1 s

k/m
2 ,with onstants C, K independent of f . Furthermore,

‖∇(k)f‖LΨ (µ) ≤ C̃‖f‖
1−k/m

LΨ (µ)
‖∇(m)f‖

k/m

LΨ (µ)
(6.2)with a onstant C̃ independent of f . Inequalities (6.2) for a one-variablefuntion f and the Lebesgue measure were reently obtained by Bang andoauthors [3℄ diretly from the lassial Kolmogorov inequality, by means ofthe onvolution tehnique due to Stein.Example 6.2 (Gagliardo�Nirenberg inequalities). Take Φ(λ) = λq, let
p, r > 1 be suh that

1

q
=

(
1 −

k

m

)
1

p
+

k

m

1

r
,and let

F (λ) =
1

s
λs with s =

m

m − k

p

q
.Then

F ∗(λ) =
1

s∗
λs∗ and s∗ =

m

k

r

q
.Aording to Theorem 4.3 we have Φ1(λ) ≍ λp, Φ2(λ) ≍ λr and all thesefuntions, together with their Legendre transforms, satisfy the ∆2-ondition.Realling that for Φ(λ) = |λ|κ we have WΦ = Aκ where Aκ is the Muken-houpt lass (see e.g. [44℄), by Theorem 4.3 and Remark 4.2 we obtain\

Rn

|∇f |q dµ ≤ C
( \

Rn

|f |p dµ +
\

Rn

|∇(2)f |r dµ
)

and also
‖∇(k)f‖Lq(µ) ≤ C‖f‖

1−k/m
Lp(µ) ‖∇(m)f‖

k/m
Lr(µ),provided that µ ∈ Ap ∩ Ar, with a onstant C independent of f . These andother general interpolation inequalities in weighted Lκ spaes equipped withMukenhoupt weights were previously obtained by the �rst author in [25℄.Our next example deals with the ase when Φ ∈ ∆2 ∩ ∆c

2 and it is nothomogeneous.Example 6.3 (logarithmi inequalities). For s > 1 and κ ∈ R let
Ms,κ(λ) = λs ln(2 + λ)κ.Suppose that µ(dx) = w(x)dx is a nonnegative weighted measure on R

n.Write ‖ · ‖(s,κ,µ) = ‖ · ‖(M(s,κ),µ), where µ is dropped from the notation if itis the Lebesgue measure. In this ase we obtain the following result.



66 A. Kaªamajska and K. Pietruska-PaªubaTheorem 6.1. Let k, m ∈ Z+ with 0 < k < m. Suppose that p, q, r > 1and α, β, γ ∈ R satisfy the onditions
1

q
=

(
1 −

k

m

)
1

p
+

k

m

1

r
,

α

q
=

(
1 −

k

m

)
β

p
+

k

m

γ

r
,(6.3)and let µ(dx) = w(x)dx be a weighted measure with w ∈ WMp,β

∩ WMr,γ .Then for every funtion f ∈ Cm
0 (Rn) we have

(6.4)
\
|∇(k)f |q ln(2 + |∇(k)f |)α dµ

≤ C
(\

|f |p ln(2 + |f |)β dµ +
\
|∇(m)f |r ln(2 + |∇(m)f |)γ dµ

)
,and also

‖∇(k)f‖(q,α,µ) ≤ C‖f‖
1−k/m
(p,β,µ) ‖∇

(m)f‖
k/m
(r,γ,µ),with a onstant C independent of f .Proof. It is lear that

Ms1,κ1 ◦ Ms2,κ2(λ) ≍ λs1s2(ln(2 + λ))κ1+s1κ2 = Ms1s2,κ1+s2κ2(λ).Also, it is elementary to hek that M∗
s,κ ≍ Ms∗,−κ(s∗−2). This is so beause

