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Rademacher functions in weighted Cesaro spaces
by

JAVIER CARRILLO-ALANIS (Sevilla)

Abstract. We study the behaviour of the Rademacher functions in the weighted
Cesaro spaces Ces(w, p), for w(z) a weight and 1 < p < co. In particular, the case when
the Rademacher functions generate in Ces(w, p) a closed linear subspace isomorphic to 02
is considered.

1. Introduction. The Cesaro function spaces Ces(p) are defined by

Lre P 1/p
||f||Ces(p):<S($S’f(t)|dt> da:) <oo for 1<p<oo,

0 0

|f(t)|dt < oo for p=oc.

O e B

HfHCes(oo) = sup l
0<z<1 T
These spaces are the continuous counterpart to the classical Cesaro sequence
spaces, which have been thoroughly studied; see, for example, [6], [8], and
the references therein. Functional and geometrical properties of Ces(p) have
been studied in detail, including: duality and reflexivity; isomorphic copies
of classical sequence and function spaces; type and cotype; fixed point,
Dunford—Pettis, Banach—Saks, and Radon—-Nikodym properties; see [2], [3],
51, [3].

More recently, weighted Cesaro function spaces have been considered;
in [8] their dual space has been identified. For w(z) a weight, i.e., a measur-
able function with 0 < w(z) < co a.e., and 1 < p < oo, the weighted Cesaro
spaces Ces(w, p) are defined by

1 1 z p 1/p
1 llceson) = (S ( 17 dt) dx) <o forl<p<oo
0
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xT

1
es(w.o0) (= SUp —— t)|dt <oo for p=o0.
| £ 1l Ces(w,00) 0<x21w($)§|f( ) P

The Rademacher functions are defined by
ri(t) = sign(sin(2¥7t)), te€0,1], k > 1.

Recall that a Rademacher series Y .-, agry converges a.e. if and only if
(ar)32, € 2. For the set of Rademacher series we write

R = {gakrk (ag)pey € EQ}.

The study of the Rademacher series in function spaces is classical. The
Khintchine inequalities state, for 0 < p < oo, that {r;} generates in L ([0, 1])
a closed linear subspace R N LP([0,1]) isomorphic to £2. The behaviour of
{ri} in rearrangement invariant spaces was studied in a celebrated result
of V. A. Rodin and E. M. Semenov: for X an r.i. space on [0, 1], we have
R N X isomorphic to 2 if and only if the closure of L>([0,1]) in LM is
continuously embedded into X, where LM is the Orlicz space generated by
the Young function M (t) = exp(t?) — 1 (see [L1, Theorem 6]).

For the Cesaro spaces it was proved in [4], for the unweighted case w(x) =
z and for 1 < p < oo, that {r;} generates in Ces(p) a non-complemented
closed linear subspace isomorphic to £2. For p = oo and w(z) a quasiconcave
weight, it was also shown that

—n n

m
2
H;amu% = @il + max 5] >

(w,00) 1<n<m w
k=1

where A < B stands for c;A < B < ¢ A for some constants ¢1,co > 0. The
case when R N Ces(w, o0) is isomorphic to #? was characterized by means of

a condition on w(x); namely, w(z) > cz 10g§/2(2/a:) for 0 <z <1 and some
constant ¢ > 0. We will consider this condition, which we denote (P3) for
p = 00, in more generality.

In this paper we study, by means of conditions on w(x) and p, the be-
haviour of the Rademacher functions {r;} in the spaces Ces(w, p).

After the preliminaries in Section 2, we start in Section 3 discussing
several conditions, (P1) to (P5), on the weight w(z) and the index 1 <
p < oo, which are naturally related to the behaviour of the Rademacher
series in the spaces Ces(w, p).

In Section 4 we compute, under a certain condition on the weight w(z),
the norm in Ces(w, p) of a Rademacher series, showing, for 1 < p < oo, that

Hzam Ces(w (Zw””<

1 1/p
ak\ @) nallz) )
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and, for p = oo, that

e n+1
| > anr = supwoc.n (| Y k] + @) sall2).
1 Ces(w,00)  n>0 =1

where, for J, = (1/2""1,1/2"), n > 0, we have

| (a) “’”
Wpn = — T, Woop = SUP ——.
These inequalities allow describing R N Ces(w, p), studying when {ry} is a
basic sequence, studying the complementability of RNCes(w, p) in Ces(w, p),
and studying the extremal cases when the individual Rademacher functions
do not belong to Ces(w, p) and RN Ces(w, p) consists only of certain (finite)
Rademacher polynomials.

In Section 5 we consider the case when RN Ces(w, p) is isomorphic to £2.
By means of determining the norm in Ces(w, p) of the decreasing rearrange-

ment of a Rademacher series, we prove that (x/w(z)) log;/2(2/w) € LP([0,1])
is a sufficient condition for R N Ces(w, p) to be isomorphic to ¢2, for all
1 < p < oo, which is necessary in the case p = oo, and ‘almost’ necessary
for 1 <p < 0.

Particular attention is given to the power weights w(z) = z*, for A € R,
which illustrate many of the features appearing throughout the paper.

