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Rademacher functions in weighted Cesàro spaces

by

Javier Carrillo-Alańıs (Sevilla)

Abstract. We study the behaviour of the Rademacher functions in the weighted
Cesàro spaces Ces(ω, p), for ω(x) a weight and 1 ≤ p ≤ ∞. In particular, the case when
the Rademacher functions generate in Ces(ω, p) a closed linear subspace isomorphic to `2

is considered.

1. Introduction. The Cesàro function spaces Ces(p) are defined by

‖f‖Ces(p) =

( 1�

0

(
1

x

x�

0

|f(t)| dt
)p

dx

)1/p

<∞ for 1 ≤ p <∞,

‖f‖Ces(∞) = sup
0<x≤1

1

x

x�

0

|f(t)| dt <∞ for p =∞.

These spaces are the continuous counterpart to the classical Cesàro sequence
spaces, which have been thoroughly studied; see, for example, [6], [8], and
the references therein. Functional and geometrical properties of Ces(p) have
been studied in detail, including: duality and reflexivity; isomorphic copies
of classical sequence and function spaces; type and cotype; fixed point,
Dunford–Pettis, Banach–Saks, and Radon–Nikodym properties; see [2], [3],
[5], [8].

More recently, weighted Cesàro function spaces have been considered;
in [8] their dual space has been identified. For ω(x) a weight, i.e., a measur-
able function with 0 < ω(x) <∞ a.e., and 1 ≤ p ≤ ∞, the weighted Cesàro
spaces Ces(ω, p) are defined by

‖f‖Ces(ω,p) :=

( 1�

0

(
1

ω(x)

x�

0

|f(t)| dt
)p

dx

)1/p

<∞ for 1 ≤ p <∞,
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‖f‖Ces(ω,∞) := sup
0≤x≤1

1

ω(x)

x�

0

|f(t)| dt <∞ for p =∞.

The Rademacher functions are defined by

rk(t) := sign(sin(2kπt)), t ∈ [0, 1], k ≥ 1.

Recall that a Rademacher series
∑∞

k=1 akrk converges a.e. if and only if
(ak)

∞
k=1 ∈ `2. For the set of Rademacher series we write

R =
{ ∞∑
k=1

akrk : (ak)
∞
k=1 ∈ `2

}
.

The study of the Rademacher series in function spaces is classical. The
Khintchine inequalities state, for 0 < p <∞, that {rk} generates in Lp([0, 1])
a closed linear subspace R ∩ Lp([0, 1]) isomorphic to `2. The behaviour of
{rk} in rearrangement invariant spaces was studied in a celebrated result
of V. A. Rodin and E. M. Semenov: for X an r.i. space on [0, 1], we have
R ∩ X isomorphic to `2 if and only if the closure of L∞([0, 1]) in LM is
continuously embedded into X, where LM is the Orlicz space generated by
the Young function M(t) = exp(t2)− 1 (see [11, Theorem 6]).

For the Cesàro spaces it was proved in [4], for the unweighted case ω(x) =
x and for 1 ≤ p < ∞, that {rk} generates in Ces(p) a non-complemented
closed linear subspace isomorphic to `2. For p =∞ and ω(x) a quasiconcave
weight, it was also shown that∥∥∥ m∑

k=1

akrk

∥∥∥
Ces(ω,∞)

� ‖(ak)mk=1‖2 + max
1≤n≤m

2−n

ω(2−n)

∣∣∣ n∑
k=1

ak

∣∣∣,
where A � B stands for c1A ≤ B ≤ c2A for some constants c1, c2 > 0. The
case when R∩Ces(ω,∞) is isomorphic to `2 was characterized by means of

a condition on ω(x); namely, ω(x) ≥ cx log
1/2
2 (2/x) for 0 < x ≤ 1 and some

constant c > 0. We will consider this condition, which we denote (P3) for
p =∞, in more generality.

In this paper we study, by means of conditions on ω(x) and p, the be-
haviour of the Rademacher functions {rk} in the spaces Ces(ω, p).

After the preliminaries in Section 2, we start in Section 3 discussing
several conditions, (P1) to (P5), on the weight ω(x) and the index 1 ≤
p ≤ ∞, which are naturally related to the behaviour of the Rademacher
series in the spaces Ces(ω, p).

In Section 4 we compute, under a certain condition on the weight ω(x),
the norm in Ces(ω, p) of a Rademacher series, showing, for 1 ≤ p <∞, that∥∥∥ ∞∑

k=1

akrk

∥∥∥
Ces(ω,p)

�
( ∞∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)p)1/p

,
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and, for p =∞, that∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,∞)

� sup
n≥0

ω∞,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)
,

where, for Jn = (1/2n+1, 1/2n), n ≥ 0, we have

ωp,n =
�

Jn

(
x

ω(x)

)p
dx, ω∞,n = sup

x∈Jn

x

ω(x)
.

These inequalities allow describing R ∩ Ces(ω, p), studying when {rk} is a
basic sequence, studying the complementability ofR∩Ces(ω, p) in Ces(ω, p),
and studying the extremal cases when the individual Rademacher functions
do not belong to Ces(ω, p) and R∩Ces(ω, p) consists only of certain (finite)
Rademacher polynomials.

In Section 5 we consider the case when R∩Ces(ω, p) is isomorphic to `2.
By means of determining the norm in Ces(ω, p) of the decreasing rearrange-

ment of a Rademacher series, we prove that (x/ω(x)) log
1/2
2 (2/x) ∈ Lp([0, 1])

is a sufficient condition for R ∩ Ces(ω, p) to be isomorphic to `2, for all
1 ≤ p ≤ ∞, which is necessary in the case p = ∞, and ‘almost’ necessary
for 1 ≤ p <∞.

Particular attention is given to the power weights ω(x) = xλ, for λ ∈ R,
which illustrate many of the features appearing throughout the paper.

2. Preliminaries. Following Luxemburg and Zaanen (see [13]), a Ba-
nach function space on [0, 1] is a linear space X of (classes of) measurable
functions on [0, 1], endowed with a complete norm ‖ · ‖X , such that g ∈ X
and |f | ≤ |g| a.e. implies f ∈ X and ‖f‖X ≤ ‖g‖X . The associated space
X ′ consists of all measurable functions g on [0, 1] such that the associated
functional

‖g‖X′ := sup
{∣∣∣ 1�

0

f(t)g(t) dt
∣∣∣ : f ∈ X, ‖f‖X ≤ 1

}
<∞.

