L^{p} spectral multipliers on the free group $N_{3,2}$

by
Alessio Martini and Detlef Müller (Kiel)

Abstract

Let L be a homogeneous sublaplacian on the 6 -dimensional free 2 -step nilpotent Lie group $N_{3,2}$ on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability $s>6 / 2$ is required on the multiplier.

1. Introduction. The free 2 -step nilpotent Lie group $N_{3,2}$ on three generators is the simply connected, connected nilpotent Lie group defined by the relations

$$
\left[X_{1}, X_{2}\right]=Y_{3}, \quad\left[X_{2}, X_{3}\right]=Y_{1}, \quad\left[X_{3}, X_{1}\right]=Y_{2}
$$

where $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$ is a basis of its Lie algebra (that is, the Lie algebra of left-invariant vector fields on $N_{3,2}$). In exponential coordinates, $N_{3,2}$ can be identified with $\mathbb{R}_{x}^{3} \times \mathbb{R}_{y}^{3}$, where the group law is given by

$$
(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+x \wedge x^{\prime} / 2\right)
$$

and $x \wedge x^{\prime}$ denotes the usual vector product of $x, x^{\prime} \in \mathbb{R}^{3}$. The family $\left(\delta_{t}\right)_{t>0}$ of automorphic dilations of $N_{3,2}$, defined by

$$
\delta_{t}(x, y)=\left(t x, t^{2} y\right)
$$

turns $N_{3,2}$ into a stratified group of homogeneous dimension $Q=9$.
Let L be a homogeneous sublaplacian on $N_{3,2}$; without loss of generality, we may assume that $L=-\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)$. Since L is a self-adjoint operator on $L^{2}\left(N_{3,2}\right)$, a functional calculus for L is defined via spectral integration and, for all Borel functions $F: \mathbb{R} \rightarrow \mathbb{C}$, the operator $F(L)$ is bounded on $L^{2}\left(N_{3,2}\right)$ whenever the "spectral multiplier" F is a bounded function. Here we are interested in giving a sufficient condition for the L^{p}-boundedness (for $p \neq 2$) of the operator $F(L)$, in terms of smoothness properties of the multiplier F.

2010 Mathematics Subject Classification: Primary 43A22; Secondary 42B15.
Key words and phrases: nilpotent Lie groups, spectral multipliers, sublaplacians, MikhlinHörmander multipliers, singular integral operators.

Let $W_{2}^{s}(\mathbb{R})$ denote the L^{2} Sobolev space of (fractional) order s. Then our main result reads as follows.

Theorem 1.1. Suppose that a function $F: \mathbb{R} \rightarrow \mathbb{C}$ satisfies

$$
\sup _{t>0}\|\eta F(t \cdot)\|_{W_{2}^{s}}<\infty
$$

for some $s>6 / 2$ and some nonzero $\eta \in C_{c}^{\infty}(] 0, \infty[)$. Then the operator $F(L)$ is of weak type $(1,1)$ and bounded on $L^{p}\left(N_{3,2}\right)$ for all $\left.p \in\right] 1, \infty[$.

Observe that the general multiplier theorem for homogeneous sublaplacians on stratified Lie groups by Christ [3] and Mauceri and Meda [16] requires the stronger regularity condition $s>Q / 2=9 / 2$. To the best of our knowledge, in the case of $N_{3,2}$ none of the results and techniques known so far allowed one to go below the condition $s>Q / 2$. Our result pushes the regularity assumption down to $s>d / 2=6 / 2$, where $d=6$ is the topological dimension of $N_{3,2}$. We conjecture that this condition is sharp.

The problem of L^{p}-boundedness for spectral multipliers on nilpotent Lie groups has a long history, and the theorem by Christ and Mauceri and Meda is itself an improvement of a series of previous results (see, e.g., [4, (9, 5). Nevertheless it is still an open question whether the homogeneous dimension in the smoothness condition may always be replaced by the topological dimension.

It has been known for a long time [10, 19 that such an improvement of the multiplier theorem holds true in the case of the Heisenberg and related groups (more precisely, for direct products of Métivier and abelian groups; see also [11, 14]). This class of groups, however, does not include $N_{3,2}$, or any free 2-step nilpotent group $N_{n, 2}$ on n generators (see [20, §3] for a definition), except for the smallest one, $N_{2,2}$, which is the 3 -dimensional Heisenberg group. The free groups $N_{n, 2}$ have in a sense the maximal structural complexity among 2 -step groups, since every 2 -step nilpotent Lie group is a quotient of a free one. Our result should then hopefully shed some new light and contribute to the understanding of the problem for general 2-step nilpotent Lie groups.
2. Strategy of the proof. The sublaplacian L is a left-invariant operator on $N_{3,2}$, hence any operator of the form $F(L)$ is left-invariant too. Let $\mathcal{K}_{F(L)}$ then denote the convolution kernel of $F(L)$. As shown, e.g., in [14, Theorem 4.6], the previous Theorem 1.1 is a consequence of the following L^{1}-estimate.

Proposition 2.1. For all $s>6 / 2$, for all compact sets $K \subseteq] 0, \infty[$, and for all functions $F: \mathbb{R} \rightarrow \mathbb{C}$ such that $\operatorname{supp} F \subseteq K$,

$$
\begin{equation*}
\left\|\mathcal{K}_{F(L)}\right\|_{1} \leq C_{K, s}\|F\|_{W_{2}^{s}} \tag{2.1}
\end{equation*}
$$

Let $|\cdot|_{\delta}$ be any δ_{t}-homogeneous norm on $N_{3,2}$; take, e.g., $|(x, y)|_{\delta}=$ $|x|+|y|^{1 / 2}$. The crucial estimate in the proof in [16] of the general theorem for stratified groups, that is,

$$
\begin{equation*}
\left\|(1+|\cdot| \delta)^{\alpha} \mathcal{K}_{F(L)}\right\|_{2} \leq C_{K, \alpha, \beta}\|F\|_{W_{2}^{\beta}} \tag{2.2}
\end{equation*}
$$

for all $\alpha \geq 0$ and $\beta>\alpha$, implies (2.1) when $s>9 / 2$, by Hölder's inequality. In order to push the condition down to $s>6 / 2$, here we prove an enhanced version of (2.2), namely

$$
\begin{equation*}
\left\|(1+|\cdot| \delta)^{\alpha} w^{r} \mathcal{K}_{F(L)}\right\|_{2} \leq C_{K, \alpha, \beta, r}\|F\|_{W_{2}^{\beta}}, \tag{2.3}
\end{equation*}
$$

for some "extra weight" function w on $N_{3,2}$, and suitable constraints on the exponents α, β, r.

A similar approach is adopted in the above-mentioned works on the Heisenberg and related groups. However, in [19] the extra weight w is the full weight $1+|\cdot|_{\delta}$, while [10] employs the weight $w(x, y)=1+|x|$. Here instead the weight $w(x, y)=1+|y|$ is used, and 2.3 is proved under the conditions $\alpha \geq 0,0 \leq r<3 / 2, \beta>\alpha+r$ (see Proposition 4.6 below).