2. Preliminaries. Following Luxemburg and Zaanen (see [13]), a Ba-
nach function space on [0,1] is a linear space X of (classes of) measurable
functions on [0, 1], endowed with a complete norm || - ||x, such that g € X
and |f] < |g| a.e. implies f € X and ||f||x < ||g|][x. The associated space
X' consists of all measurable functions g on [0, 1] such that the associated
functional

o= sup { || 0900 ] £ € X, [l <1} <o
0

A Banach function space X is saturated if for every set E with m(E) > 0
there exists F' C E such that m(F) > 0 and xr € X. This property is
equivalent to the associated functional || - || xs being a norm in X’ (see [13],
Ch. 15, §68, Theorem 4]). A Banach function space is order continuous
when order bounded increasing sequences are norm convergent. In this case,
the associated space X’ coincides with the topological dual space X*. Note
that other authors use more restrictive definitions of Banach function space
1, [10].

We denote by m the Lebesgue measure on [0, 1]. The distribution function
of a measurable function f is mg(A) := m({z € [0,1] : |f(z)| > A}), A > 0.
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An r.i. space on [0, 1] is a Banach function space X such that || f||x = ||g|lx
whenever my = mg. If X is an r.i. space, then so is X’. The decreasing
rearrangement of a measurable function f is f*(¢) ;= inf{\ > 0 : ms(X\) < t},
0 <t < 1. Since f and f* have the same distribution function, we see that
f € X if and only if f* € X, and in that case || f||x = ||f*|lx for X an
r.i. space. The fundamental function of an r.i. space X is ¢x(t) := || xElx,
0 <t <1, where E is any set with m(E) = t.

A function w(z) is quasiconcave if w(0) = 0, w(x) is non-decreasing, and
w(z)/z is non-increasing.

For further details on function spaces and r.i. spaces, see [7], [9], and
[10].

3. Conditions on the weight w(z). Let 1 < p < oo and w(z) be a
weight on [0, 1]. In order to study the Rademacher functions in Ces(w, p) it
is convenient to write the norm in Ces(w,p) in the following way:

1

I £l ces(w,p) = <S (w(i;))p <ig§|f(t) dt>pdw> w for 1 < p < oo,

0 0
Fllemom = sp 2 {170 ar for p = o0
Ces(w,00) O<x21 w(:c) - ) p .

Let J,, := (1/27F1 1/2") for n > 0. We say that w(z) satisfies condition
(P1)) if, for n > 0,

P
T
Wpn 1= S <> dr <oo forl<p< oo,
w(z)
(P1) In
T
Woo,n = SUp —— < 00 for p = 0.
r€Jn W(SC)
Since w(x) is finite a.e. we find that w, , > 0 for n > 0.
Since a Banach function space, as defined in this paper, need not contain
all characteristic functions, the following result is meaningful.

PRrROPOSITION 3.1. Let 1 < p < oo and w(z) be a weight on [0,1]. If
condition (P1)) is satisfied, then the space Ces(w,p) has a saturated norm.
In particular, the associated functional || - ||eg(y py @5 a norm in Ces(w, p)'.

Proof. Since the average of x, on [0,z] vanishes for 0 < z < 1/2"+!
and it is at most 1 for 1/2”Jrl <z <1, for1l<p< oo we have

1 P n
T
Dol < | (o) 0= Sene
k=0

1/2n+1
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Analogously, [|XJ, [|ces(w,00) < SUPp<k<nWoo,k for p = oo. It follows that
X.J, € Ces(w,p) forn >0 and 1 <p < co.

For E C [0, 1] a set with m(E) > 0, there exists .J,, such that m(E N J,)
> 0. Noting that [z, lcesup) < [, sy we deduce that Ces(ew, p)

is saturated. m
We say that w(zx) satisfies condition (P2)) if z/w(x) € LP([0,1)), i.e.,
1

z \?
S() dr <oo forl<p< oo,
(P2) o \w()

T
sup —— < 00 for p = co.
0<a<1 W(7)

Note that (P2) is equivalent to r; € Ces(w, p) for all k& € N. Moreover, (P2)
can be written via the coefficients wj, ,, namely it is equivalent to

(o9}

pr,n<oo for 1 < p < o0,
n=0

SUP Woo,n, < 00 for p = oo.
n>0

We say that w(z) satisfies condition (P3) if

L, \P
S () logg/2(2/x) dr < oo forl<p< oo,

(P3) 0 w(w)
T 1/2
su lo 2/x) < 00 for p = oo.
oD, oy 082 (/) P

Condition (P3)) is equivalent to

oo
pr,n(n+1)p/2<oo for 1 <p < o0,
n=0
SUP Weon(n + 1)Y2 < 00 for p = oo.
n>0
For w(xz) a non-decreasing function, condition can be stated in
terms of the Lorentz—Zygmund spaces LP9(log L)® (see [7, §4.6]). Namely,
it is equivalent to 1/w(x) € LP/®+DP(log L)Y/2. In particular, condition
holds for 1/w(z) € L™%([0,1]) with p/(p+ 1) < r and 1 < s < o0, or
r=p/(p+1)and 1 <s<p.
We say that w(x) satisfies condition if there exists C' > 0 such
that

w
(P4*) sup 2L < ¢
n>0 Wpn

Condition (P4%) is a particular case of a more general condition. We say
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that w(x) satisfies condition (P4)) if there exist C' > 0 and M € N such that
for every n € N there exists n’ € N with

(P4) O<n-n'<M and sup-2" <C.

n>1 Wpn/

REMARK 3.2. Condition holds in the following situations.