A Banach function space X is saturated if for every set E with m(E) > 0
there exists F ⊂ E such that m(F ) > 0 and χF ∈ X. This property is
equivalent to the associated functional ‖ · ‖X′ being a norm in X ′ (see [13,
Ch. 15, §68, Theorem 4]). A Banach function space is order continuous
when order bounded increasing sequences are norm convergent. In this case,
the associated space X ′ coincides with the topological dual space X∗. Note
that other authors use more restrictive definitions of Banach function space
[7], [10].

We denote bym the Lebesgue measure on [0, 1]. The distribution function
of a measurable function f is mf (λ) := m({x ∈ [0, 1] : |f(x)| > λ}), λ ≥ 0.
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An r.i. space on [0, 1] is a Banach function space X such that ‖f‖X = ‖g‖X
whenever mf = mg. If X is an r.i. space, then so is X ′. The decreasing
rearrangement of a measurable function f is f∗(t) := inf{λ ≥ 0 : mf (λ) < t},
0 ≤ t ≤ 1. Since f and f∗ have the same distribution function, we see that
f ∈ X if and only if f∗ ∈ X, and in that case ‖f‖X = ‖f∗‖X for X an
r.i. space. The fundamental function of an r.i. space X is ϕX(t) := ‖χE‖X ,
0 ≤ t ≤ 1, where E is any set with m(E) = t.

A function ω(x) is quasiconcave if ω(0) = 0, ω(x) is non-decreasing, and
ω(x)/x is non-increasing.

For further details on function spaces and r.i. spaces, see [7], [9], and
[10].

3. Conditions on the weight ω(x). Let 1 ≤ p ≤ ∞ and ω(x) be a
weight on [0, 1]. In order to study the Rademacher functions in Ces(ω, p) it
is convenient to write the norm in Ces(ω, p) in the following way:

‖f‖Ces(ω,p) =

( 1�

0

(
x

ω(x)

)p(1

x

x�

0

|f(t)| dt
)p

dx

)1/p

for 1 ≤ p <∞,

‖f‖Ces(ω,∞) = sup
0<x≤1

x

ω(x)

1

x

x�

0

|f(t)| dt for p =∞.

Let Jn := (1/2n+1, 1/2n) for n ≥ 0. We say that ω(x) satisfies condition
(P1) if, for n ≥ 0,

(P1)

ωp,n :=
�

Jn

(
x

ω(x)

)p
dx <∞ for 1 ≤ p <∞,

ω∞,n := sup
x∈Jn

x

ω(x)
<∞ for p =∞.

Since ω(x) is finite a.e. we find that ωp,n > 0 for n ≥ 0.

Since a Banach function space, as defined in this paper, need not contain
all characteristic functions, the following result is meaningful.

Proposition 3.1. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. If
condition (P1) is satisfied, then the space Ces(ω, p) has a saturated norm.
In particular, the associated functional ‖ · ‖Ces(ω,p)′ is a norm in Ces(ω, p)′.

Proof. Since the average of χJn on [0, x] vanishes for 0 < x < 1/2n+1

and it is at most 1 for 1/2n+1 ≤ x ≤ 1, for 1 ≤ p <∞ we have

‖χJn‖
p
Ces(ω,p) ≤

1�

1/2n+1

(
x

ω(x)

)p
dx =

n∑
k=0

ωp,k.
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Analogously, ‖χJn‖Ces(ω,∞) ≤ sup0≤k≤n ω∞,k for p = ∞. It follows that
χJn ∈ Ces(ω, p) for n ≥ 0 and 1 ≤ p ≤ ∞.

For E ⊂ [0, 1] a set with m(E) > 0, there exists Jn such that m(E ∩ Jn)
> 0. Noting that ‖χE∩Jn‖Ces(ω,p) ≤ ‖χJn‖Ces(ω,p), we deduce that Ces(ω, p)
is saturated.

We say that ω(x) satisfies condition (P2) if x/ω(x) ∈ Lp([0, 1]), i.e.,

(P2)

1�

0

(
x

ω(x)

)p
dx <∞ for 1 ≤ p <∞,

sup
0≤x≤1

x

ω(x)
<∞ for p =∞.

Note that (P2) is equivalent to rk ∈ Ces(ω, p) for all k ∈ N. Moreover, (P2)
can be written via the coefficients ωp,n, namely it is equivalent to

∞∑
n=0

ωp,n <∞ for 1 ≤ p <∞,

sup
n≥0

ω∞,n <∞ for p =∞.

We say that ω(x) satisfies condition (P3) if

(P3)

1�

0

(
x

ω(x)

)p
log

p/2
2 (2/x) dx <∞ for 1 ≤ p <∞,

sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x) <∞ for p =∞.

Condition (P3) is equivalent to
∞∑
n=0

ωp,n(n+ 1)p/2 <∞ for 1 ≤ p <∞,

sup
n≥0

ω∞,n(n+ 1)1/2 <∞ for p =∞.

For ω(x) a non-decreasing function, condition (P3) can be stated in
terms of the Lorentz–Zygmund spaces Lp,q(logL)α (see [7, §4.6]). Namely,
it is equivalent to 1/ω(x) ∈ Lp/(p+1),p(logL)1/2. In particular, condition
(P3) holds for 1/ω(x) ∈ Lr,s([0, 1]) with p/(p + 1) < r and 1 < s ≤ ∞, or
r = p/(p+ 1) and 1 ≤ s < p.

We say that ω(x) satisfies condition (P4*) if there exists C > 0 such
that

(P4*) sup
n≥0

ωp,n+1

ωp,n
≤ C.

Condition (P4*) is a particular case of a more general condition. We say
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that ω(x) satisfies condition (P4) if there exist C > 0 and M ∈ N such that
for every n ∈ N there exists n′ ∈ N with

(P4) 0 < n− n′ ≤M and sup
n≥1

ωp,n
ωp,n′

≤ C.

Remark 3.2. Condition (P4) holds in the following situations.
(a) If ω(x) is a quasiconcave function, then it satisfies (P4*). Since 1/ω(x)

is non-increasing it follows that ωp,0 is finite; since x/ω(x) is non-decreasing,
we have ωp,n+1/ωp,n ≤ 1 for n ≥ 0.

(b) If ω(x) is non-increasing, we have ωp,n+1 ≤ 2−pωp,n. Hence, (P4*)
holds provided that ωp,0 is finite.