The proof of (2.3) when $\alpha=0$ is based on a careful analysis exploiting identities for Laguerre polynomials, somewhat in the spirit of [4, 19, 18, but with additional complexity due, inter alia, to the simultaneous use of generalized Laguerre polynomials of different types. The estimate for arbitrary α is then recovered by interpolation with (2.2). An analogous strategy is followed in [15], where identities for Hermite polynomials are used in order to prove a sharp spectral multiplier theorem for Grushin operators.
3. A joint functional calculus. It is convenient for us to embed the functional calculus for the sublaplacian L in a larger functional calculus for a system of commuting left-invariant differential operators on $N_{3,2}$. Specifically, the operators

$$
\begin{equation*}
L,-i Y_{1},-i Y_{2},-i Y_{3} \tag{3.1}
\end{equation*}
$$

are essentially self-adjoint and commute strongly, hence they admit a joint functional calculus (see, e.g., [13]).

If \mathbf{Y} denotes the "vector of operators" $\left(-i Y_{1},-i Y_{2},-i Y_{3}\right)$, then we can express the convolution kernel $\mathcal{K}_{G(L, \mathbf{Y})}$ of the operator $G(L, \mathbf{Y})$ in terms of Laguerre functions (cf. [7]). Namely, for all $n, k \in \mathbb{N}$, let

$$
L_{n}^{(k)}(u)=\frac{u^{-k} e^{u}}{n!}\left(\frac{d}{d u}\right)^{n}\left(u^{k+n} e^{-u}\right)
$$

be the nth Laguerre polynomial of type k, and define

$$
\mathcal{L}_{n}^{(k)}(t)=(-1)^{n} e^{-t} L_{n}^{(k)}(2 t) .
$$

Further, for all $\eta \in \mathbb{R}^{3} \backslash\{0\}$ and $\xi \in \mathbb{R}^{3}$, define $\xi_{\|}^{\eta}$ and ξ_{\perp}^{η} by

$$
\xi_{\|}^{\eta}=\langle\xi, \eta /| \eta| \rangle, \quad \xi_{\perp}^{\eta}=\xi-\xi_{\|}^{\eta} \eta /|\eta| .
$$

Proposition 3.1. Let $G: \mathbb{R}^{4} \rightarrow \mathbb{C}$ be in the Schwartz class, and set

$$
\begin{equation*}
m(n, \mu, \eta)=G\left((2 n+1)|\eta|+\mu^{2}, \eta\right) \tag{3.2}
\end{equation*}
$$

for all $n \in \mathbb{N}, \mu \in \mathbb{R}, \eta \in \mathbb{R}^{3}$ with $\eta \neq 0$. Then

$$
\begin{aligned}
\mathcal{K}_{G(L, \mathbf{Y})} & (x, y) \\
& =\frac{2}{(2 \pi)^{6}} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \sum_{n \in \mathbb{N}} m\left(n, \xi_{\|}^{\eta}, \eta\right) \mathcal{L}_{n}^{(0)}\left(\left|\xi_{\perp}^{\eta}\right|^{2} /|\eta|\right) e^{i\langle\xi, x\rangle} e^{i\langle\eta, y\rangle} d \xi d \eta .
\end{aligned}
$$

Proof. For all $\eta \in \mathbb{R}^{3} \backslash\{0\}$, choose a unit vector $E_{\eta} \in \eta^{\perp}$, and set $\bar{E}_{\eta}=(\eta /|\eta|) \wedge E_{\eta}$; moreover, for all $x \in \mathbb{R}^{3}$, denote by $x_{1}^{\eta}, x_{2}^{\eta}, x_{\|}^{\eta}$ the components of x with respect to the positive orthonormal basis E^{η}, \bar{E}^{η}, $\eta /|\eta|$ of \mathbb{R}^{3}.

For all $\eta \in \mathbb{R}^{3} \backslash\{0\}$ and all $\mu \in \mathbb{R}$, an irreducible unitary representation $\pi_{\eta, \mu}$ of $N_{3,2}$ on $L^{2}(\mathbb{R})$ is defined by

$$
\pi_{\eta, \mu}(x, y) \phi(u)=e^{i\langle\eta, y\rangle} e^{i|\eta|\left(u+x_{1}^{\eta} / 2\right) x_{2}^{\eta}} e^{i \mu x_{\|}^{\eta}} \phi\left(x_{1}^{\eta}+u\right)
$$

for all $(x, y) \in N_{3,2}, u \in \mathbb{R}, \phi \in L^{2}(\mathbb{R})$. Following e.g. [1, §2], one can see that these representations are sufficient to write the Plancherel formula for the group Fourier transform of $N_{3,2}$, and the corresponding Fourier inversion formula:

$$
\begin{equation*}
f(x, y)=(2 \pi)^{-5} \int_{\mathbb{R}^{3} \backslash\{0\} \mathbb{R}} \int_{\mathbb{R}} \operatorname{tr}\left(\pi_{\eta, \mu}(x, y) \pi_{\eta, \mu}(f)\right)|\eta| d \mu d \eta \tag{3.3}
\end{equation*}
$$

for all $f: N_{3,2} \rightarrow \mathbb{C}$ in the Schwartz class and all $(x, y) \in N_{3,2}$, where $\pi_{\eta, \mu}(f)=\int_{N_{3,2}} f(z) \pi_{\eta, \mu}\left(z^{-1}\right) d z$.

Fix $\eta \in \mathbb{R}^{3} \backslash\{0\}$ and $\mu \in \mathbb{R}$. The operators (3.1) are represented in $\pi_{\eta, \mu}$ as

$$
\begin{equation*}
d \pi_{\eta, \mu}(L)=-\partial_{u}^{2}+|\eta|^{2} u^{2}+\mu^{2}, \quad d \pi_{\eta, \mu}\left(-i Y_{j}\right)=\eta_{j} . \tag{3.4}
\end{equation*}
$$

If h_{n} is the nth Hermite function, that is,

$$
h_{n}(t)=(-1)^{n}\left(n!2^{n} \sqrt{\pi}\right)^{-1 / 2} e^{t^{2} / 2}\left(\frac{d}{d t}\right)^{n} e^{-t^{2}},
$$

and $\tilde{h}_{\eta, n}$ is defined by

$$
\tilde{h}_{\eta, n}(u)=|\eta|^{1 / 4} h_{n}\left(|\eta|^{1 / 2} u\right),
$$

then $\left\{\tilde{h}_{\eta, n}\right\}_{n \in \mathbb{N}}$ is a complete orthonormal system for $L^{2}(\mathbb{R})$, made of joint
eigenfunctions of the operators (3.4); in fact,

$$
\begin{align*}
d \pi_{\eta, \mu}(L) \tilde{h}_{\eta, n} & =\left(|\eta|(2 n+1)+\mu^{2}\right) \tilde{h}_{\eta, n} \\
d \pi_{\eta, \mu}\left(-i Y_{j}\right) \tilde{h}_{\eta, n} & =\eta_{j} \tilde{h}_{\eta, n} . \tag{3.5}
\end{align*}
$$