(a) If w(z) is a quasiconcave function, then it satisfies (P4¥). Since 1/w(z)
is non-increasing it follows that wy, o is finite; since 2 /w(x) is non-decreasing,
we have wp n41/wpn <1 for n > 0.

(b) If w(x) is non-increasing, we have wpn+1 < 27Pwp . Hence,
holds provided that w, o is finite.

(¢) If z/w(x) is non-increasing, then condition depends on the
slope of the function z/w(z). In particular, it holds for 1 < p < oo when
w(x) satisfies, for some C' > 0,

w(1/2")
o = ¢

(d) A weight w(z) has the doubling property if there exists a positive
constant C' such that w(I) < Cw(2I) for every interval I, where 2I denotes
the interval with the same center as I and twice its radius, and w(I) =
§;w(z)de. If (/w(z))? has the doubling property, then condition is
satisfied. Namely, since J,11 C 2J,, we have

Jnsﬂ <wchﬂ)>pd$ : 2§n (wig)ydﬁ < CJSn <wfm)>pdx.

Hence, wpnt1 < Cwpp. In particular, (z/w(x))P has the doubling property
if it belongs to the Muckenhoupt weight class A, for some 1 < r < oo.

We say that w(z) satisfies condition (P5)) if there exists a constant C' > 0
such that for every m > 0,

o
Z wpn < Cwpm for 1 <p< o0,
(P5) n=m

SUP Woo.n < Cwoom  for p = oo.
n>m

Condition (P5)) is satisfied whenever w(z) is quasiconcave, since
1/2m 1/2m

0 1/2m+1

4. Rademacher functions in Ces(w,p). In this section we study the
space R N Ces(w, p). The following sequence space is useful to describe the
norm of a Rademacher series in Ces(w, p).
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DEFINITION 4.1. Let 1 < p < oo and w(z) be a weight on [0,1]. As-
sume that condition (P1]) holds. Let Z(w,p) be the space of all sequences
(ar)2, € % such that, for 1 < p < oo,

n+1
1/p
(@) ) = (prn( > |+ lan)alz) ) < o0,
kf
and, for p = oo,
n+1
(@)l oe) = e (| 2 on| + (@) sell2) < oo
k=1

The space Z(w, p) with the norm || - is a Banach space.

The following result gives an equivalent expression for the average of the
absolute value of a Rademacher series on a dyadic interval. We denote the
dyadic intervals of order n by I := ((j —1)/2",5/2") for 1 < j < 2" and
n > 0.

PROPOSITION 4.2. For (ay)32, € ?,1<5<2" andn >0, we have

3\1@(‘ gsk,jak’ + ||(a1<:)zo:n+1\|2) < m(lI”) Sn ‘iakrk(t)’ dt

n
< ‘ ng,jak‘ + 1(ar)rZn 11 ll2s
k=1

where ey j := signrym.
’ J

Proof. We can suppose that j = 1, which gives ¢ ; = 1; the proof in the
general case is similar.
Note that, due to the dilation properties of the Rademacher functions,

37 k=nt1 0 k=1
Consequently,
125 1 -
o= S ‘Zakrk(t)’d 2— (‘Zakrk ‘ ‘ Z akrk(t)D dt
0 k=1 k=n-+1

n
<| Zak) - [1(ax)R -
k=1

Concerning the lower bound, we obtain it by combining two inequalities.
The first one relies on the fact that, for & > n + 1, the integral of r; on
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[0,27"] vanishes. Thus,
1 27" oo 1 2—"m n
e | [ San|az |2 | Sanod]-[Sal
0 k=1 0 k=1 k=1

On the other hand, from the inverse triangle inequality and the Khintchine
inequality for L'([0,1]) it follows that

—n

2—"n ')
=8 \Zam = o= § (| 3wt 12am ) a
0

k= n+1

n
> Cll (@) illz = | D axl.
k=1

Hence,

2
1
3? ) ‘;akrk ‘dt> ‘Zak‘+0|’ (ak)ie n+1H2,

and the proof is complete. The optimal constant in the previous inequality
is C'=1/v2 (see [12]). =

For (ag)f2, € £, we denote Ag := ||(ax)324 |2, and

n
A= | > a| + @) iall2, m €N,
k=1

THEOREM 4.3. Let 1 < p < 0o and w(x) be a weight on [0,1]. Assume
that condition holds. Then the space R N Ces(w,p) is isomorphic to
H(w,p) with equivalent norms. Consequently, R N Ces(w,p) is a Banach
space.