(c) If x/ω(x) is non-increasing, then condition (P4*) depends on the
slope of the function x/ω(x). In particular, it holds for 1 ≤ p ≤ ∞ when
ω(x) satisfies, for some C > 0,

sup
n≥0

ω(1/2n)

ω(1/2n+1)
≤ C.

(d) A weight ω(x) has the doubling property if there exists a positive
constant C such that ω(I) ≤ Cω(2I) for every interval I, where 2I denotes
the interval with the same center as I and twice its radius, and ω(I) =	
I ω(x) dx. If (x/ω(x))p has the doubling property, then condition (P4*) is

satisfied. Namely, since Jn+1 ⊂ 2Jn, we have
�

Jn+1

(
x

ω(x)

)p
dx ≤

�

2Jn

(
x

ω(x)

)p
dx ≤ C

�

Jn

(
x

ω(x)

)p
dx.

Hence, ωp,n+1 ≤ Cωp,n. In particular, (x/ω(x))p has the doubling property
if it belongs to the Muckenhoupt weight class Ar for some 1 < r <∞.

We say that ω(x) satisfies condition (P5) if there exists a constant C > 0
such that for every m ≥ 0,

(P5)

∞∑
n=m

ωp,n ≤ Cωp,m for 1 ≤ p <∞,

sup
n≥m

ω∞,n ≤ Cω∞,m for p =∞.

Condition (P5) is satisfied whenever ω(x) is quasiconcave, since

∞∑
n=m

ωp,n =

1/2m�

0

(
x

ω(x)

)p
dx ≤ 2

1/2m�

1/2m+1

(
x

ω(x)

)p
dx = 2ωm,p.

4. Rademacher functions in Ces(ω, p). In this section we study the
space R ∩ Ces(ω, p). The following sequence space is useful to describe the
norm of a Rademacher series in Ces(ω, p).
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Definition 4.1. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. As-
sume that condition (P1) holds. Let R(ω, p) be the space of all sequences
(ak)

∞
k=1 ∈ `2 such that, for 1 ≤ p <∞,

‖(ak)∞k=1‖R(ω,p) :=
( ∞∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)p)1/p

<∞,

and, for p =∞,

‖(ak)∞k=1‖R(ω,∞) := sup
n≥0

ω∞,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)
<∞.

The space R(ω, p) with the norm ‖ · ‖R(ω,p) is a Banach space.

The following result gives an equivalent expression for the average of the
absolute value of a Rademacher series on a dyadic interval. We denote the
dyadic intervals of order n by Inj := ((j − 1)/2n, j/2n) for 1 ≤ j ≤ 2n and
n ≥ 0.

Proposition 4.2. For (ak)
∞
k=1 ∈ `2, 1 ≤ j ≤ 2n, and n ≥ 0, we have

1

3
√

2

(∣∣∣ n∑
k=1

εk,jak

∣∣∣+ ‖(ak)∞k=n+1‖2
)
≤ 1

m(Inj )

�

Inj

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt

≤
∣∣∣ n∑
k=1

εk,jak

∣∣∣+ ‖(ak)∞k=n+1‖2,

where εk,j := sign rk|Inj .

Proof. We can suppose that j = 1, which gives εk,j = 1; the proof in the
general case is similar.

Note that, due to the dilation properties of the Rademacher functions,

1

m(Inj )

�

Inj

∣∣∣ ∞∑
k=n+1

akrk(t)
∣∣∣ dt =

1�

0

∣∣∣ ∞∑
k=1

an+krk(t)
∣∣∣ dt.

Consequently,

1

2−n

2−n�

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt ≤ 1

2−n

2−n�

0

(∣∣∣ n∑
k=1

akrk(t)
∣∣∣+
∣∣∣ ∞∑
k=n+1

akrk(t)
∣∣∣) dt

≤
∣∣∣ n∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+1‖2.

Concerning the lower bound, we obtain it by combining two inequalities.
The first one relies on the fact that, for k ≥ n + 1, the integral of rk on
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[0, 2−n] vanishes. Thus,

1

2−n

2−n�

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt ≥ ∣∣∣∣ 1

2−n

2−n�

0

∞∑
k=1

akrk(t) dt

∣∣∣∣ =
∣∣∣ n∑
k=1

ak

∣∣∣.
On the other hand, from the inverse triangle inequality and the Khintchine
inequality for L1([0, 1]) it follows that

1

2−n

2−n�

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt ≥ 1

2−n

2−n�

0

(∣∣∣ ∞∑
k=n+1

akrk(t)
∣∣∣− ∣∣∣ n∑

k=1

akrk(t)
∣∣∣) dt

≥ C‖(ak)∞k=n+1‖2 −
∣∣∣ n∑
k=1

ak

∣∣∣.
Hence,

3
1

2−n

2−n�

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt ≥ ∣∣∣ n∑

k=1

ak

∣∣∣+ C‖(ak)∞k=n+1‖2,

and the proof is complete. The optimal constant in the previous inequality
is C = 1/

√
2 (see [12]).

For (ak)
∞
k=1 ∈ `2, we denote A0 := ‖(ak)∞k=1‖2, and

An :=
∣∣∣ n∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+1‖2, n ∈ N.

Theorem 4.3. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Assume
that condition (P4) holds. Then the space R ∩ Ces(ω, p) is isomorphic to
R(ω, p) with equivalent norms. Consequently, R ∩ Ces(ω, p) is a Banach
space.

In particular, for (ak)
∞
k=1 ∈ R(ω, p) and 1 ≤ p <∞, we have∥∥∥ ∞∑

k=1

akrk

∥∥∥
Ces(ω,p)

�
( ∞∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)p)1/p

,

and for p =∞,∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,∞)

� sup
n≥0

ω∞,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)
,

with constants depending on p and ω(x).

Proof. We prove the result for 1 ≤ p <∞; the case p =∞ is analogous.
For x ∈ Jn = (1/2n+1, 1/2n) and n ≥ 0, from Proposition 4.2 we have

1

6
√

2
An+1 ≤

1

1/2n

1/2n+1�

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt ≤ 1

x

x�

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt.
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In an analogous way we obtain an upper bound:

1

x

x�

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt ≤ 1

1/2n+1

1/2n�

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt ≤ 2An.

Thus, for n ≥ 0,

(1)
1

6
√

2
An+1 ≤

1

x

x�

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt ≤ 2An, x ∈ Jn.