Moreover the corresponding diagonal matrix coefficients $\varphi_{\eta, \mu, n}$ of $\pi_{\eta, \mu}$ are given by

$$
\begin{aligned}
& \varphi_{\eta, \mu, n}(x, y)=\left\langle\pi_{\eta, \mu}(x, y) \tilde{h}_{\eta, n}, \tilde{h}_{\eta, n}\right\rangle \\
& \quad=e^{i\langle\eta, y\rangle} e^{i \mu x_{\|}^{\eta}}|\eta|^{1 / 2} \int_{\mathbb{R}} e^{i|\eta| u x_{2}^{\eta}} h_{n}\left(|\eta|^{1 / 2}\left(u+x_{1}^{\eta} / 2\right)\right) h_{n}\left(|\eta|^{1 / 2}\left(u-x_{1}^{\eta} / 2\right)\right) d u .
\end{aligned}
$$

The last integral is essentially the Fourier-Wigner transform of the pair $\left(h_{n}, h_{n}\right)$, whose Fourier transform has a particularly simple expression (cf. [8, formula (1.90)]); the parity of the Hermite functions then yields

$$
\begin{aligned}
\varphi_{\eta, \mu, n}(x, y)=e^{i\langle\eta, y\rangle} & e^{i \mu x_{\|}^{\eta}} \frac{(-1)^{n}}{\pi|\eta|} \int_{\mathbb{R}^{2}} e^{i v_{2} x_{2}^{\eta}} e^{i v_{1} x_{1}^{\eta}} \\
& \times \int_{\mathbb{R}} e^{-i t\left(2 v_{1} /|\eta|^{1 / 2}\right)} h_{n}\left(t+v_{2} /|\eta|^{1 / 2}\right) h_{n}\left(t-v_{2} /|\eta|^{1 / 2}\right) d t d v
\end{aligned}
$$

that is,

$$
\begin{equation*}
\varphi_{\eta, \mu, n}(x, y)=\frac{1}{\pi|\eta|} e^{i\langle\eta, y\rangle} e^{i \mu x_{\|}^{\eta}} \int_{\mathbb{R}^{2}} e^{i v_{1} x_{1}^{\eta}} e^{i v_{2} x_{2}^{\eta}} \mathcal{L}_{n}^{(0)}\left(|v|^{2} /|\eta|\right) d v \tag{3.6}
\end{equation*}
$$

(see [21, Theorem 1.3.4] or [8, Theorem 1.104]).
Note that $\mathcal{K}_{G(L, \mathbf{Y})} \in \mathcal{S}\left(N_{3,2}\right)$ since $G \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (see [2, Theorem 5.2] or [12, §4.2]). Moreover

$$
\pi_{\eta, \mu}\left(\mathcal{K}_{G(L, \mathbf{Y})}\right) \tilde{h}_{\eta, n}=G\left(|\eta|(2 n+1)+\mu^{2}, \eta\right) \tilde{h}_{\eta, n}
$$

by (3.5) and [17, Proposition 1.1], hence

$$
\left\langle\pi_{\eta, \mu}(x, y) \pi_{\eta, \mu}\left(\mathcal{K}_{G(L, \mathbf{Y})}\right) \tilde{h}_{\eta, n}, \tilde{h}_{\eta, n}\right\rangle=m(n, \mu, \eta) \varphi_{\eta, \mu, n}(x, y)
$$

Therefore, by (3.3) and (3.6),

$$
\begin{aligned}
& \mathcal{K}_{G(L, \mathbf{Y})}(x, y) \\
& \quad=(2 \pi)^{-5} \iint_{\mathbb{R}^{3} \backslash\{0\}} \sum_{\mathbb{R}} m(n, \mu, \eta) \varphi_{\eta, \mu, n}(x, y)|\eta| d \mu d \eta \\
& \quad=\frac{2}{(2 \pi)^{6}} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \sum_{n \in \mathbb{N}} m\left(n, \xi_{3}, \eta\right) e^{i\langle\eta, y\rangle} e^{i\left\langle\xi,\left(x_{1}^{\eta}, x_{2}^{\eta}, x_{\|}^{\eta}\right)\right\rangle} \mathcal{L}_{n}^{(0)}\left(\left(\xi_{1}^{2}+\xi_{2}^{2}\right) /|\eta|\right) d \xi d \eta .
\end{aligned}
$$

The conclusion follows by a change of variable in the inner integral.
4. Weighted estimates. For convenience, set $\mathcal{L}_{n}^{(k)}=0$ for all $n<0$. The following identities are easily obtained from the properties of Laguerre polynomials (see, e.g., [6, §10.12]).

Lemma 4.1. For all $k, n, n^{\prime} \in \mathbb{N}$ and $t \in \mathbb{R}$,

$$
\begin{gather*}
\mathcal{L}_{n}^{(k)}(t)=\mathcal{L}_{n-1}^{(k+1)}(t)+\mathcal{L}_{n}^{(k+1)}(t) \tag{4.1}\\
\frac{d}{d t} \mathcal{L}_{n}^{(k)}(t)=\mathcal{L}_{n-1}^{(k+1)}(t)-\mathcal{L}_{n}^{(k+1)}(t), \tag{4.2}\\
\int_{0}^{\infty} \mathcal{L}_{n}^{(k)}(t) \mathcal{L}_{n^{\prime}}^{(k)}(t) t^{k} d t= \begin{cases}\frac{(n+k)!}{2^{k+1} n!} & \text { if } n=n^{\prime} \\
0 & \text { otherwise. }\end{cases} \tag{4.3}
\end{gather*}
$$

We introduce some operators on functions $f: \mathbb{N} \times \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{C}$:

$$
\begin{aligned}
\tau f(n, \mu, \eta) & =f(n+1, \mu, \eta), \\
\delta f(n, \mu, \eta) & =f(n+1, \mu, \eta)-f(n, \mu, \eta), \\
\partial_{\mu} f(n, \mu, \eta) & =\frac{\partial}{\partial \mu} f(n, \mu, \eta), \\
\partial_{\eta}^{\alpha} f(n, \mu, \eta) & =\left(\frac{\partial}{\partial \eta}\right)^{\alpha} f(n, \mu, \eta),
\end{aligned}
$$

for all $\alpha \in \mathbb{N}^{3}$. For each multiindex $\alpha \in \mathbb{N}^{3}$, we denote by $|\alpha|$ its length $\alpha_{1}+\alpha_{2}+\alpha_{3}$. We set moreover $\langle t\rangle=2|t|+1$ for all $t \in \mathbb{R}$.

