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Abstract. The main result is as follows. Let X be a Banach space and let Y be a
closed subspace of X. Assume that the pair (X∗, Y ⊥) has the λ-bounded approximation
property. Then there exists a net (Sα) of finite-rank operators on X such that Sα(Y ) ⊂ Y
and ‖Sα‖ ≤ λ for all α, and (Sα) and (S∗α) converge pointwise to the identity operators
on X and X∗, respectively. This means that the pair (X,Y ) has the λ-bounded duality
approximation property.

1. Introduction. Let X be a Banach space and let IX denote the iden-
tity operator on X. Let λ ≥ 1. Recall that X has the λ-bounded approxima-
tion property if there exists a net of finite-rank operators (Sα) ⊂ F(X) such
that ‖Sα‖ ≤ λ for all α and Sα → IX pointwise, i.e., in the strong operator
topology.

Let Y be a closed subspace of X. If the net (Sα) can be chosen with
Sα(Y ) ⊂ Y for all α, then the pair (X,Y ) is said to have the λ-bounded
approximation property. This concept was recently introduced and studied by
Figiel, Johnson, and Pełczyński in the important paper [FJP] (see Theorem
4.1 below for equivalent reformulations of this concept). If λ = 1, then one
speaks about the metric approximation property of X or of (X,Y ).

Clearly, the λ-bounded approximation properties for X, (X,X), and
(X, {0}) are all equivalent.

If X is reflexive, then the following duality conditions are equivalent:

(a) (X,Y ) has the λ-bounded approximation property,
(a∗) (X∗, Y ⊥) has the λ-bounded approximation property.
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(This equivalence follows easily by using a convex combination argument
and the fact that S(Y ) ⊂ Y if and only if S∗(Y ⊥) ⊂ Y ⊥. It may be added
that, by [LisO, Corollary 5.3], the approximation property of a pair (X,Y )
is always metric whenever X is reflexive.)

The implication (a)⇒(a∗) does not hold in general: by a well-known
Enflo–James–Lindenstrauss result (see, e.g., [LT, p. 34]), the metric approx-
imation property of X does not imply the approximation property of X∗.

The implication (a∗)⇒(a) is well known to hold for an arbitrary X in
the particular case when Y = {0} (or Y = X): if X∗ has the λ-bounded
approximation property, then also X has. This result is essentially due to
Grothendieck (proved in [G, Chapter I, Proposition 40, p. 180] for the metric
approximation property), but its essence resides in the following important
result due to Johnson [J] (see, e.g., [C, Proposition 3.5]).

Theorem 1.1 (Johnson). Let X be a Banach space. If X∗ has the λ-
bounded approximation property, then X∗ has the λ-bounded approximation
property with conjugate operators.

Recall that X∗ has the λ-bounded approximation property with conjugate
operators if there exists a net (Sα) ⊂ F(X) such that ‖Sα‖ ≤ λ for all α and
S∗α→IX∗ pointwise. In that case, Sα→IX in the weak operator topology, and
passing to convex combinations, one may also assume that Sα→ IX in the
strong operator topology, i.e., X has the λ-bounded approximation property.

The principal result of this paper is as follows (see also Theorem 3.6).

Theorem 1.2. Let X be a Banach space and let Y be a closed subspace
of X. The pair (X∗, Y ⊥) has the λ-bounded approximation property if and
only if there exists a net (Sα) ⊂ F(X) such that Sα(Y ) ⊂ Y and ‖Sα‖ ≤ λ
for all α, and S∗α → IX∗ pointwise.

Theorem 1.2 extends Theorem 1.1 from X∗ to (X∗, Y ⊥) and, by the con-
vex combinations argument as above, it shows that the implication (a∗)⇒(a)
holds in full generality.

Theorem 1.1 follows easily from the principle of local reflexivity (see, e.g.,
[C, Proposition 3.5]), according to which finite-rank operators on a dual space
are “locally conjugate” (see, e.g., [OP, Theorem 2.5]). In contrast, we cannot
figure out how the principle of local reflexivity, even in its most sophisticated
form (see [B] or, e.g., [OP, Theorem 2.4]), could be used to prove Theorem
1.2 (see also Remark 3.7 below).