By splitting the interval [0, 1] into the intervals Jn, from (1) we have∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

=
∞∑
n=0

�

Jn

(
x

ω(x)

)p(1

x

x�

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt)p dx(2)

≥ 1

(6
√

2)p

∞∑
n=0

ωp,nA
p
n+1,

and ∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≤ 2p
∞∑
n=0

ωp,nA
p
n.(3)

In general, for an arbitrary weight ω(x), the lower and upper bounds in
(2) and (3) are not equivalent. Condition (P4) provides the equivalence. For
n ∈ N, let n′ be given by (P4). From the triangle inequality and Cauchy–
Schwarz inequality we have

An ≤
∣∣∣ n′+1∑
k=1

ak

∣∣∣+ (n− n′ − 1)1/2‖(ak)nk=n′+2‖2 + ‖(ak)∞k=n+1‖2(4)

≤ 2(M − 1)1/2An′+1.

From the fact that 0 < n − n′ ≤ M , it follows that, for each m ≥ 0, there
are at most M indices n ∈ N such that n′ = m. Hence,

∞∑
n=1

ωp,n′A
p
n′+1 ≤M

∞∑
n=1

ωp,nA
p
n+1.

This, together with A0 ≤ A1, inequality (4), and condition (P4) gives

∞∑
n=0

ωp,nA
p
n ≤ ωp,0A

p
0 + C

∞∑
n=1

ωp,n′ A
p
n

≤ ωp,0Ap1 + 2pC(M − 1)p/2
∞∑
n=1

ωp,n′ A
p
n′+1
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≤ ωp,0Ap1 + 2pCM(M − 1)p/2
∞∑
n=0

ωp,nA
p
n+1

≤ Bω,p
∞∑
n=0

ωp,nA
p
n+1,

with Bω,p = max{ωp,0, 2pCM(M − 1)p/2}. This establishes the equivalence
between the upper and lower bounds.

Completeness of R∩Ces(ω, p) follows since it is isomorphic to R(ω, p).

Next we consider when {rk} is a basic sequence in Ces(ω, p). In partic-
ular, this will be the case when ω(x) is quasiconcave.

Corollary 4.4. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. If
conditions (P4) and (P5) are satisfied, then {rk} is a basic sequence in
Ces(ω, p).

Proof. Suppose that 1 ≤ p <∞; the case p =∞ is analogous.
Let m1 < m2. From Theorem 4.3 we have∥∥∥ m1∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤ Aω,p
(m1−2∑

n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m1
n+2‖2

)p
+
∣∣∣ m1∑
k=1

ak

∣∣∣p ∞∑
n=m1−1

ωp,n

)1/p
,

and∥∥∥ m2∑
k=1

akrk

∥∥∥
Ces(ω,p)

≥ Bω,p
(m1−2∑

n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m2
k=n+2‖2

)p
+

∞∑
n=m1−1

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m2
k=n+2‖2

)p)1/p
≥ Bω,p

(m1−2∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m1
k=n+2‖2

)p
+ ωp,m1−1

∣∣∣ m1∑
k=1

ak

∣∣∣p)1/p,
where Aω,p andBω,p are the equivalence constants appearing in Theorem 4.3.

Condition (P5), together with the previous inequalities, yields∥∥∥ m1∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤ C1/p Aω,p
Bω,p

∥∥∥ m2∑
k=1

akrk

∥∥∥
Ces(ω,p)

,

which proves that {rk} is a basic sequence.
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Theorem 4.3 allows studying the behaviour of the Rademacher polyno-
mials in Ces(ω, p) even in the case when rk /∈ Ces(ω, p) for (all) k ∈ N.
In particular, we will see that if some of the coefficients ωp,n fail to be fi-
nite, then R ∩ Ces(ω, p) is a finite-dimensional vector space consisting of
Rademacher polynomials. Let P be the space of all Rademacher polynomi-
als, and set P0 :=

⋃
m≥1 P0

m, where, for m ∈ N,

P0
m :=

{ m∑
k=1

akrk : ak ∈ R with
m∑
k=1

ak = 0

}
.

Proposition 4.5. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1].

(i) Condition (P2) holds if and only if P ⊂ R ∩ Ces(ω, p).
(ii) Assume that condition (P1) holds but condition (P2) is not satisfied.

Then

P ∩ Ces(ω, p) = P0.

In this case, rk /∈ Ces(ω, p) for all k ∈ N.
(iii) Assume that condition (P1) fails. If ωp,m = ∞ and ωp,n is finite

for 0 ≤ n ≤ m− 1, then

P0
m ⊂ R ∩ Ces(ω, p) ⊂ P0

m+1.

Moreover, R∩ Ces(ω, p) = P0
m+1 if and only if

�

Jm

(
x− 1/2m+1

ω(x)

)p
dx <∞ for 1 ≤ p <∞,

sup
x∈Jm

x− 1/2m+1

ω(x)
<∞ for p =∞.

Otherwise, R∩ Ces(ω, p) = P0
m.

(iv) If ωp,0 =∞, then R∩ Ces(ω, p) = {0}.

Proof. We suppose that 1 ≤ p < ∞; the proof in the case p = ∞ is
analogous.

For a Rademacher polynomial
∑m

k=1 akrk we have An = |
∑m

k=1 ak| for
n ≥ m. It follows from (3) that

(5)
∥∥∥ m∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤ 2
(m−1∑
n=1

ωp,nA
p
n +

∣∣∣ m∑
k=1

ak

∣∣∣p ∞∑
n=m

ωp,n

)1/p
.

(i) Condition (P2) holds if rk ∈ R ∩ Ces(ω, p) for all k ∈ N. Conversely,
since (P2) is equivalent to

∑∞
n=0 ωp,n < ∞, from (5) it follows that P ⊂

R ∩ Ces(ω, p).

(ii) Since
∑m

k=1 ak = 0 for
∑m

k=1 akrk ∈ P0, from (5) we deduce that
P0 ⊂ P ∩ Ces(ω, p). On the other hand, if (P2) fails, then

∑∞
n=0 ωp,n =∞.
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From the corresponding version of (2) for polynomials, we have∥∥∥ m∑
k=1

akrk

∥∥∥
Ces(ω,p)

≥ 1

6
√

2

(m−1∑
n=1

ωp,nA
p
n+1 +

∣∣∣ m∑
k=1

ak

∣∣∣p ∞∑
n=m

ωp,n

)1/p
,

which shows that the space Ces(ω, p) only contains those Rademacher poly-
nomials

∑m
k=1 akrk such that

∑m
k=1 ak = 0.