Note that, for all compactly supported $f: \mathbb{N} \times \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{C}, \tau^{l} f$ is null for all sufficiently large $l \in \mathbb{N}$; hence the operator $1+\tau$, when restricted to the set of compactly supported functions, is invertible, with inverse given by

$$
(1+\tau)^{-1} f=\sum_{l \in \mathbb{N}}(-1)^{l} \tau^{l} f,
$$

and therefore the operator $(1+\tau)^{q}$ is well-defined for all $q \in \mathbb{Z}$.
Proposition 4.2. Let $G: \mathbb{R}^{4} \rightarrow \mathbb{C}$ be smooth and compactly supported in $\mathbb{R} \times\left(\mathbb{R}^{3} \backslash\{0\}\right)$, and let $m(n, \mu, \eta)$ be defined by (3.2). Then for all $\alpha \in \mathbb{N}^{3}$,

$$
\begin{align*}
& \int_{N_{3,2}}\left|y^{\alpha} \mathcal{K}_{G(L, \mathbf{Y})}(x, y)\right|^{2} d x d y \tag{4.4}\\
& \leq C_{\alpha} \sum_{\iota \in I_{\alpha}} \sum_{n \in \mathbb{N}} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}}\left|\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)^{\left|\beta^{\iota}\right|-k_{\iota}} m(n, \mu, \eta)\right|^{2} \\
& \\
& \quad \times \mu^{2 b_{\iota}}|\eta|^{2\left|\gamma^{\iota}\right|-2|\alpha|-2 k_{\iota}+\left|\beta^{\iota}\right|+1}\langle n\rangle^{\left|\beta^{\iota}\right|} d \mu d \eta,
\end{align*}
$$

where I_{α} is a finite set and, for all $\iota \in I_{\alpha}$,

- $\gamma^{\iota} \in \mathbb{N}^{3}, l_{\iota}, k_{\iota} \in \mathbb{N}, \gamma^{\iota} \leq \alpha, \min \{1,|\alpha|\} \leq\left|\gamma^{\iota}\right|+l_{\iota}+k_{\iota} \leq|\alpha|$,
- $b_{\iota} \in \mathbb{N}, \beta^{\iota} \in \mathbb{N}^{3}, b_{\iota}+\left|\beta^{\iota}\right|=l_{\iota}+2 k_{\iota},\left|\gamma^{\iota}\right|+l_{\iota}+b_{\iota} \leq|\alpha|$.

Proof. Proposition 3.1 and integration by parts allow us to write

$$
\begin{align*}
& y^{\alpha} \mathcal{K}_{G(L, \mathbf{Y})}(x, y) \tag{4.5}\\
= & \frac{2 i^{|\alpha|}}{(2 \pi)^{6}} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}}\left[\left(\frac{\partial}{\partial \eta}\right)^{\alpha} \sum_{n \in \mathbb{N}} m\left(n, \xi_{\|}^{\eta}, \eta\right) \mathcal{L}_{n}^{(0)}\left(\left|\xi_{\perp}^{\eta}\right|^{2} /|\eta|\right)\right] e^{i\langle\xi, x\rangle} e^{i\langle\eta, y\rangle} d \xi d \eta .
\end{align*}
$$

From the definition of $\xi_{\|}^{\eta}$ and ξ_{\perp}^{η}, the following identities are not difficult to obtain:

$$
\begin{align*}
& \frac{\partial}{\partial \eta_{j}} \xi_{\|}^{\eta}=\left(\xi_{\perp}^{\eta}\right)_{j} \frac{1}{|\eta|}, \quad \frac{\partial}{\partial \eta_{j}}\left(\xi_{\perp}^{\eta}\right)_{k}=-\xi_{\|}^{\eta} \frac{\partial}{\partial \eta_{j}} \frac{\eta_{k}}{|\eta|}-\left(\xi_{\perp}^{\eta}\right)_{j} \frac{\eta_{k}}{|\eta|^{2}}, \tag{4.6}\\
& \frac{\partial}{\partial \eta_{j}} \frac{\left|\xi_{\perp}^{\eta}\right|^{2}}{|\eta|}=-\xi_{\|}^{\eta}\left(\xi_{\perp}^{\eta}\right)_{j} \frac{2}{|\eta|^{2}}-\left|\xi_{\perp}^{\eta}\right|^{2} \frac{\eta_{j}}{|\eta|^{3}} .
\end{align*}
$$

The multiindex notation will also be used as follows:

$$
\left(\xi_{\perp}^{\eta}\right)^{\beta}=\left(\xi_{\perp}^{\eta}\right)_{1}^{\beta_{1}}\left(\xi_{\perp}^{\eta}\right)_{2}^{\beta_{2}}\left(\xi_{\perp}^{\eta}\right)_{3}^{\beta_{3}}
$$

for all $\xi, \eta \in \mathbb{R}$, with $\eta \neq 0$, and all $\beta \in \mathbb{N}^{3}$; consequently,

$$
\left|\xi_{\perp}^{\eta}\right|^{2}=\left(\xi_{\perp}^{\eta}\right)^{(2,0,0)}+\left(\xi_{\perp}^{\eta}\right)^{(0,2,0)}+\left(\xi_{\perp}^{\eta}\right)^{(0,0,2)} .
$$

Via these identities, one can prove inductively that, for all $\alpha \in \mathbb{N}^{3}$,

$$
\begin{align*}
& \left(\frac{\partial}{\partial \eta}\right)^{\alpha} \sum_{n \in \mathbb{N}} m\left(n, \xi_{\|}^{\eta}, \eta\right) \mathcal{L}_{n}^{(0)}\left(\left|\xi_{\perp}^{\eta}\right|^{2} /|\eta|\right) \tag{4.7}\\
& \quad=\sum_{\iota \in I_{\alpha}} \sum_{n \in \mathbb{N}} \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}} m\left(n, \xi_{\|}^{\eta}, \eta\right)\left(\xi_{\|}^{\eta}\right)^{b_{\iota}}\left(\xi_{\perp}^{\eta}\right)^{\beta^{\iota}} \Theta_{\iota}(\eta) \mathcal{L}_{n}^{\left(k_{\iota}\right)}\left(\left|\xi_{\perp}^{\eta}\right|^{2} /|\eta|\right)
\end{align*}
$$

where $I_{\alpha}, \gamma^{\iota}, l_{\iota}, k_{\iota}, b_{\iota}, \beta^{\iota}$ are as in the statement above, while $\Theta_{\iota}: \mathbb{R}^{3} \backslash\{0\}$ $\rightarrow \mathbb{R}$ is smooth and homogeneous of degree $\left|\gamma^{\iota}\right|-|\alpha|-k_{\iota}$. For the inductive step, one employs Leibniz' rule, and when a derivative hits a Laguerre function, the identity (4.2) together with summation by parts is used.