In particular, for (ar)se, € Z(w,p) and 1 < p < 0o, we have

ISy = (| S|+ a))

and for p = oo,

oo
|2
k=1

with constants depending on p and w(zx).

n+1

> ar] + lan)i el
k=1

= supw (
Ces(w,00) n>0 oo

Proof. We prove the result for 1 < p < oo; the case p = 0o is analogous.
For = € J, = (1/2""11/2") and n > 0, from Proposition 4.2 we have

1/2n+1

1
6[ ”“—1/21@ ‘Za’“r’“ ‘ =2 ‘Za’“r’“ ’

k>1 0 k>1
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In an analogous way we obtain an upper bound:

T

Thus, for n > 0,
x

1
<2 ¢ ’dt< 24,, .
_x(S)’Zaka() < T €

E>1

1
vz

By splitting the interval [0, 1] into the intervals J,,, from we have

H ;akrk‘ Z;es(w,p) - niéo JSn (@)p <915§ ‘ i akm(t)’ dt)p dx

(1)

and

o p o0
3 H arT ‘ < 2P wpnAb
( ) ; KTk Ces(w,p) r;) P

In general, for an arbitrary weight w(x), the lower and upper bounds in
and are not equivalent. Condition provides the equivalence. For
n € N, let n’ be given by . From the triangle inequality and Cauchy—
Schwarz inequality we have

n'4+1
@ An< |3 w4 - D@ salle + (@)l

<2M —1)Y2 444,

From the fact that 0 < n —n’ < M, it follows that, for each m > 0, there
are at most M indices n € N such that n’ = m. Hence,

o0 o0

P P
g wp,n’An/H <M E wp,nAnJrl.
n=1 n=1

This, together with Ay < A1, inequality , and condition (P4)) gives

(o) o0
Z wp,n Ab < wpo Af + C Z wp,nt Apy

n=0 n=1

o
< wpo AY +2°C(M — P2 Z Wyt Ay i1
=1
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<wpo A+ 2PCM (M —lp/2prn

o0
P
< Bup § :Wp,n A1
n=0

with B, , = max{wy o, 2?CM (M — 1)P/2}. This establishes the equivalence
between the upper and lower bounds.
Completeness of RN Ces(w, p) follows since it is isomorphic to Z(w,p). =

Next we consider when {r} is a basic sequence in Ces(w,p). In partic-
ular, this will be the case when w(z) is quasiconcave.

COROLLARY 4.4. Let 1 < p < oo and w(x) be a weight on [0,1]. If
conditions (P4]) and (P5|) are satisfied, then {ry} is a basic sequence in
Ces(w, p).

Proof. Suppose that 1 < p < oo; the case p = oo is analogous.
Let my < mg. From Theorem [£.3] we have

mi mi1—2 n_l,_
H Zakrk‘ c < Aw,P( Z wp,n( ak‘ + || ak)n+2|| )
1 es(w,p) o —
1/p
Sl 5 )
n=mji—1
and
m2 m1—2 n+1 )
> B ( ( ‘ ms )
H ;akrk‘ Cestw) = P Z% Wp,n Zak + [ (ar) 2, 4oll2
= - P
n+1
+ Z an(‘zak‘Jr” aK)2, ol ) )
n=mij—1
mi1—2 n+1
> Bup( Y wpn (| 30 | + @) allz)”
n=0 k=1

<L p\1/p
+wp,m1fl‘zak‘) ;
k=1

where A, , and B,, ,, are the equivalence constants appearing in Theorem
Condition (P5)), together with the previous inequalities, yields

mi A m2
1/p Awp
DL L ow DL
k=1 k=1

which proves that {r;} is a basic sequence. =

Ces(w,p) Ces(w,p)7
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Theorem [£.3] allows studying the behaviour of the Rademacher polyno-
mials in Ces(w,p) even in the case when r, ¢ Ces(w,p) for (all) k£ € N.
In particular, we will see that if some of the coefficients w, , fail to be fi-
nite, then R N Ces(w,p) is a finite-dimensional vector space consisting of
Rademacher polynomials. Let P be the space of all Rademacher polynomi-
als, and set P? :=J, -, PY,, where, for m € N,

an = {Zakm cap € R with Zak = 0}.
k=1 k=1

PROPOSITION 4.5. Let 1 < p < oo and w(z) be a weight on [0,1].

(i) Condition holds if and only if P C RN Ces(w,p).
(ii) Assume that condition holds but condition is not satisfied.
Then
P N Ces(w,p) = P°.

In this case, r, ¢ Ces(w,p) for all k € N.
(iii) Assume that condition (P1) fails. If wpm = oo and wy, is finite
for0<n <m—1, then

Po, C RN Ces(w,p) C P
Moreover, R N Ces(w,p) = PSLH if and only if

-1 2m+1 p

S(x/> dr <oo forl<p<oo,
I\ ew

_ m+1
sup%<oo for p = oo.
zE€EJm w(x)
Otherwise, R N Ces(w,p) = PY..
(iv) If wpo = oo, then R N Ces(w,p) = {0}.

Proof. We suppose that 1 < p < oo; the proof in the case p = oo is
analogous.

For a Rademacher polynomial ) ;" agry we have A, = |> ", ai| for
n > m. It follows from that

m m—1 m » [e) 1/p
O[S, 2 i [l S )"

n=m
(i) Condition holds if r, € R N Ces(w, p) for all k& € N. Conversely,
since is equivalent to Y 7 jwp, < 00, from it follows that P C
R N Ces(w, p).
(ii) Since Y7t ar = 0 for > ;o agrr € P, from we deduce that
PO € P N Ces(w, p). On the other hand, if fails, then Y 07 wpn = 00.
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From the corresponding version of for polynomials, we have

H Z akrk‘ Ces(w,p 6\[( Z Wp,n n+1 + ‘ Zak) wp,n) 1/1’7

n=m
which shows that the space Ces(w, p) only contains those Rademacher poly-
nomials ;" | agry such that Y ;" ar = 0.
(iii) Assume that wp,, = oo. The inclusion PY, € R N Ces(w,p) follows
from (5)) and the fact that > ;v ar = 0 for Y7° | axry € PY,. On the other
hand, from we have

> p 1
H aETk > Wp.m
k;zl Ces(w.p) — (6v/2)P
Since wp , = 00, if Y 72 | agry € Ces(w, p) then we necessarily have A, 1 =
]ZmH ar] + [[(ar) oll2 = 0, that is, R N Ces(w,p) C Po,, 1.