(iii) Assume that ωp,m = ∞. The inclusion P0
m ⊂ R ∩ Ces(ω, p) follows

from (5) and the fact that
∑m

k=1 ak = 0 for
∑m

k=1 akrk ∈ P0
m. On the other

hand, from (2) we have∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≥ 1

(6
√

2)p
ωp,mA

p
m+1.

Since ωp,m =∞, if
∑∞

k=1 akrk ∈ Ces(ω, p) then we necessarily have Am+1 =

|
∑m+1

k=1 ak|+ ‖(ak)∞m+2‖2 = 0, that is, R∩ Ces(ω, p) ⊂ P0
m+1.

Set
∑m+1

k=1 akrk ∈ P0
m+1 \ P0

m, where ak = 1, for 1 ≤ k ≤ m, and
am+1 = −m. Since the inclusions P0

m ⊂ R ∩ Ces(ω, p) ⊂ P0
m+1 involve

finite-dimensional vector spaces, we have R∩Ces(ω, p) = P0
m+1 if and only

if
∑m+1

k=1 akrk ∈ Ces(ω, p); otherwise, R ∩ Ces(ω, p) = P0
m. Note that, for

x ∈ (0, 1/2m+1],

1

x

x�

0

∣∣∣m+1∑
k=1

akrk(t)
∣∣∣ dt =

∣∣∣m+1∑
k=1

ak

∣∣∣ = 0,

and for x ∈ Jm = (1/2m+1, 1/2m),

x�

0

∣∣∣m+1∑
k=1

akrk(t)
∣∣∣ dt = 2m(x− 1/2m+1).

Hence,∥∥∥m+1∑
k=1

akrk

∥∥∥p
Ces(ω,p)

= (2m)p
�

Jm

(
x− 1/2m+1

ω(x)

)p
dx

+
m−1∑
n=0

�

Jn

(
x

ω(x)

)p(1

x

x�

0

∣∣∣m+1∑
k=1

akrk(t)
∣∣∣ dt)p dx.

Since, for 0 ≤ n ≤ m, we have An = n + (m − n + m2)1/2, there exist
constants C1, C2 > 0, depending only on m, such that for 0 ≤ n ≤ m− 1,

C1 ≤ An+1 ≤ 2An ≤ C2.

This, together with (1) and the fact that ωp,n is finite for 0 ≤ n ≤ m − 1,
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implies that
∑m+1

k=1 akrk ∈ Ces(ω, p) if and only if

�

Jm

(
x− 1/2m+1

ω(x)

)p
dx <∞,

which proves the equivalence.

(iv) follows from (iii) and from P0
1 = {0}.

Next, we consider the problem of the complementability of R∩Ces(ω, p)
in Ces(ω, p). In [4] it was proved, for 1 ≤ p < ∞ and ω(x) = x, that
R ∩ Ces(x, p) is not complemented in Ces(x, p), and, for ω(x) a quasicon-
cave function, that R ∩ Ces(ω,∞) is not complemented in Ces(ω,∞). We
extend this result to spaces Ces(ω, p) under the sole assumption that {rk}
is a basic sequence in Ces(ω, p). In particular, this result applies for ω(x) a
quasiconcave weight, and for the power weights ω(x) = xλ with λ < 1 + 1/p
(see Example 4.9 below).

We need the following lemma, which is related to the study of when
R ∩ Ces(ω, p) is isomorphic to `2 (see Section 5). Recall, for ω(x) a weight
such that ωp,0 =∞, that from Proposition 4.5 we have R∩Ces(ω, p) = {0}.

Lemma 4.6. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Assume that
ωp,0 is finite. There exists a constant Aω,p > 0 such that

Aω,p‖(ak)∞k=1‖2 ≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

, (ak)
∞
k=1 ∈ `2.

Proof. Let 1 ≤ p <∞. From (2), we have

ω
1/p
p,0

6
√

2
‖(ak)∞k=1‖2 ≤

ω
1/p
p,0

6
√

2
(|a1|+ ‖(ak)∞k=2‖2) ≤

∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

.

The case p =∞ is analogous.

The proof of the next result follows the steps of [4, Theorem 4], where
the case when p =∞ and ω(x) is quasiconcave is treated, with suitable and
necessary adaptations. For the sake of completeness, we include a full sketch
of the proof.

Theorem 4.7. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Assume
that {rk} is a basic sequence in Ces(ω, p). Then, the space R∩ Ces(ω, p) is
not complemented in Ces(ω, p).

Proof. Since {rk} is a basic sequence in Ces(ω, p), we know that, for all
k ∈ N, rk ∈ Ces(ω, p). Thus, condition (P2) is satisfied. From Proposition
3.1, Ces(ω, p) has a saturated norm, and so Ces(ω, p)′ is a normed space.
It also follows from (P2) that L∞([0, 1]) ⊂ Ces(ω, p). Hence, Ces(ω, p)′ ⊂
L1([0, 1]).
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Let P be a projection from Ces(ω, p) onto R ∩ Ces(ω, p). Then Pf =∑
n≥1〈φn, f〉rn with φn ∈ Ces(ω, p)∗. For 1 ≤ p < ∞, since Ces(ω, p)∗ =

Ces(ω, p)′, we have

(6) Pf =

∞∑
n=1

( 1�

0

gn(t)f(t) dt
)
rn, f ∈ Ces(ω, p),

where gn ∈ Ces(ω, p)′ ⊂ L1([0, 1]). Since P is a projection, 〈gi, rj〉 = δij .
For p = ∞, since Ces(ω,∞) is not separable, the situation is different.

However, we will see that for f in the separable part of Ces(ω,∞), denoted
by Ces(ω,∞)0, we still have the projection P represented as in (6). From
[13, Ch. 15, §70, Theorem 2] we have the decomposition

Ces(ω,∞)∗ = Ces(ω,∞)′ ⊕ (Ces(ω,∞)′)d,

where (Ces(ω,∞)′)d is the space of all singular bounded linear functionals
on Ces(ω,∞). It follows that φn = ψn + θn, n ≥ 1, where ψn ∈ Ces(ω,∞)′

and θn ∈ (Ces(ω,∞)′)d. In particular,

θn(f) = 0, f ∈ Ces(ω,∞)0,

and, for some gn ∈ Ces(ω,∞)′ ⊂ L1([0, 1]),

ψn(f) =

1�

0

f(t)gn(t) dt, f ∈ Ces(ω,∞).

Note that, since we do not necessarily have rk ∈ Ces(ω,∞)0, it does not
follow immediately that 〈gi, rj〉 = δij . From the fact that rk − χ[0,1] ∈
Ces(ω,∞)0, we have θn(rk − χ[0,1]) = 0, that is,

θn(rk) = θn(χ[0,1]), k ≥ 1.