Note that, for all compactly supported $f: \mathbb{N} \times \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{C}$,

$$
\sum_{n \in \mathbb{N}} f(n, \mu, \eta) \mathcal{L}_{n}^{(k)}(t)=\sum_{n \in \mathbb{N}}(1+\tau) f(n, \mu, \eta) \mathcal{L}_{n}^{(k+1)}(t),
$$

by 4.1). Since $1+\tau$ is invertible, simple manipulations and iteration yield the more general identity

$$
\sum_{n \in \mathbb{N}} f(n, \mu, \eta) \mathcal{L}_{n}^{(k)}(t)=\sum_{n \in \mathbb{N}}(1+\tau)^{k^{\prime}-k} f(n, \mu, \eta) \mathcal{L}_{n}^{\left(k^{\prime}\right)}(t)
$$

for all $k, k^{\prime} \in \mathbb{N}$. This formula allows us to adjust in (4.7) the type of the

Laguerre functions to the exponent of ξ_{\perp}, and to deduce that

$$
\begin{aligned}
&\left(\frac{\partial}{\partial \eta}\right)^{\alpha} \sum_{n \in \mathbb{N}} m\left.m, \xi_{\|}^{\eta}, \eta\right) \mathcal{L}_{n}^{(0)}\left(\left|\xi_{\perp}^{\eta}\right|^{2} /|\eta|\right) \\
&=\sum_{\iota \in I_{\alpha}} \sum_{n \in \mathbb{N}} \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)^{\left|\beta^{\iota}\right|-k_{\iota}} m\left(n, \xi_{\|}^{\eta}, \eta\right) \\
& \quad \times\left(\xi_{\|}^{\eta}\right)^{b_{\iota}}\left(\xi_{\perp}^{\eta}\right)^{\beta^{\iota}} \Theta_{\iota}(\eta) \mathcal{L}_{n}^{\left(\left|\beta^{\iota}\right|\right)}\left(\left|\xi_{\perp}^{\eta}\right|^{2} /|\eta|\right)
\end{aligned}
$$

By plugging this identity into (4.5) and exploiting Plancherel's formula for the Fourier transform, the finiteness of I_{α} and the triangular inequality, we get

$$
\begin{aligned}
& \int_{N_{3,2}}\left|y^{\alpha} \mathcal{K}_{G(L, \mathbf{Y})}(x, y)\right|^{2} d x d y \\
& \leq C_{\alpha} \sum_{\iota \in I_{\alpha}} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} \mid \sum_{n \in \mathbb{N}} \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)\left.^{\left|\beta^{\iota}\right|-k_{\iota}} m(n, \mu, \eta) \mathcal{L}_{n}^{\left(\left|\beta^{\iota}\right|\right)}\left(|\zeta|^{2} /|\eta|\right)\right|^{2} \\
& \times \mu^{2 b_{\iota}}|\zeta|^{2\left|\beta^{\iota}\right|}|\eta|^{2\left|\gamma^{\iota}\right|-2|\alpha|-2 k_{\iota}} d \zeta d \mu d \eta
\end{aligned}
$$

The passage to polar coordinates in the ζ-integral and rescaling then give

$$
\begin{aligned}
& \int_{N_{3,2}}\left|y^{\alpha} \mathcal{K}_{G(L, \mathbf{Y})}(x, y)\right|^{2} d x d y \\
& \leq C_{\alpha} \sum_{\iota \in I_{\alpha} \mathbb{R}^{3}} \int_{\mathbb{R}} \int_{0}^{\infty}\left|\sum_{n \in \mathbb{N}} \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)^{\left|\beta^{\iota}\right|-k_{\iota}} m(n, \mu, \eta) \mathcal{L}_{n}^{\left(\left|\beta^{\iota}\right|\right)}(s)\right|^{2} s^{\left|\beta^{\iota}\right|} d s \\
& \quad \times \mu^{2 b_{\iota}}|\eta|^{2\left|\gamma^{\iota}\right|-2|\alpha|-2 k_{\iota}+\left|\beta^{\iota}\right|+1} d \mu d \eta,
\end{aligned}
$$

and the conclusion follows by applying the orthogonality relations (4.3) for the Laguerre functions to the inner integral.

Note that $\tau f(\cdot, \mu, \eta), \delta f(\cdot, \mu, \eta)$ depend only on $f(\cdot, \mu, \eta)$; in other words, τ and δ can be considered as operators on functions $\mathbb{N} \rightarrow \mathbb{C}$. The next lemma will be useful in converting finite differences into continuous derivatives.

Lemma 4.3. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ have a smooth extension $\tilde{f}:[0, \infty[\rightarrow \mathbb{C}$, and let $k \in \mathbb{N}$. Then

$$
\delta^{k} f(n)=\int_{J_{k}} \tilde{f}^{(k)}(n+s) d \nu_{k}(s)
$$

for all $n \in \mathbb{N}$, where $J_{k}=[0, k]$ and ν_{k} is a Borel probability measure on J_{k}. In particular

$$
\left|\delta^{k} f(n)\right|^{2} \leq \int_{J_{k}}\left|\tilde{f}^{(k)}(n+s)\right|^{2} d \nu_{k}(s)
$$

for all $n \in \mathbb{N}$.

Proof. Iterated application of the fundamental theorem of integral calculus gives

$$
\delta^{k} f(n)=\int_{[0,1]^{k}} \tilde{f}^{(k)}\left(n+s_{1}+\cdots+s_{k}\right) d s
$$

The conclusion follows by taking as ν_{k} the push-forward of the uniform distribution on $[0,1]^{k}$ via the map $\left(s_{1}, \ldots, s_{k}\right) \mapsto s_{1}+\cdots+s_{k}$, and by Hölder's inequality.

We now give a simplified version of the right-hand side of (4.4), in the case where we restrict to the functional calculus for the sublaplacian L alone. In order to avoid divergent series, however, it is convenient to first truncate the multiplier along the spectrum of \mathbf{Y}.

Lemma 4.4. Let $\chi \in C_{c}^{\infty}(\mathbb{R})$ be supported in $\left.[1 / 2,2], K \subseteq\right] 0, \infty[$ be compact and $M \in] 0, \infty[$. If $F: \mathbb{R} \rightarrow \mathbb{C}$ is smooth and supported in K, and $F_{M}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{C}$ is given by

$$
F_{M}(\lambda, \eta)=F(\lambda) \chi(|\eta| / M),
$$

then, for all $r \in[0, \infty[$,

$$
\left.\left.\int_{N_{3,2}}| | y\right|^{r} \mathcal{K}_{F_{M}(L, \mathbf{Y})}(x, y)\right|^{2} d x d y \leq C_{K, \chi, r} M^{3-2 r}\|F\|_{W_{2}^{r}}^{2}
$$

Proof. We may restrict to the case $r \in \mathbb{N}$, the other cases being recovered a posteriori by interpolation. Hence we need to prove that

$$
\begin{equation*}
\int_{N_{3,2}}\left|y^{\alpha} \mathcal{K}_{F_{M}(L, \mathbf{Y})}(x, y)\right|^{2} d x d y \leq C_{K, \chi, \alpha} M^{3-2|\alpha|}\|F\|_{W_{2}^{|\alpha|}}^{2} \tag{4.8}
\end{equation*}
$$

for all $\alpha \in \mathbb{N}^{3}$. On the other hand, if

$$
m(n, \mu, \eta)=F\left(|\eta|\langle n\rangle+\mu^{2}\right) \chi(|\eta| / M),
$$

then the left-hand side of (4.8) can be majorized by (4.4), and we are reduced to proving that

$$
\begin{array}{r}
\sum_{n \in \mathbb{N} \mathbb{R}^{3} \mathbb{R}}\left|\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)^{\left|\beta^{\iota}\right|-k_{\iota}} m(n, \mu, \eta)\right|^{2} \mu^{2 b_{l}}|\eta|^{2\left|\gamma^{\iota}\right|-2|\alpha|-2 k_{\iota}+\left|\beta^{\iota}\right|+1} \tag{4.9}\\
\times\langle n\rangle^{\left|\beta^{\iota}\right|} d \mu d \eta \leq C_{K, \chi, \alpha} M^{3-2|\alpha|}\|F\|_{W_{2}^{|\alpha|}}^{2}
\end{array}
$$

for all $\iota \in I_{\alpha}$.
Consider first the case $\left|\beta^{\iota}\right| \geq k_{\iota}$. A smooth extension $\tilde{m}: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{C}$ of m is defined by

$$
\tilde{m}(t, \mu, \eta)=F\left(|\eta|(2 t+1)+\mu^{2}\right) \chi(|\eta| / M) .
$$