Our proof of Theorem 1.2 will rely on the basic idea of using Grothen-
dieck’s descriptions of the dual space of the space of finite-rank operators
as spaces of integral operators (Theorem 2.1). This basic idea, which comes
from the alternative short proof of Theorem 1.1 in [O1, Corollary 2.3], will
be considerably developed to yield a proof of Theorem 1.2.
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The proof of Theorem 1.2 and its reformulation (Theorem 3.6) through
the λ-bounded duality approximation property of pairs (see Definition 3.5)
will be presented in Section 3 after establishing the Main Lemma on the
structure of spaces of integral operators (Lemma 2.2) in Section 2. Section 4
contains equivalent reformulations of the λ-bounded approximation property
of pairs and its duality version, with Theorem 4.2 being the main result of
the section. The final Section 5 contains applications to lifting results of type
(a)⇒(a∗) in some special cases, complementing and extending results from
[FJP] and [GS2].

Our notation is standard. Let X and Y be Banach spaces, both real or
both complex. We denote by L(X,Y ) the Banach space of all bounded linear
operators acting from X to Y and by F(X,Y ) its subspace of finite-rank
operators. We write L(X) for L(X,X) and, similarly, F(X) for F(X,X).
The range of an operator S : X → Y is denoted by ranS := {Sx : x ∈ X}.

A Banach space X will be regarded as a subspace of its bidual X∗∗
under the canonical embedding jX : X → X∗∗. The closed unit ball of X is
denoted by BX . The annihilator of a closed subspace Y in X is denoted by
Y ⊥ := {x∗ ∈ X∗ : x∗(y) = 0 ∀y ∈ Y }.

2. The Main Lemma. Let X and Y be Banach spaces. The Main
Lemma below (Lemma 2.2) will concern some structure of Banach spaces of
integral operators considered as dual spaces of the space F(X,Y ) of finite-
rank operators.

Recall that a mapping S : X → Y belongs to F(X,Y ) if and only if S can
be represented as a finite sum of rank one operators

S =

n∑
i=1

x∗i ⊗ yi,

where x∗i ∈ X∗ and yi ∈ Y , and (x∗i ⊗ yi)(x) = x∗i (x)yi for all x ∈ X.
Also recall that an operator T ∈ L(X,Y ) is an integral operator if

there exists a probability measure space (with measure µ) and operators
a ∈ L(X,L∞(µ)) and b ∈ L(L1(µ), Y ∗∗) such that jY T = bj1a, where
j1 : L∞(µ)→ L1(µ) is the identity embedding, meaning that the diagram

X
T //

a
��

Y
jY // Y ∗∗

L∞(µ)
j1 // L1(µ)

b

OO

commutes. Let us denote by I(X,Y ) the collection of all integral operators
from X to Y . The integral norm ‖T‖I of an integral operator T ∈ I(X,Y )
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is defined by the equality
‖T‖I = inf ‖a‖ ‖b‖,

where the infimum is taken over all possible factorizations of T as above. It
is straightforward to verify that I = (I, ‖ · ‖I) is a Banach operator ideal
(see, e.g., [DJT, Theorem 5.2]).

Integral operators were introduced by Grothendieck in [G, Chapter I,
Proposition 27, pp. 124–127] with the aim of describing the dual space of an
injective tensor product. Without entering into the theory of tensor products,
we may reformulate this very important Grothendieck description in the
following way (cf. [O3, pp. 202–203]).

Theorem 2.1 (Grothendieck). Let X and Y be Banach spaces. Then
the dual space (F(X,Y ), ‖ · ‖)∗ is linearly isometric to I(Y,X∗∗) under the
duality 〈

T,

n∑
i=1

x∗i ⊗ yi
〉

=

n∑
i=1

(Tyi)(x
∗
i ),

and also to I(X∗, Y ∗) under the duality〈
T,

n∑
i=1

x∗i ⊗ yi
〉

=

n∑
i=1

(Tx∗i )(yi).

We shall express Theorem 2.1 by writing (F(X,Y ))∗ = I(Y,X∗∗) and
(F(X,Y ))∗ = I(X∗, Y ∗).

The link with tensor products of Banach spaces is that, in fact, F(X,Y )
is algebraically the same as the algebraic tensor product X∗ ⊗ Y , with the
rank one operator x∗ ⊗ y corresponding to the elementary tensor x∗ ⊗ y.
And the link with the injective tensor norm ε = ‖ · ‖ε is that, in fact,
‖T‖ = ‖

∑n
i=1 x

∗
i ⊗ yi‖ε for all T ∈ F(X,Y ), T =

∑n
i=1 x

∗
i ⊗ yi.