Since P is a projection,

ψn(rn) + θn(rn) = 1,

ψn(rk) + θn(rk) = 0, k 6= n.
(7)

Hence, for k > n, we have θn(χ[0,1]) = −ψn(rk). Moreover, since (gn) ⊂
L1([0, 1]),

lim
k→∞

ψn(rk) = lim
k→∞

1�

0

gn(t)rk(t) dt = 0.

Thus, θn(rk) = θn(χ[0,1]) = 0 for all k ≥ 1, which together with (7) implies
that 〈gi, rj〉 = δij .

From 〈gi, rj〉 = δij with gn ∈ L1([0, 1]) it follows, as in [4], that there
exist h ∈ (0, 1) and n0 such that, for n ≥ n0,

(8)
∣∣∣ 1�
h

gn(t)rn(t) dt
∣∣∣ > 1

2
.
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Next, there exists a constant C > 0, depending on ω(x) and h, such that

(9) ‖fχ[h,1]‖Ces(ω,p) ≤ C‖f‖L1([h,1])

for f ∈ L1([0, 1]). For 1 ≤ p <∞ we have

‖fχ[h,1]‖Ces(ω,p) =

( 1�

0

(
1

ω(x)

x�

0

|f(t)|χ[h,1](t) dt

)p
dx

)1/p

=

( 1�

h

(
1

ω(x)

x�

0

|f(t)|χ[h,1](t) dt

)p
dx

)1/p

≤
( 1�

h

1

ω(x)p
dx

)1/p

‖f‖L1([h,1]).

For p =∞, we have the analogous inequality

‖fχ[h,1]‖Ces(ω,∞) ≤ sup
h≤x≤1

1

ω(x)
‖f‖L1([h,1]).

The finiteness of the integral for 1 ≤ p < ∞ or the supremum for p = ∞
follows from condition (P2).

Define Ph(f) := P (fχ[h,1]). Then the operator Ph : L1([h, 1])→ L1([0, 1])

is bounded. To see this, from the Khintchine inequalities in L1([0, 1]), we
have

‖Phf‖L1([0,1]) = ‖P (fχ[h,1])‖L1([0,1]) � ‖(〈fχ[h,1], gn〉)∞n=1‖`2 .
The previous equivalence, together with Lemma 4.6, yields

Aω,p‖(〈fχ[h,1], gn〉)∞n=1‖`2 ≤ ‖P (fχ[h,1])‖Ces(ω,p).

From (9) and the fact that P is a bounded operator it follows that

‖P (fχ[h,1])‖Ces(ω,p) ≤ ‖P‖ ‖fχ[h,1]‖Ces(ω,p) ≤ C‖P‖ ‖f‖L1([h,1])

Thus, Ph : L1([h, 1])→ L1([0, 1]) is bounded.
Since Ph is weakly compact and L1([h, 1]) has the Dunford–Pettis prop-

erty, it follows that ‖Ph(rnχ[h,1])‖L1([0,1]) → 0 as n→∞. On the other hand,
from (8), it follows, for n ≥ n0, that

‖Ph(rnχ[h,1])‖L1([0,1]) �
( ∞∑
k=1

( 1�

h

gk(t)rn(t) dt
)2)1/2

≥
∣∣∣ 1�
h

gn(t)rn(t) dt
∣∣∣ > 1

2
,

which gives a contradiction.

From Theorem 4.7 and Corollary 4.4, we have the following.

Corollary 4.8. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1].

(a) If conditions (P4) and (P5) are satisfied, then R ∩ Ces(ω, p) is not
complemented in Ces(ω, p).
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(b) In particular, if ω(x) is quasiconcave, then R∩Ces(ω, p) is not com-
plemented in Ces(ω, p).

We end this section considering the Cesàro spaces Ces(xλ, p) correspond-
ing to power weights ω(x) = xλ, for λ ∈ R.

Example 4.9. Let 1 ≤ p < ∞ and consider Ces(xλ, p) for λ ∈ R, that
is,

‖f‖Ces(xλ,p) =

( 1�

0

(
1

xλ

x�

0

|f(t)| dt
)p

dx

)1/p

.

Set δ := p(1− λ) + 1. A straightforward computation shows that for δ 6= 0
we have ωp,n = 1/δ2nδ, whereas for δ = 0 we have ωp,n = ln 2. Thus, in both
cases,

ωp,n+1

ωp,n
= 2−δ.

Hence (P4*) holds for arbitrary λ ∈ R and 1 ≤ p < ∞. From Theorem 4.3
it follows that

(10)
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(xλ,p)

�
( ∞∑
n=0

1

2nδ

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)p)1/p

.

Suppose δ > 0, that is, λ < 1+1/p. Then condition (P5) is satisfied. From
Corollary 4.4, we know that {rk} is a basic sequence in Ces(ω, p), and so
R∩Ces(xλ, p) is not complemented in Ces(xλ, p). From the Cauchy–Schwarz
inequality, we have∣∣∣ n∑

k=1

ak

∣∣∣+ ‖(ak)∞k=n+1‖2 ≤ 2(n+ 1)1/2‖(ak)∞k=1‖2.

Hence, from (10) and for Mλ,p a positive constant,∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(xλ,p)

≤Mλ,p

( ∞∑
n=0

1

2nδ
(n+ 1)p/2

)1/p

‖(ak)∞k=1‖2.

The last series converges, as δ > 0. This, together with Lemma 4.6, implies
that the closed linear span of {rk} in Ces(xλ, p) is isomorphic to `2 (note
that in [4] this is proved in the case λ = 1 and 1 ≤ p <∞).

Suppose now that δ ≤ 0, that is, λ ≥ 1 + 1/p. Then condition (P2) fails.
Thus, Ces(xλ, p) contains no single Rademacher functions, and from Propo-
sition 4.5, it only contains among the Rademacher polynomials those of the
form

∑m
k=1 akrk with

∑m
k=1 ak = 0. But there are also infinite Rademacher

series in Ces(xλ, p). To see this, let, for example, δ = 0, that is, λ = 1 + 1/p.
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In this case, (10) becomes∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(x1+1/p,p)

�
( ∞∑
n=0

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)p)1/p

.

Set a3k = 1/k2 and a3k+1 = a3k+2 = −1/2k2 for k ∈ N. Then, for n ∈ N
and some C > 0, ∣∣∣ n∑

k=1

ak

∣∣∣ ≤ 1

n2
, ‖(ak)∞k=n‖2 ≤

C

n3/2
.