Ms,κ(λ) ≍ λs for λ small, and Ms,κ(λ) ≍ λs(lnλ)κ for large values of λ.Consequently, M∗
s,κ(λ) ≍ λs∗ for λ small and M∗

s,κ(λ) ≍ λs∗(lnλ)−κ(s∗−1)for λ large (see Theorem 7.1 of [35℄).Suppose now that q, p, r, α, β, γ satisfy (6.3). Then one applies Theo-rem 4.3 for Φ = Mq,α and F = Ms,κ, whih is allowed as all the funtionsonsidered belong to the lass ∆c
2. From the just proven properties of thefuntions Ms,κ one veri�es that

Φ1(λ) ≍ λsq(1−k/m)(ln(2 + λ))α+κq, Φ2(λ) ≍ λs∗qk/m(ln(2 + λ))α−qκ(s∗−1),and hoosing s = p
q

m
m−k , κ = β−α

q one gets Φ1(λ) ≍ Mp,β(λ) and Φ2(λ) ≍

Mr,γ(λ). The theorem is proven.When w(x) ≡ 1 this result, but within a narrower lass of parameters,was obtained in [28℄, as a speial ase of more general inequalities of theform (1.3), (1.4) adapted to logarithmi spaes.We also refer to that paper for some details about logarithmi-type N-funtions that were only skethed above. Finally, note that for α = µ = γ
= 0 we get the Gagliardo�Nirenberg inequalities disussed in Example 6.2.In our next example all the funtions Φ, Φ1 and Φ2 belong to the lass ∆c

2,but none of them satis�es the ∆2-ondition.Example 6.4 (exponential inequalities). Now we present inequalities forexponential N-funtions.



Gagliardo�Nirenberg inequalities 67Theorem 6.2. Let k, m ∈ Z+ with 0 < k < m. Suppose that p, q, r > 1and α, β, γ > 0 satisfy the following onditions:
1

q
=

(
1 −

k

m

)
1

p
+

k

m

1

r
,

1

α
=

(
1 −

k

m

)
1

β
+

k

m

1

γ
.(6.5)Then for every f ∈ Cm

0 (Rn) one has
(6.6)

\
Rn

|∇(k)f |q exp(|∇(k)f |α) dµ

≤ C
( \

Rn

|f |p exp(C1|f |
β) dµ +

\
Rn

|∇(m)f |r exp(C2|∇
(m)f |γ) dµ

)
;and also

‖∇(k)f‖LΦ(µ) ≤ C̃3‖f‖
1−k/m

LΦ1(µ)
‖∇(m)f‖

k/m

LΦ2(µ)
,(6.7)where the onstants C, C1, C2, C3 are independent of f ,

Φ(λ) = λq exp(λα), Φ1(λ) = λp exp(λβ), Φ2(λ) = λr exp(λγ),and µ(x) = w(x)dx, where w ∈ WΦ1 ∩ WΦ2 .Proof. Take F (λ) = λs1 exp((s2 − s1) ln(2 + λ)), where the parameters
s1, s2 > 1 will be determined later. Then F is an N-funtion, and more-over, F (λ) ∼ λs1 for λ lose to 0 and F (λ) ∼ λs2 for λ lose to ∞. Hene
F ∗(λ) ∼ λs∗1 for λ lose to 0 and F ∗(λ) ∼ λs∗2 for λ lose to ∞. On the otherhand, we have Φ(λ) ∼ λq for λ lose to 0 and Φ(λ) ∼ exp(λα) for λ loseto ∞. Therefore if we take s1 = p/q(1 − k/m), s2 = β/(1 − k/m)α and useondition (6.5) we obtain

Φ1(λ) ∼ Φ1(λ) =: Φ(F (λ1−k/m)), Φ2(λ) ∼ Φ2(λ) =: Φ(F ∗(λk/m)).Next, as w ∈ WΦ1 ∩ WΦ2 , aording to Remark 4.1, we see that ω ∈
WΦ1

∩ WΦ2
. Moreover, by Proposition 4.1 we have Φ1, Φ2 ∈ ∆c

2 and there-fore Φ1, Φ2 ∈ ∆c
2 as well. Hene, it su�es to apply Theorem 4.3 with thefuntions (Φ,Φ1, Φ2) and again use the fat that Φ1 ∼ Φ2 and Φ2 ∼ Φ2.Remark 6.1. In our previous paper (see Example 8.7 in [27℄), frommore general inequalities we derived inequalities similar to (6.6) and (6.7)for k = 1, m = 2, but with parameters p, q, r, α, β, γ satisfying