Set 22”11 apre € an \ PO where ar = 1, for 1 < k < m, and
amt1 = —m. Since the inclusions PJ, C R N Ces(w,p) C P9, involve
finite-dimensional vector spaces, we have R N Ces(w, p) = Pm , if and only
if ZZL:’T apr, € Ces(w,p); otherwise, R N Ces(w,p) = PY. Note that, for
z € (0,1/2m+],

P
A

r m—+1 m+1

Hzam ‘ ‘Z%‘ZO,

Yo' k=1 k=1
and for x € J,, = (1/2™+1 1/2™m),

T 1

S ‘ agry(t ‘dt = 2m(z — 1/2™h).
0 k=1

3
T

i

Hence,
m+1
-1 2m+1 p
H Z akrk’ = (2m)P S <$/> dx
Ces(w,p J w(x)

+ T:Z;é an ((JJ?;)Y(;E ‘ mijl akrk(t)’ dt)pdx.

Since, for 0 < n < m, we have A, = n + (m — n + m?)!/2, there exist
constants C'1,Cy > 0, depending only on m, such that for 0 <n <m —1,

Cl < An+1 < 2An < 02-

This, together with and the fact that wp, is finite for 0 < n < m — 1,
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implies that S_7"" " apry, € Ces(w, p) if and only if

-1 2m+1 p
S (w/) dx < o0,
J,

w(z)

which proves the equivalence.
(iv) follows from (iii) and from P{ = {0}. =

Next, we consider the problem of the complementability of RN Ces(w, p)
in Ces(w,p). In [4] it was proved, for 1 < p < oo and w(z) = =z, that
R N Ces(x,p) is not complemented in Ces(z,p), and, for w(x) a quasicon-
cave function, that R N Ces(w, c0) is not complemented in Ces(w, c0). We
extend this result to spaces Ces(w,p) under the sole assumption that {ry}
is a basic sequence in Ces(w, p). In particular, this result applies for w(z) a
quasiconcave weight, and for the power weights w(z) = 2* with A < 1+1/p
(see Example [4.9| below).

We need the following lemma, which is related to the study of when
R N Ces(w, p) is isomorphic to £2 (see Section 5). Recall, for w(x) a weight
such that wy, g = 00, that from Proposition [4.5| we have RN Ces(w, p) = {0}.

LEMMA 4.6. Let 1 < p < oo and w(x) be a weight on [0,1]. Assume that
wp,o @8 finite. There exists a constant A, , > 0 such that

oo
(@il < | S|, (@) e
k=1

Ces(w,p)

Aw7p |

Proof. Let 1 < p < oo. From , we have
1/p /p

ﬁ\f ( )k:1”2— G\f

The case p = oo is analogous. =

= (jaa] + [[(@)72s ) < Hzam\

Ces(w,p)

The proof of the next result follows the steps of [4, Theorem 4], where
the case when p = oo and w(x) is quasiconcave is treated, with suitable and
necessary adaptations. For the sake of completeness, we include a full sketch
of the proof.

THEOREM 4.7. Let 1 < p < co and w(x) be a weight on [0,1]. Assume
that {ri} is a basic sequence in Ces(w,p). Then, the space R N Ces(w,p) is
not complemented in Ces(w,p).

Proof. Since {ry} is a basic sequence in Ces(w, p), we know that, for all
k € N, r, € Ces(w,p). Thus, condition is satisfied. From Proposition
Ces(w, p) has a saturated norm, and so Ces(w,p)' is a normed space.
It also follows from that L>°([0,1]) C Ces(w,p). Hence, Ces(w,p)’ C
L'([0,1]).
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Let P be a projection from Ces(w,p) onto R N Ces(w,p). Then Pf =
> on>1{bn, f)rn with ¢, € Ces(w,p)*. For 1 < p < oo, since Ces(w,p)” =
Ces(w, p)’, we have

00 1
(6) Pr=Y" (Sgn(t)f(t) dt)rn, f € Ces(w, p),
n=1 0

where g,, € Ces(w,p)’ € L*([0,1]). Since P is a projection, {(g;,7;) = ;.
For p = oo, since Ces(w, 00) is not separable, the situation is different.

However, we will see that for f in the separable part of Ces(w, o0), denoted

by Ces(w, 00),, we still have the projection P represented as in (). From

[13, Ch. 15, §70, Theorem 2| we have the decomposition

Ces(w, 00)* = Ces(w, 00)' @ (Ces(w, 00)")4,
where (Ces(w, 00)’)? is the space of all singular bounded linear functionals
on Ces(w, 00). It follows that ¢, = ¢, + 0, n > 1, where 1, € Ces(w, 00)’
and 6, € (Ces(w, o) )?. In particular,
en(f) = 07 f € Ces(w, 00)07

and, for some g,, € Ces(w,0)’ C L'([0,1]),

1

Un(f) =\ F(t)gn(t) dt, f € Ces(w,o00).