Then, by Lemma 4.3,

$$
\begin{aligned}
& \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)^{\left|\beta^{\iota}\right|-k_{\iota}} m(n, \mu, \eta) \\
&=\sum_{j=0}^{\left|\beta^{\iota}\right|-k_{\iota}}\binom{\left|\beta^{\iota}\right|-k_{\iota}}{j} \int_{J_{\iota}} \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \partial_{t}^{k_{\iota}} \tilde{m}(n+j+s, \mu, \eta) d \nu_{\iota}(s),
\end{aligned}
$$

where $J_{\iota}=\left[0, k_{\iota}\right]$ and ν_{ι} is a suitable probability measure on J_{ι}; consequently, inequality (4.9) will be proved if we show that

$$
\begin{align*}
& \sum_{n \in \mathbb{N}} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}}\left|\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \partial_{t}^{k_{\iota}} \tilde{m}(n+s, \mu, \eta)\right|^{2} \mu^{2 b_{\iota}}|\eta|^{2\left|\gamma^{\iota}\right|-2|\alpha|-2 k_{\iota}+\left|\beta^{\iota}\right|+1} \tag{4.10}\\
& \times\langle n\rangle^{\left|\beta^{\iota}\right|} d \mu d \eta \leq C_{K, \chi, \alpha} M^{3-2|\alpha|}\|F\|_{W_{2}^{|\alpha|}}^{2}
\end{align*}
$$

for all $s \in\left[0,\left|\beta^{\iota}\right|\right]$. On the other hand, it is easily proved inductively that

$$
\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \partial_{t}^{k_{\iota}} \tilde{m}(t, \mu, \eta)
$$

$$
=\sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} \sum_{q=0}^{\left|\gamma^{\iota}\right|-v} \Psi_{\iota, v, q}(\eta)\langle t\rangle^{v} \mu^{2 r-l_{\iota}} M^{-q} F^{\left(k_{\iota}+v+r\right)}\left(|\eta|\langle t\rangle+\mu^{2}\right) \chi^{(q)}(|\eta| / M)
$$

for all $t \geq 0$, where $\Psi_{\iota, v, q}: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}$ is smooth and homogeneous of degree $k_{\iota}+v+q-\left|\gamma^{\iota}\right|$; hence

$$
\begin{align*}
\left|\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \partial_{t}^{k_{\iota}} \tilde{m}(t, \mu, \eta)\right|^{2} \leq C_{\chi, \alpha} & \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} M^{2 k_{\iota}+2 v-2\left|\gamma^{\iota}\right|}\langle t\rangle^{2 v} \mu^{4 r-2 l_{\iota}} \tag{4.11}\\
& \times\left|F^{\left(k_{\iota}+v+r\right)}\left(|\eta|\langle t\rangle+\mu^{2}\right)\right|^{2} \tilde{\chi}(|\eta| / M)
\end{align*}
$$

where $\tilde{\chi}$ is the characteristic function of $[1 / 2,2]$, and we are using the fact that $|\eta| \sim M$ in the region where $\tilde{\chi}(|\eta| / M) \neq 0$. Consequently, the left-hand side of 4.10 is majorized by

$$
\begin{aligned}
C_{\chi, \alpha} & \sum_{r=\left\lceil l_{\iota} / 2\right.}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} M^{2 v-2|\alpha|+\left|\beta^{\iota}\right|+1} \sum_{n \in \mathbb{N}}\langle n\rangle^{\left|\beta^{\iota}\right|}\langle n+s\rangle^{2 v} \\
& \times \int_{\mathbb{R}^{3}} \int_{\mathbb{R}}\left|F^{\left(k_{\iota}+v+r\right)}\left(|\eta|\langle n+s\rangle+\mu^{2}\right)\right|^{2} \mu^{2 b_{\iota}+4 r-2 l_{\iota}} \tilde{\chi}(|\eta| / M) d \mu d \eta \\
\leq & C_{\chi, \alpha} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} M^{2 v-2|\alpha|+\left|\beta^{\iota}\right|+3} \sum_{n \in \mathbb{N}}\langle n+s\rangle^{\left|\beta^{\iota}\right|+2 v} \\
& \times \int_{0}^{\infty} \int_{0}^{\infty}\left|F^{\left(k_{\iota}+v+r\right)}\left(\rho\langle n+s\rangle+\mu^{2}\right)\right|^{2} \mu^{2 b_{\iota}+4 r-2 l_{\iota}} \tilde{\chi}(\rho / M) d \mu d \rho
\end{aligned}
$$

$$
\begin{aligned}
\leq & C_{\chi, \alpha} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} M^{2 v-2|\alpha|+\left|\beta^{\iota}\right|+3} \int_{0}^{\infty} \int_{0}^{\infty}\left|F^{\left(k_{\iota}+v+r\right)}\left(\rho+\mu^{2}\right)\right|^{2} \\
& \times \mu^{2 b_{\iota}+4 r-2 l_{\iota}} \sum_{n \in \mathbb{N}}\langle n+s\rangle^{\left|\beta^{\iota}\right|+2 v-1} \tilde{\chi}(\rho /(\langle n+s\rangle M)) d \mu d \rho
\end{aligned}
$$

by passing to polar coordinates and rescaling. The last sum in n is easily controlled by $(\rho / M)^{\left|\beta^{\iota}\right|+2 v}$, hence the left-hand side of 4.10 is majorized by

$$
\begin{aligned}
C_{\chi, \alpha} M^{3-2|\alpha|} & \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} \int_{0}^{\infty} \int_{0}^{\infty}\left|F^{\left(k_{\iota}+v+r\right)}\left(\rho+\mu^{2}\right)\right|^{2} \mu^{2 b_{\iota}+4 r-2 l_{\iota}} \rho^{\left|\beta^{\iota}\right|+2 v} d \mu d \rho \\
\leq & C_{K, \chi, \alpha} M^{3-2|\alpha|} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} \sup _{u \in[0, \max K]} \int_{0}^{\infty}\left|F^{\left(k_{\iota}+v+r\right)}(\rho+u)\right|^{2} d \rho
\end{aligned}
$$

because $2 b_{\iota}+4 r-2 l_{\iota} \geq 0$ and $\left|\beta^{\iota}\right|+2 v \geq 0$ if r and v are in the range of summation, and $\operatorname{supp} F \subseteq K$. Since moreover $k_{\iota}+v+r \leq k_{\iota}+\left|\gamma^{\iota}\right|+l_{\iota} \leq|\alpha|$, the last integral is dominated by $\|F\|_{W_{2}^{|\alpha|}}^{2}$ uniformly in r, v, u, and 4.10) follows.