The following lemma (or, more precisely, its Corollary 2.3) will be needed
in the proof of the necessity in Theorem 1.2. It uses the canonical identifica-
tions (F(X))∗ = I(X∗, X∗) and (F(X∗))∗ = I(X∗, X∗∗∗) from Theorem 2.1.

Lemma 2.2. Let X be a Banach space and let Y be a closed subspace
of X. Denote A = {R ∈ F(X) : R(Y ) ⊂ Y } and B = {S ∈ F(X∗) :
S(Y ⊥) ⊂ Y ⊥}, and consider A⊥ as a subspace of I(X∗, X∗) and B⊥ as
a subspace of I(X∗, X∗∗∗). If T ∈ I(X∗, X∗) is such that T ∈ A⊥, then
jX∗T ∈ B⊥.

Proof. Let T ∈ A⊥, i.e., 〈T,R〉 = 0 for every R ∈ A. We have to show
that 〈jX∗T, S〉 = 0 for every S ∈ B. Suppose that S ∈ B, i.e., S ∈ F(X∗)
and S(Y ⊥) ⊂ Y ⊥. Consider a representation

S =

n∑
i=1

x∗∗i ⊗ x∗i ,

where (x∗i )
n
i=1 ⊂ X∗ and (x∗∗i )ni=1 ⊂ X∗∗.
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Since Y ⊥ is a linear subspace of X∗, Y ⊥ is algebraically complemented.
This means that there is a linear subspaceW of X∗ such that X∗ = W⊕Y ⊥,
i.e., for every x∗ ∈ X∗ there is a unique representation x∗ = w + y⊥, where
w ∈W and y⊥ ∈ Y ⊥. Since x∗i = wi + y⊥i , where wi ∈W and y⊥i ∈ Y ⊥, we
have S = S1 + S2, where

S1 =

n∑
i=1

x∗∗i ⊗ wi and S2 =

n∑
i=1

x∗∗i ⊗ y⊥i .

Note that ranS1 ⊂ W . Let (w̄i)
k
i=1 ⊂ W be an algebraic basis of ranS1.

Then there is a system (x̄∗∗i )ki=1 ⊂ X∗∗ such that

S1 =

k∑
i=1

x̄∗∗i ⊗ w̄i.

Let x∗ ∈ Y ⊥ be arbitrary. Since S(Y ⊥) ⊂ Y ⊥,

Sx∗ = S1x
∗ + S2x

∗ =

k∑
i=1

x̄∗∗i (x∗)w̄i +

n∑
i=1

x∗∗i (x∗)y⊥i ∈ Y ⊥,

implying that
k∑
i=1

x̄∗∗i (x∗)w̄i ∈W ∩ Y ⊥ = {0}.

Hence, x̄∗∗i (x∗) = 0 for every i ∈ {1, . . . , k} and for every x∗ ∈ Y ⊥, i.e.,
(x̄∗∗i )ki=1 ⊂ Y ⊥⊥.

Let us consider the canonical isometry I : Y ⊥⊥ → Y ∗∗ defined by
(Iy⊥⊥)(y∗) = y⊥⊥(x∗), where y∗ ∈ Y ∗, y⊥⊥ ∈ Y ⊥⊥, and x∗ ∈ X∗ is an
arbitrary extension of y∗. Then (Ix̄∗∗i )ki=1⊂ Y ∗∗ and, by Theorem 2.1, we get

〈jX∗T, S〉 = 〈jX∗T, S1〉+ 〈jX∗T, S2〉 =
k∑
i=1

x̄∗∗i (Tw̄i) +
n∑
i=1

x∗∗i (Ty⊥i )

=
k∑
i=1

(Ix̄∗∗i )(Tw̄i|Y ) +
n∑
i=1

x∗∗i (Ty⊥i ).

Denote y∗∗i := Ix̄∗∗i ∈ Y ∗∗ and y∗i := Tw̄i|Y ∈ Y ∗, and choose elements
yi ∈ Y , i = 1, . . . , k, such that y∗∗i (y∗i ) = y∗i (yi). Also choose xi ∈ X,
i = 1, . . . , n, such that x∗∗i (Ty⊥i ) = (Ty⊥i )(xi). (Such elements exist. Indeed,
let Z be a normed space, z∗ ∈ Z∗, z∗∗ ∈ Z∗∗, and denote a := z∗∗(z∗). If
a = 0, then a = z∗(z) for z = 0. If a 6= 0, then there is w ∈ Z such that
b := z∗(w) 6= 0. Take z = ab−1w; then a = z∗(z).) Using the elements yi
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and xi, define

R :=

k∑
i=1

w̄i ⊗ yi +

n∑
i=1

y⊥i ⊗ xi ∈ F(X).