0
Note that, since we do not necessarily have 7, € Ces(w, o), it does not
follow immediately that (g;,7;) = &;;. From the fact that ry — xjo,1 €
Ces(w, 00),, we have 0y, (rr, — x[0,1)) = 0, that is,

On (1) = On(xp0,1)), Kk >1.
Since P is a projection,

(7) wn(rn) + en(rn) =1,
Un(rk) +0n(re) =0, k#n
Hence, for k > n, we have 0,,(x[0,1])) = —%¥n(7%). Moreover, since (gn) C

L([0,1]), )

lim 1y (r) = lim | g (t)rs(t) dt = 0.
k—o0 k:ﬁooo

Thus, 0, (%) = 0n(X[0,1)) = 0 for all £ > 1, which together with implies
that <g7;, T‘j> = 51]
From (g;,r;) = &;; with g, € L'([0,1]) it follows, as in [4], that there
exist h € (0,1) and ng such that, for n > ny,
1

(8) [ {on(t)rae)di| > %
h
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Next, there exists a constant C' > 0, depending on w(z) and h, such that

9) I £xh,1) lces(wp) < CNF L)
for f € L1([0,1]). For 1 < p < oo we have

1 1 x p 1/1)
HfX[h,l] ”Ces(w,p) = <S (w(az) S |f(t)‘X[h,1} (t) dt> da:)
0
S
0

0

1 1 1/p
< <§Lw(x)p dﬂ?) Il 2 (gp))-

For p = 0o, we have the analogous inequality
1

< —_— .

X111l Ces(w,00) < s e [RAIAYTEN)

The finiteness of the integral for 1 < p < oo or the supremum for p = co
follows from condition (P2]).

Define Py (f) := P(fXjn1))- Then the operator P,: L*([h,1]) — L'([0,1])
is bounded. To see this, from the Khintchine inequalities in L'([0,1]), we
have

HthHLl([o,l]) = HP(fX[h,l])HLl([O,l]) = H((fX[h,l]agn»zO:le?'
The previous equivalence, together with Lemma yields
Awpll (X h1) 90 )t llez < NP X)) Ces(w,p) -
From @ and the fact that P is a bounded operator it follows that
IP(fxna) lces@p) < NPT Xmapllceswp) < CHPIT L)

Thus, P,: L'([h,1]) — L'([0,1]) is bounded.

Since Py is weakly compact and L'([h, 1]) has the Dunford-Pettis prop-
erty, it follows that || P, (rnx[n,1))ll 21 ([0,1)) — 0 as n — oco. On the other hand,
from ., it follows, for n > ng, that

o) 1 / 1
HPh(TnX[hl )”L1 (j0,1]) = <Z <Sgk ) )1 ’ > Hgn<t)7"n(t) dt| > %,
k=1 h h

which gives a contradiction. =
From Theorem [£.7] and Corollary [£.4] we have the following.
COROLLARY 4.8. Let 1 < p < oo and w(x) be a weight on [0, 1].

(a) If conditions ([P4]) and (P5) are satisfied, then R N Ces(w,p) is not
complemented in Ces(w,p).
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(b) In particular, if w(zx) is quasiconcave, then RN Ces(w,p) is not com-
plemented in Ces(w,p).

We end this section considering the Cesaro spaces Ces(z*, p) correspond-
ing to power weights w(x) = 2, for A € R.

ExaMPLE 4.9. Let 1 < p < oo and consider Ces(x)‘,p) for A € R, that

Lrqe P 1/p
||f||Ces(x/\,p) = (S (ZL‘)‘ S |f(2)] dt> dl’) .
0

0

is,

Set § := p(1 — A) + 1. A straightforward computation shows that for 6 # 0
we have wy,,, = 1/62", whereas for § = 0 we have w,,, = In 2. Thus, in both
cases,
Wp,n+1 — 2—5'
Wp,n
Hence (P4%) holds for arbitrary A € R and 1 < p < oo. From Theorem
it follows that

(10) H Zakrk‘
k=1

Suppose 6 > 0, that is, A < 1+1/p. Then condition is satisfied. From
Corollary we know that {r;} is a basic sequence in Ces(w,p), and so
RNCes(z*, p) is not complemented in Ces(z*, p). From the Cauchy-Schwarz
inequality, we have

=1 ntl p\ 1/
< _ (o]
Ces(z,p) - (Z oné (’ ;ak‘ + H(ak)k:n+2”2) > .

n=0

n
[ ] I analle < 200+ D)2 (@)
k=1

Hence, from and for M) , a positive constant,

e

The last series converges, as > 0. This, together with Lemma implies
that the closed linear span of {r;} in Ces(z*,p) is isomorphic to ¢? (note
that in [4] this is proved in the case A =1 and 1 <p < 00).

Suppose now that § < 0, that is, A > 1+ 1/p. Then condition fails.
Thus, Ces(x/\, p) contains no single Rademacher functions, and from Propo-
sition |4.5] it only contains among the Rademacher polynomials those of the
form )" agry with )", ar = 0. But there are also infinite Rademacher
series in Ces(z*, p). To see this, let, for example, § = 0, that is, A\ = 1+1/p.