Thus,
∑∞

k=1 akrk ∈ Ces(x1+1/p, p).

In the case p = ∞, we have ω∞,n � 2n(λ−1), and so condition (P4*)
holds. Thus, we have the equivalence∥∥∥ ∞∑

k=1

akrk

∥∥∥
Ces(xλ,∞)

� sup
n≥0

2n(λ−1)
(∣∣∣ n+1∑

k=1

ak

∣∣∣+ ‖(ak)∞k=n+2‖2
)
.

For λ < 1 it follows, as in the case 1 ≤ p <∞, that Ces(xλ,∞) is isomorphic
to `2, and R ∩ Ces(xλ,∞) is not complemented in Ces(xλ,∞). For λ ≥ 1,
condition (P2) is not satisfied, and so rk /∈ Ces(xλ,∞) for all k ≥ 1.

Remark 4.10. The previous example shows, for power weights ω(x) =
xλ, that condition (P2) is equivalent to R ∩ Ces(xλ, p) being isomorphic
to `2. This equivalence is not true in general, as can be seen by considering

ω(x) = x log
3/2
2 (2/x). For p = 1 and n ≥ 0, we have ω1,n � 1/(n + 1)3/2,

and so condition (P2) is satisfied. Let ak = 1/
√
k for 1 ≤ k ≤ N . Then

‖(ak)Nk=1‖2 � log
1/2
2 N. On the other hand, from Theorem 4.3 it follows that∥∥∥ N∑

k=1

akrk

∥∥∥
Ces(ω,1)

≥ A
N−1∑
n=0

1

(n+ 1)3/2

∣∣∣ n+1∑
k=1

ak

∣∣∣ � log2N,

with A > 0 a constant depending on ω. Hence, R∩Ces(ω, 1) is not isomor-
phic to `2.

5. R∩Ces(ω, p) isomorphic to `2. In this section we study the situation
when R ∩ Ces(ω, p) is isomorphic to `2. In Example 4.9 it was shown, for
power weights ω(x) = xλ and 1 ≤ p ≤ ∞, that R∩Ces(xλ, p) is isomorphic
to `2 precisely when λ < 1 + 1/p. In [4] it was proved that R∩ Ces(ω, p) is
isomorphic to `2 when ω(x) = x and 1 ≤ p < ∞, [4, Theorem 1], while for
p =∞ it was shown, for ω(x) a quasiconcave function, that R∩ Ces(ω,∞)

is isomorphic to `2 if and only if ω(x) ≥ cx log
1/2
2 (2/x) [4, Theorem 3]. Note

that this last condition is precisely condition (P3) for p = ∞. We prove,
for every 1 ≤ p ≤ ∞, that condition (P3) suffices for R ∩ Ces(ω, p) to
be isomorphic to `2, thus removing the need for quasiconcavity. However,
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while condition (P3) is necessary when p = ∞, it is not necessary when
1 ≤ p < ∞, even though it is very close to being so, as will be shown by
considering the decreasing rearrangements of Rademacher series.

Theorem 5.1. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Condition
(P3) holds if and only if∥∥∥( ∞∑

k=1

akrk

)∗∥∥∥
Ces(ω,p)

� ‖(ak)∞k=1‖2.

Proof. Assume that condition (P3) holds. From Lemma 4.6 we have

Aω,p‖(ak)∞k=1‖2 ≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤
∥∥∥( ∞∑

k=1

akrk

)∗∥∥∥
Ces(ω,p)

.

To prove the reverse inequality, let LM be the Orlicz space generated by
M(t) := exp(t2)−1. The fundamental function of its associated space (LM )′

is given by ϕ(LM )′(x) = x log
1/2
2 (2/x).

From

1

x

x�

0

|f(t)| dt ≤ 1

x
ϕ(LM )′(x)‖f‖LM = log

1/2
2 (2/x)‖f‖LM ,

and the fact that LM is an r.i. space where {rk} spans a closed linear sub-
space isomorphic to `2, we have, for 0 < x ≤ 1 and some K > 0,

1

x

x�

0

( ∞∑
k=1

akrk

)∗
(t) dt ≤ K log

1/2
2 (2/x)‖(ak)∞k=1‖2.

Hence, for 1 ≤ p <∞,∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,p)

≤ K
( 1�

0

(
x

ω(x)

)p
log

p/2
2 (2/x) dx

)1/p
‖(ak)∞k=1‖2,

whereas for p =∞,∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,∞)

≤ K sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x)‖(ak)∞k=1‖2.

Condition (P3) is precisely the finiteness of the integral or the supremum
above.

For the converse, the cases 1 ≤ p < ∞ and p = ∞ are different. Let
1 ≤ p <∞, and assume that R∩ Ces(ω, p) is isomorphic to `2. Let

vn :=
1√
n

n∑
k=1

rk.

By our assumption, ‖v∗n‖Ces(ω,p) ≤ Bω,p‖(1/
√
n)nk=1‖2 = Bω,p for n ∈ N. Via

the Central Limit Theorem (as can be seen in the proof of [11, Theorem 6],
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see also [10, Theorem 2.b.4]) we have, for 0 < x ≤ 1 and some C > 0,

log
1/2
2 (2/x) ≤ C lim

n→∞
v∗n(x).

Hence,

1�

0

(
x

ω(x)

)p
log

p/2
2 (2/x) dx ≤ Cp

1�

0

(
x

ω(x)

)p(
lim
n→∞

v∗n(x)
)p
dx

= Cp lim
n→∞

1�

0

(
x

ω(x)

)p
v∗n(x)p dx

≤ Cp lim
n→∞

1�

0

(
x

ω(x)

)p(1

x

x�

0

v∗n(s)ds

)p
dx

= Cp lim
n→∞

‖v∗n‖Ces(ω,p) ≤ CpBω,p.

Thus, condition (P3) is satisfied.

Let p = ∞, and assume that the norm of (
∑∞

k=1 akrk)
∗ in Ces(ω,∞)

is equivalent to ‖(ak)∞k=1‖2. In particular, this implies that rk ∈ Ces(ω,∞),
k ∈ N, and so all the coefficients ω∞,n are finite. Thus, if (P3) does not hold,
we have

sup
n≥0

ω∞,n(n+ 1)1/2 =∞,

and so there exists (nj)
∞
j=1 such that

lim
j→∞

ω∞,nj (nj + 1)1/2 =∞.