(6.8) q > 2, α ∈ (0, 2),
1

2p
+

1

2r
=

1

q
, β =

sα

2 − α
, γ =

s∗α

2 − α
and s =

2p

q
.In partiular, for those parameters we have

1

2β
+

1

2γ
=

2 − α

2α
<

1

α
.This shows that inequalities (6.6) and (6.7) obtained in Theorem 6.2 (reduedto k = 1, m = 2, µ ≡ dx, p > 2, α ∈ (0, 2)) are valid for a broader range ofparameters than the exponential inequalities from [27℄.



68 A. Kaªamajska and K. Pietruska-Paªuba7. Appendix7.1. Proof of Proposition 4.1. It is a slight modi�ation of the proof of[35, Theorem 4.3℄, where the ∆2-ondition was assumed only for large valuesof t.As (Φ(t)
tα

)′
= tΦ′(t)−αΦ(t)

tα+1 , the equivalene (D2)⇔(D3) is obvious.Set Φ′(t) = p(t), (Φ∗)′(s) = q(s) = p−1(s). Then
Φ(t) = tp(t) − Φ∗(p(t)) for t > 0,and similarly
Φ∗(s) = sq(s) − Φ(q(s)) for s > 0.(7.1)To see that (D1)⇒(D2), suppose that Φ∗ satis�es the ∆2-ondition, i.e.there exists β > 0 suh that

sq(s)

Φ∗(s)
≤ β for every s > 0.(7.2)As Φ∗ is stritly onvex, we have sq(s) > Φ∗(s), so that β > 1. Inserting(7.1) into (7.2) gives

sq(s)

sq(s) − Φ(q(s))
≤ β.As for t = q(s) one has sq(s) = tp(t), we get

tp(t)

tp(t) − Φ(t)
≤ β,and further

tΦ′(t)

Φ(t)
≥

β

β − 1
=: α > 1.It is lear that this reasoning an be reversed, proving also the impliation(D2)⇒(D1).7.2. Proof of Theorem 4.2. We start with two lemmas. For the proof ofthe �rst one we refer for example to [31, Lemma 3.2℄.Lemma 7.1. Suppose w ∈ A1 and µ = ωdx. Then for eah f ∈ R0(µ)(see (4.2)) one has

µ{Mf > t} ≤
C

t

∞\
t/2

µ{|f | > s} ds for all t > 0,where C is a onstant independent of f .The other lemma is due to Mukenhoupt [44℄.Lemma 7.2. Suppose w ∈ A′
∞. Then for eah f ∈ R0(µ) one has

µ{Mf > t} ≥
C

t

∞\
t

µ{|f | > s} ds for all t > 0,where C is a onstant independent of f .



Gagliardo�Nirenberg inequalities 69Proof of Theorem 4.2. For a measurable f we an write\
Rn

Φ(Mf) dµ =
\

(0,∞)

Φ′(s)µ{Mf > s} ds

(these integrals are either simultaneously in�nite, or both �nite and equal).By Lemma 7.1 this is further equal to\
(0,∞)

a(s)µ{Mf > s} ds ≤ C

∞\
0

a(s)

s

(∞\
s

µ{|f | > t} dt
)

ds

= C

∞\
0

µ{|f | > t}

( t\
0

a(s)

s
ds

)
dt

= C

∞\
0

b(t)µ{|f | > t} dt

= C

∞\
0

Ψ ′(t)µ{|f | > t} dt = C
\

Rn

Ψ(|f |) dµ,and (4.4) is proven.It is lear that for w ∈ A′
∞ this hain of inequalities an be reversed (useLemma 7.2 instead of Lemma 7.1), giving (4.5).Remark 7.1. Note that the onstants K1 and K2 do not depend on Φand Ψ .
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