< 1 ) 1/p
< (X s+ 072) )il

n=0

Ces(z?,p)
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In this case, @ ) becomes

H Zakrk’ Ces(z 4+1/p g ( (‘ Zak‘ + H ak k= n+2” ) )

Set az, = l/k2 and asgy1 = agpro = —1/2k2 for k € N. Then, for n € N
and some C' > 0,

n
1 C
);ak] <op leiZallz <

Thus, >23° , agry € Ces(z' /P, p).
In the case p = oo, we have Woon X 271 " and so condition (P4¥)
holds. Thus, we have the equivalence

[e’s) n+1
| - aur < sup2 D (| 3 | + @) el
k=1 k=1

Ces(z},00) >0
For A < 1 it follows, as in the case 1 < p < oo, that Ces(z*, 00) is isomorphic
to £2, and R N Ces(z*, 00) is not complemented in Ces(z*,00). For A > 1,
condition (P2) is not satisfied, and so 7 ¢ Ces(z*, 00) for all k > 1.

REMARK 4.10. The previous example shows, for power weights w(x) =
2, that condition is equivalent to R N Ces(z*, p) being isomorphic
to £2. This equivalence is not true in general, as can be seen by considering
w(x) = xlogg/2(2/x). For p = 1 and n > 0, we have wy,, < 1/(n + 1)%/2,
and so condition is satisfied. Let ap = 1/ Vk for 1 < k < N. Then
[(ar)_yll2 =< log;/2 N. On the other hand, from Theorem E it follows that

n+1

N N-1
o e PR
H ;awk‘ Ces(w 1) = nz (n+1) 3/2 Zak 0g9

with A > 0 a constant depending on w. Hence, R N Ces(w, 1) is not isomor-
phic to /2.

5. RNCes(w, p) isomorphic to ¢2. In this section we study the situation
when R N Ces(w, p) is isomorphic to ¢2. In Example it was shown, for
power weights w(z) = 2* and 1 < p < oo, that R N Ces(z?, p) is isomorphic
to £2 precisely when A < 1+ 1/p. In [4] it was proved that R N Ces(w,p) is
isomorphic to 2 when w(z) = z and 1 < p < oo, [, Theorem 1], while for
p = oo it was shown, for w(z) a quasiconcave function, that R N Ces(w, co)
is isomorphic to ¢2 if and only if w(z) > cx log;/z(Q/x) [4, Theorem 3]. Note
that this last condition is precisely condition for p = co. We prove,
for every 1 < p < oo, that condition suffices for R N Ces(w,p) to
be isomorphic to £2, thus removing the need for quasiconcavity. However,
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while condition (P3| is necessary when p = oo, it is not necessary when
1 < p < o0, even though it is very close to being so, as will be shown by
considering the decreasing rearrangements of Rademacher series.

THEOREM 5.1. Let 1 <p < oo and w(z) be a weight on [0,1]. Condition
(P3) holds if and only if
= [[(ar)i1 ll2-

H < ; akrk) * Ces(w,p)

Proof. Assume that condition (P3)) holds. From Lemma we have

o0 o
*
Ealle <[ o, < | (Z eurs)
(ak)i=1ll2 < ;akrk Ces(wip) — kz_:lak?”k

To prove the reverse inequality, let LM be the Orlicz space generated by
M (t) := exp(t?) — 1. The fundamental function of its associated space (L™)’
N 1/2
is given by @y (2) = zlogy “(2/x).

From

A

w?p

Ces(w,p) '

17 1 1/2

NIF@1dt < gy @)1 e = logY*(2/2) | F o,

0

and the fact that L is an r.i. space where {r} spans a closed linear sub-
space isomorphic to £2, we have, for 0 < 2 < 1 and some K > 0,

L (S ) (00t < K togd/ /) (@)
0 k=1

Hence, for 1 < p < oo,

[( ey

whereas for p = oo,

(e

Condition is precisely the finiteness of the integral or the supremum
above.

For the converse, the cases 1 < p < oo and p = oo are different. Let
1 < p < oo, and assume that R N Ces(w, p) is isomorphic to £2. Let

Ces(w,p)

< K(§ (555 ) o2y ) ™ i e

x 1/2
< K sup logy'*(2/) | (ar) 3y |l2-

Ces(w,00) 0<z<1 w(x)

1 n
VUp = % ;Tk'

= (1/v/n)i_1ll2 = Bu,p for n € N. Via
the Central Limit Theorem (as can be seen in the proof of [I1, Theorem 6],

By our assumption, [|v;,|ces(w,p) < Bupl
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see also [10, Theorem 2.b.4]) we have, for 0 < z < 1 and some C > 0,
log1/2(2/x) <C li_)m vy ().

Hence,
(§)< ( )> logh/?(2/x) dméCpg(uﬁ)p(nlL%Un(x))pdx
TR
=CP n}ggo(s) <w($)> v (x)P dx
1

z \P[17 P
< CP lim S ( ) < SUZ(S)dS) dx
=C? nlggo ”U:HCes(w,p) < CpBw,p-

Thus, condition is satisfied.