Let ajk = (nj + 1)−1/2 for 1 ≤ k ≤ nj + 1 and ajk = 0 for k ≥ nj + 2. It is

clear that ‖(ajk)
∞
k=1‖2 = 1 for j ≥ 1. From Theorem 4.3 we have, for A > 0

a constant depending on ω(x),∥∥∥( ∞∑
k=1

ajkrk

)∗∥∥∥
Ces(ω,∞)

≥
∥∥∥ ∞∑
k=1

ajkrk

∥∥∥
Ces(ω,∞)

≥ Aω∞,nj
∣∣∣ nj+1∑
k=1

ajk

∣∣∣
= Aω∞,nj (nj + 1)1/2,

which letting j →∞ yields a contradiction.

In general, the norms in Ces(ω, p) of a Rademacher series
∑∞

k=1 akrk
and its decreasing rearrangement (

∑∞
k=1 akrk)

∗ are not equivalent. Consider

ω(x) = x1+1/p. From Proposition 4.5 we deduce that r1−r2 ∈ Ces(ω, p). On
the other hand, (r1 − r2)∗ /∈ Ces(ω, p), since (r1 − r2)∗ = 2χ[0,1/2]. This ex-
ample, together with the following theorem, shows that, for 1 ≤ p < ∞,
condition (P3) is strictly stronger than R ∩ Ces(ω, p) being isomorphic
to `2.
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Theorem 5.2. Let ω(x) be a weight on [0, 1].

(i) Let 1 ≤ p <∞.

(a) If condition (P3) holds, then R∩ Ces(ω, p) is isomorphic to `2.
(b) If R ∩ Ces(ω, p) is isomorphic to `2, then for every ε with 0 <

ε < p/2 we have

1�

0

(
x

ω(x)

)p
log

p/2−ε
2 (2/x) dx <∞.

(ii) For p =∞, the space R∩Ces(ω,∞) is isomorphic to `2 if and only
if condition (P3) holds.

Proof. (i) If condition (P3) holds, from Theorem 5.1 and Lemma 4.6 we
have

Aω,p‖(ak)∞k=1‖2 ≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤
∥∥∥( ∞∑

k=1

akrk

)∗∥∥∥
Ces(ω,p)

≤ Bω,p‖(ak)∞k=1‖2,

which proves (a).

To prove (b), let R∩Ces(ω, p) be isomorphic to `2. In particular, ωp,n is
finite for n ≥ 0. Suppose, for some 0 < ε < p/2, that

1�

0

(
x

ω(x)

)p
log

p/2−ε
2 (2/x) dx =∞.

Hence, the series
∑∞

n=0 ωp,n(n + 1)p/2−ε diverges. Set ak = k−1/2−ε/p for
k ∈ N. We have (ak)

∞
k=1 ∈ `2. On the other hand, from (2) follows the

inequality ∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≥ 1

(6
√

2)p

∞∑
n=0

ωp,n

∣∣∣ n+1∑
k=1

ak

∣∣∣p,
which together with the fact that∣∣∣∣ n+1∑

k=1

1

k1/2+ε/p

∣∣∣∣p � (n+ 1)p/2−ε

implies that
∑∞

k=1 akrk /∈ Ces(ω, p). This gives a contradiction.

(ii) If (P3) is satisfied, the equivalence between ‖
∑∞

k=1 akrk‖Ces(ω,∞) and
‖(ak)∞k=1‖2 can be proved as in the case 1 ≤ p <∞.
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Conversely, assume that ‖
∑∞

k=1 akrk‖Ces(ω,∞) is equivalent to ‖(ak)∞k=1‖2.
In particular, this implies that ω∞,n is finite for n ≥ 0. Suppose that

sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x) =∞.

Then we have supn≥0 ω∞,n(n + 1)1/2 = ∞, and there exist nj such that

limj→∞ ω∞,nj (nj + 1)1/2 = ∞. Let ajk = (nj + 1)−1/2 for 1 ≤ k ≤ nj + 1

and ajk = 0 for k ≥ nj + 2. It is clear that ‖(ajk)
∞
k=1‖2 = 1 for j ∈ N. From

Theorem 4.3, we have, for some A > 0,∥∥∥ ∞∑
k=1

ajkrk

∥∥∥
Ces(ω,∞)

≥ Aω∞,nj
∣∣∣ nj+1∑
k=1

ajk

∣∣∣ = Aω∞,nj (nj + 1)1/2,

which letting j →∞ yields a contradiction.

Corollary 5.3. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Suppose
that ω(x) satisfies condition (P3). Then:

(i) The sequence {rk} is basic in Ces(ω, p).
(ii) The space R∩ Ces(ω, p) is not complemented in Ces(ω, p).

(iii) For (ak)
∞
k=1 ∈ `2, the series

∑∞
k=1 akrk converges unconditionally.

We end by giving an equivalent expression for the norm of (
∑∞

k=1 akrk)
∗

in Ces(ω, p). For this, we need the following result, which follows from the
proof of [1, Corollary 8.1] with suitable modifications. For (ak)

∞
k=1 ∈ `2, let

(a∗k)
∞
k=1 be the decreasing rearrangement of (|ak|)∞k=1.

Lemma 5.4. For (ak) ∈ `2 and 0 < x ≤ 1,

1

x

x�

0

( ∞∑
k=1

akrk

)∗
(t) dt �

[log2(2/x)]∑
k=1

a∗k + log
1/2
2 (2/x)‖(a∗k)∞k=[log2(2/x)]+1‖2

with absolute constants.

Since [log2(2/x)] = n+ 1 for x ∈ Jn, it follows from the previous lemma
that

1

x

x�

0

( ∞∑
k=1

akrk

)∗
(t) dt �

n+1∑
k=1

a∗k + (n+ 1)1/2‖(a∗k)∞k=n+2‖2, x ∈ Jn.

This allows us to obtain an analogous result to Theorem 4.3 (with a similar
proof) for the decreasing rearrangement of a Rademacher series.

Theorem 5.5. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. For
1 ≤ p <∞, we have∥∥∥( ∞∑

k=1

akrk

)∗∥∥∥
Ces(ω,p)

�
(∑
n≥0

ωp,n

( n+1∑
k=1

a∗k + (n+ 1)1/2‖(a∗k)∞k=n+2‖2
)p)1/p

,
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and for p =∞,∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,∞)

� sup
n≥0

ωp,n

( n+1∑
k=1

a∗k + (n+ 1)1/2‖(a∗k)∞k=n+2‖2
)
.
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