Consider now the case $\left|\beta^{\iota}\right|<k_{\iota}$. Via the identity

$$
(1+\tau)^{-1}=(1-\tau)\left(1-\tau^{2}\right)^{-1}=-\delta\left(1-\tau^{2}\right)^{-1}=-\delta \sum_{j=0}^{\infty} \tau^{2 j}
$$

together with Lemma 4.3, we obtain

$$
\begin{align*}
& \text { (4.12) } \quad \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)^{\left|\beta^{\iota}\right|-k_{\iota}} m(n, \mu, \eta) \tag{4.12}\\
& =(-1)^{k_{\iota}-\left|\beta^{\iota}\right|} \sum_{j=0}^{\infty}\binom{j+k_{\iota}-\left|\beta^{\iota}\right|-1}{k_{\iota}-\left|\beta^{\iota}\right|-1} \int_{J_{\iota}} \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \partial_{t}^{2 k_{\iota}-\left|\beta^{\iota}\right|} \tilde{m}(n+2 j+s, \mu, \eta) d \nu_{\iota}(s),
\end{align*}
$$

where $J_{\iota}=\left[0,2 k_{\iota}-\left|\beta^{\iota}\right|\right]$ and ν_{ι} is a suitable probability measure on J_{ι}. Note that, because of the assumptions on the supports of F and χ, the sum on j on the right-hand side of 4.12 is a finite sum, that is, the j th summand is nonzero only if $\langle n+2 j\rangle \leq 2 M^{-1} \max K$; consequently, by applying the Cauchy-Schwarz inequality to the sum in j, and by (4.11),

$$
\begin{aligned}
& \left|\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \delta^{k_{\iota}}(1+\tau)^{\left|\beta^{\iota}\right|-k_{\iota}} m(n, \mu, \eta)\right|^{2} \\
& \quad \leq C_{K, \alpha} M^{1+2\left|\beta^{\iota}\right|-2 k_{\iota}} \sum_{j=0}^{\infty} \int_{J_{\iota}}\left|\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{l_{\iota}} \partial_{t}^{2 k_{\iota}-\left|\beta^{\iota}\right|} \tilde{m}(n+2 j+s, \mu, \eta)\right|^{2} d \nu_{\iota}(s)
\end{aligned}
$$

$$
\begin{aligned}
\leq & C_{K, \chi, \alpha} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} M^{1+2 k_{\iota}+2 v-2\left|\gamma^{\iota}\right|} \sum_{j=0}^{\infty} \int_{J_{\iota}}\langle n+2 j+s\rangle^{2 v} \mu^{4 r-2 l_{\iota}} \\
& \times\left|F^{\left(2 k_{\iota}-\left|\beta^{\iota}\right|+v+r\right)}\left(|\eta|\langle n+2 j+s\rangle+\mu^{2}\right)\right|^{2} \tilde{\chi}(|\eta| / M) d \nu_{\iota}(s) .
\end{aligned}
$$

Remember that $|\eta| \sim M$ in the region where $\tilde{\chi}(|\eta| / M) \neq 0$. Hence the left-hand side of 4.9 is majorized by

$$
\begin{array}{r}
C_{K, \chi, \alpha} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} \int_{J_{\iota}} \sum_{n \in \mathbb{N}} \sum_{j \in \mathbb{N}}\langle n+2 j+s\rangle^{2 v}\langle n\rangle^{\left|\beta^{\iota}\right|} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}} M^{2+2 v-2|\alpha|+\left|\beta^{\iota}\right|} \\
\times \mu^{2 b_{\iota}+4 r-2 l_{\iota}}\left|F^{\left(2 k_{\iota}-\left|\beta^{\iota}\right|+v+r\right)}\left(|\eta|\langle n+2 j+s\rangle+\mu^{2}\right)\right|^{2} \tilde{\chi}(|\eta| / M) d \mu d \eta d \nu_{\iota}(s) \\
\leq C_{K, \chi, \alpha} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} \sum_{J_{\iota}} \sum_{n \in \mathbb{N}} \sum_{j \in \mathbb{N}}\langle n+2 j+s\rangle^{2 v+\left|\beta^{\iota}\right|} \int_{0}^{\infty} \int_{0}^{\infty} M^{4+2 v-2|\alpha|+\left|\beta^{\iota}\right|} \\
\times\left.\mu^{2 b_{\iota}+4 r-2 l_{\iota} \mid} F^{\left(2 k_{\iota}-\left|\beta^{\iota}\right|+v+r\right)}\left(\rho\langle n+2 j+s\rangle+\mu^{2}\right)\right|^{2} \tilde{\chi}(\rho / M) d \mu d \rho d \nu_{\iota}(s) \\
\leq C_{K, \chi, \alpha} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} M^{4+2 v-2|\alpha|+\left|\beta^{\iota}\right|} \int_{0}^{\infty} \int_{0}^{\infty}\left|F^{\left(2 k_{\iota}-\left|\beta^{\iota}\right|+v+r\right)}\left(\rho+\mu^{2}\right)\right|^{2} \\
\times \mu^{2 b_{\iota}+4 r-2 l_{\iota}} \int_{J_{\iota}} \sum_{(n, j) \in \mathbb{N}^{2}} \frac{\tilde{\chi}(\rho /(\langle n+2 j+s\rangle M))}{\langle n+2 j+s\rangle^{1-2 v-\left|\beta^{\iota}\right|} d \nu_{\iota}(s) d \mu d \rho,}
\end{array}
$$

by passing to polar coordinates and rescaling. The sum in (n, j) is dominated by $(\rho / M)^{2 v+\left|\beta^{\iota}\right|+1}$, uniformly in $s \in J_{\iota}$, and moreover supp $F \subseteq K$. Therefore the left-hand side of 4.9 is majorized by

$$
C_{K, \chi, \alpha} M^{3-2|\alpha|} \sum_{r=\left\lceil l_{\iota} / 2\right\rceil}^{l_{\iota}} \sum_{v=0}^{\left|\gamma^{\iota}\right|} \sup _{u \in[0, \max K]} \int_{0}^{\infty}\left|F^{\left(2 k_{\iota}-\left|\beta^{\iota}\right|+v+r\right)}(\rho+u)\right|^{2} d \rho .
$$

On the other hand, $b_{\iota}+\left|\beta^{\iota}\right|=l_{\iota}+2 k_{\iota}$, hence $2 k_{\iota}-\left|\beta^{\iota}\right|+v+r \leq 2 k_{\iota}-$ $\left|\beta^{\iota}\right|+\left|\gamma^{\iota}\right|+l_{\iota}=b_{\iota}+\left|\gamma^{\iota}\right| \leq|\alpha|$ if r and v are in the range of summation, therefore the last integral is dominated by $\|F\|_{W_{2}^{|\alpha|}}^{2}$ uniformly in r, v, u, and (4.9) follows.