Let p = oo, and assume that the norm of (> 72, agry)* in Ces(w, c0)
is equivalent to ||(ax)7 /2. In particular, this implies that 71, € Ces(w, 00),
k € N, and so all the coefficients ws 5, are finite. Thus, if does not hold,
we have

SUP Woo,n (1 + 1)1/2 = o0,
n>0

and so there exists (n;)72, such that

lim woo i, (15 + Y2 = .
Jj—00

Letak—(n +1)” 1/2for1<I<:<nj—i—1amdak—Of01r]c>n]+2 It is

clear that H(%)k (ll2 =1 for j > 1. From Theoremwe have, for A > 0
a constant depending on w(z),

(5 = [0

= Awoon, (nj + 1),

which letting j — oo yields a contradiction. =

> Awso n;

ol

Ces(w,00)

Ces(w,00)

In general, the norms in Ces(w,p) of a Rademacher series > ;7| apr
and its decreasing rearrangement (Y ., agry)* are not equivalent. Consider
w(z) = £V, From Propositionwe deduce that 7 — 72 € Ces(w, p). On
the other hand, (r; —r2)* ¢ Ces(w, p), since (r1 —72)* = 2x[0,1/2]- This ex-
ample, together with the following theorem, shows that, for 1 < p < oo,
condition is strictly stronger than R N Ces(w,p) being isomorphic
to £2.
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THEOREM 5.2. Let w(zx) be a weight on [0,1].

(i) Let 1 <p < 0.

(a) If condition holds, then R N Ces(w, p) is isomorphic to 2.
(b) If RN Ces(w,p) is isomorphic to {2, then for every e with 0 <
e < p/2 we have

i <x>plog§/25(2/x) dz < oco.

o

(ii) For p = 0o, the space R N Ces(w, 00) is isomorphic to (2 if and only
if condition (P3)) holds.

Proof. (i) If condition (P3) holds, from Theorem [5.1] and Lemma [4.6] we
have

Ces(w,p)

e *
<[ ()
k=1

o0
Augll (@il < || 3 anrs
k=1

< B, ar) e qll2,
Cosoo) = wopll (k)i [|2
which proves (a).
To prove (b), let RN Ces(w,p) be isomorphic to £2. In particular, Wp,n 1S
finite for n > 0. Suppose, for some 0 < ¢ < p/2, that

§ (j@) logh/? ™% (2/z) dz = oo

0

Hence, the series .00 wpn(n + 1)P/27¢ diverges. Set a = k~1/27¢/P for
k € N. We have (a;)$2, € £2. On the other hand, from follows the
inequality

ot

which together with the fact that

Ces(w,p (ﬁ\f) Z

p

n+1 1
= (n+ 1)P/2¢

Z 1/2
k:lk /2+e/p

implies that >"77 | axry ¢ Ces(w, p). This gives a contradiction.
(ii) If (P3) is satisfied, the equivalence between || > 7 | ax7k || ces(w,00) and
|(ak)s2]]2 can be proved as in the case 1 < p < oo.
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Conversely, assume that || 72 | ax7k||ces(w,00) 1 equivalent to [|(ax)72, [|2-
In particular, this implies that we , is finite for n > 0. Suppose that

logy'*(2/x) =

sup
0<z<1 w(x)

Then we have sup,,>Woon(n + 1)'/2 = oo, and there exist n; such that
llmjﬁoowoon](nj—i— 1)1/2 = oo. Let ap, = (nj+ 1)~ 1/2 for 1 <k <n;+1

and a], = 0 for k > nj + 2. It is clear that ”(%)k 1ll2 =1 for j € N. From
Theorem [4.3] we have, for some A > 0,

o0 TLj—‘rl
H S alry
k=1

Z ai’ = Awoon, (N5 + 12,
which letting j — oo yields a contradiction. =

> Awoon

Ces(w,00)

COROLLARY 5.3. Let 1 < p < oo and w(z) be a weight on [0,1]. Suppose
that w(x) satisfies condition (P3|). Then:

(i) The sequence {ry} is basic in Ces(w,p).
(ii) The space R N Ces(w, p) is not complemented in Ces(w,p).
(iii) For (ag)$2, € £2, the series > re; axry converges unconditionally.
We end by giving an equivalent expression for the norm of ("2 apry)*
in Ces(w,p). For this, we need the following result, which follows from the

proof of [I, Corollary 8.1] with suitable modifications. For (ax)32, € ¢2, let
(a})72.; be the decreasing rearrangement of (|ay|)72 ;.

LEMMA 5.4. For (a) € 2 and 0 < x < 1,

T o0 [loga(2/2)]
1 * * 1/2 *\ 0O
(X an) (tyde= aj. +1ogy* (2/2) [ (01)3 ogy 2y 112
0 k=1 k=1
with absolute constants.

Since [logy(2/x)] = n+1 for x € J,, it follows from the previous lemma

that
n+1

x oo
(S aere) (@ = 3 ak+ 0 D@Dl 7 €
0 k=1 k=1

This allows us to obtain an analogous result to Theorem (with a similar
proof) for the decreasing rearrangement of a Rademacher series.

THEOREM 5.5. Let 1 < p < oo and w(x) be a weight on [0,1]. For
1 < p < o0, we have

[(Seene)

n+1

(S (Yt + 0+ D@2l )

n>0 k=1

Ces(w,p)
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and for p = oo,

I( 0wy
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