Proposition 4.5. Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be smooth and such that $\operatorname{supp} F \subseteq K$ for some compact set $K \subseteq] 0, \infty[$. Then for all $r \in[0,3 / 2[$,

$$
\int_{N_{3,2}}\left|(1+|y|)^{r} \mathcal{K}_{F(L)}(x, y)\right|^{2} d x d y \leq C_{K, r}\|F\|_{W_{2}^{r}}^{2}
$$

Proof. Take $\chi \in C_{c}^{\infty}(] 0, \infty[)$ such that supp $\chi \subseteq[1 / 2,2]$ and $\sum_{k \in \mathbb{Z}} \chi\left(2^{-k} t\right)$ $=1$ for all $t \in] 0, \infty[$. Note that, if (λ, η) belongs to the joint spectrum of L, \mathbf{Y}, then $|\eta| \leq \lambda$. Therefore, if $k_{K} \in \mathbb{Z}$ is sufficiently large so that
$2^{k_{K}-1}>\max K$, and if F_{M} is defined for all $\left.M \in\right] 0, \infty[$ as in Lemma 4.4, then

$$
F(L)=\sum_{k \in \mathbb{Z}, k \leq k_{K}} F_{2^{k}}(L, \mathbf{Y})
$$

(with convergence in the strong sense). Hence an estimate for $\mathcal{K}_{F(L)}$ can be obtained, via Minkowski's inequality, by summing the corresponding estimates for $\mathcal{K}_{F_{2^{k}}(L, \mathbf{Y})}$ given by Lemma 4.4. If $r<3 / 2$, then the series $\sum_{k \leq k_{K}}\left(2^{k}\right)^{3 / 2-r}$ converges, thus

$$
\left.\left.\int_{N_{3,2}}| | y\right|^{r} \mathcal{K}_{F(L)}(x, y)\right|^{2} d x d y \leq C_{K, r}\|F\|_{W_{2}^{r}}^{2}
$$

The conclusion follows by combining the last inequality with the corresponding one for $r=0$.

Recall that $|\cdot|_{\delta}$ denotes a δ_{t}-homogeneous norm on $N_{3,2}$, thus $|(x, y)|_{\delta} \sim$ $|x|+|y|^{1 / 2}$. Interpolation then allows us to improve the standard weighted estimate for a homogeneous sublaplacian on a stratified group.

Proposition 4.6. Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be smooth and such that $\operatorname{supp} F \subseteq K$ for some compact set $K \subseteq] 0, \infty[$. Then for all $r \in[0,3 / 2[, \alpha \geq 0$ and $\beta>\alpha+r$,

$$
\begin{equation*}
\int_{N_{3,2}}\left|\left(1+|(x, y)|_{\delta}\right)^{\alpha}(1+|y|)^{r} \mathcal{K}_{F(L)}(x, y)\right|^{2} d x d y \leq C_{K, \alpha, \beta, r}\|F\|_{W_{2}^{\beta}}^{2} \tag{4.13}
\end{equation*}
$$

Proof. Note that $1+|y| \leq C\left(1+|(x, y)|_{\delta}\right)^{2}$. Hence, in the case $\alpha \geq 0$, $\beta>\alpha+2 r$, the inequality (4.13) follows by the standard estimate of [16, Lemma 1.2]. On the other hand, if $\alpha=0$ and $\beta \geq r$, then 4.13 is given by Proposition 4.5. The full range of α and β is then obtained by interpolation (cf. the proof of [16, Lemma 1.2]).

We can finally prove the fundamental L^{1}-estimate, and consequently Theorem 1.1 .

Proof of Proposition 2.1. Take $r \in] 9 / 2-s, 3 / 2[$. Then $s-r>3 / 2+3-2 r$, hence we can find $\alpha_{1}>3 / 2$ and $\alpha_{2}>3-2 r$ such that $s-r>\alpha_{1}+\alpha_{2}$. Therefore, by Proposition 4.6 and Hölder's inequality,

$$
\left\|\mathcal{K}_{F(L)}\right\|_{1}^{2} \leq C_{k, s}\|F\|_{W_{2}^{s}}^{2} \int_{N_{3,2}}\left(1+|(x, y)|_{\delta}\right)^{-2 \alpha_{1}-2 \alpha_{2}}(1+|y|)^{-2 r} d x d y
$$

The integral on the right-hand side is finite, because $2 \alpha_{1}>3, \alpha_{2}+2 r>3$, and

$$
\left(1+|(x, y)|_{\delta}\right)^{-2 \alpha_{1}-2 \alpha_{2}}(1+|y|)^{-2 r} \leq C_{s}(1+|x|)^{-2 \alpha_{1}}(1+|y|)^{-\alpha_{2}-2 r}
$$

and we are done.

Acknowledgements. The first-named author gratefully acknowledges the support of the Alexander von Humboldt Foundation.

References

[1] F. Astengo, M. Cowling, B. Di Blasio, and M. Sundari, Hardy's uncertainty principle on certain Lie groups, J. London Math. Soc. (2) 62 (2000), 461-472.
[2] F. Astengo, B. Di Blasio, and F. Ricci, Gelfand pairs on the Heisenberg group and Schwartz functions, J. Funct. Anal. 256 (2009), 1565-1587.
[3] M. Christ, L^{p} bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81.
[4] L. De Michele and G. Mauceri, L^{p} multipliers on the Heisenberg group, Michigan Math. J. 26 (1979), 361-371.
[5] L. De Michele and G. Mauceri, H^{p} multipliers on stratified groups, Ann. Mat. Pura Appl. (4) 148 (1987), 353-366.
[6] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vol. II, Krieger, Melbourne, FL, 1981.
[7] V. Fischer and F. Ricci, Gelfand transforms of SO(3)-invariant Schwartz functions on the free group $N_{3,2}$, Ann. Inst. Fourier (Grenoble) 59 (2009), 2143-2168.
[8] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, NJ, 1989.
[9] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, NJ, 1982.
[10] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231-239.
[11] W. Hebisch and J. Zienkiewicz, Multiplier theorem on generalized Heisenberg groups. II, Colloq. Math. 69 (1995), 29-36.
[12] A. Martini, Algebras of differential operators on Lie groups and spectral multipliers, Tesi di perfezionamento (PhD thesis), Scuola Normale Superiore, Pisa, 2010; arXiv:1007.1119
[13] A. Martini, Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal. 260 (2011), 2767-2814.
[14] A. Martini, Analysis of joint spectral multipliers on Lie groups of polynomial growth, Ann. Inst. Fourier (Grenoble) 62 (2012), 1215-1263.
[15] A. Martini and D. Müller, A sharp multiplier theorem for Grushin operators in arbitrary dimensions, Rev. Mat. Iberoamer., to appear; arXiv:1210.3564
[16] G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamer. 6 (1990), 141-154.
[17] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. (2) 131 (1990), 567-587.
[18] D. Müller, F. Ricci, and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z. 221 (1996), 267-291.
[19] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. (9) 73 (1994), 413-440.
[20] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320.
[21] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton Univ. Press, Princeton, NJ, 1993.

Alessio Martini, Detlef Müller
Mathematisches Seminar
C.-A.-Universität zu Kiel

Ludewig-Meyn-Str. 4
D-24118 Kiel, Germany
E-mail: martini@math.uni-kiel.de mueller@math.uni-kiel.de