Then R(Y ) ⊂ Y , because for every y ∈ Y we have

Ry =

k∑
i=1

w̄i(y)yi +
n∑
i=1

y⊥i (y)xi =
k∑
i=1

w̄i(y)yi ∈ Y.

Hence, R ∈ A and therefore 〈T,R〉 = 0. On the other hand,

〈T,R〉 =
k∑
i=1

(Tw̄i)(yi) +
n∑
i=1

(Ty⊥i )(xi) =
k∑
i=1

y∗i (yi) +
n∑
i=1

x∗∗i (Ty⊥i )

=
k∑
i=1

y∗∗i (y∗i ) +
n∑
i=1

x∗∗i (Ty⊥i ) = 〈jX∗T, S〉.

Hence 〈jX∗T, S〉 = 0, as desired.

Thanks to the fact that

‖jX∗T‖I = ‖T‖I ∀T ∈ I(X∗, X∗)

(see, e.g., [DJT, Theorem 5.14]), there is a natural isometric embedding
J : I(X∗, X∗)→ I(X∗, X∗∗∗) defined by JT = jX∗T for T ∈ I(X∗, X∗).

Corollary 2.3. Let A and B be as in Lemma 2.2, and let

J̄ : I(X∗, X∗)/A⊥ → I(X∗, X∗∗∗)/B⊥

be defined by

J̄(T +A⊥) = JT +B⊥, T ∈ I(X∗, X∗).

Then J̄ is a well-defined operator, ‖J̄‖ ≤ 1, and J̄q1 = q2J , where q1 :
I(X∗, X∗) → I(X∗, X∗)/A⊥ and q2 : I(X∗, X∗∗∗) → I(X∗, X∗∗∗)/B⊥ de-
note the quotient mappings.

Proof. The definition of J̄ is correct because, by Lemma 2.2, J(A⊥)⊂B⊥.
The other properties follow immediately from the definition of J̄ .

3. Proof of Theorem 1.2. Let X be a Banach space and let Y be a
closed subspace of X. The sufficiency part of Theorem 1.2 asserts that the
pair (X∗, Y ⊥) has the λ-bounded approximation property (i.e., there exists
a net (Tα) ⊂ F(X∗) such that Tα(Y ⊥) ⊂ Y ⊥ and ‖Tα‖ ≤ λ for all α, and
Tα → IX∗ pointwise) whenever there exists a net (Sα) ⊂ F(X) such that
Sα(Y ) ⊂ Y and ‖Sα‖ ≤ λ for all α, and S∗α → IX∗ pointwise. This assertion
is immediate from the following easy observation.
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Proposition 3.1. Let X be a Banach space and let Y be a closed sub-
space of X. If S ∈ L(X), then

S(Y ) ⊂ Y ⇔ S∗(Y ⊥) ⊂ Y ⊥.
In addition to the material in Section 2, we need some more preparatory

work before proceeding to the proof of the necessity part of Theorem 1.2.
Let X be a Banach space and let A be a linear subspace of L(X). Let

λ ≥ 1. Recall that X has the λ-bounded A-approximation property if there
exists a net (Sα) ⊂ A such that ‖Sα‖ ≤ λ for all α and Sα → IX pointwise.
This concept has been studied since the early 1980s by Reinov, Grønbæk,
Willis, and others (see, e.g., [BB], [Lis], [LMO] for references and recent
results).

If now Y is a closed subspace of X, then A := {S ∈ F(X) : S(Y ) ⊂ Y }
is a linear subspace of L(X), and the λ-bounded approximation property of
the pair (X,Y ) is precisely the λ-bounded A-approximation property.

It is convenient to extend the well-known notion of the λ-duality approx-
imation property (due to [J]; see, e.g., [C, p. 288] or [S, p. 314]) as follows.

Definition 3.2. Let X be a Banach space and let A be a linear sub-
space of L(X). Let λ ≥ 1. We say that X has the λ-bounded duality A-
approximation property if there exists a net (Sα) ⊂ A such that ‖Sα‖ ≤ λ
for all α, and Sα → IX and S∗α → IX∗ pointwise.

Remark 3.3. Since the weak and strong operator topologies on L(X)
yield the same dual space (see, e.g., [DSch, Theorem VI.1.4]), by passing to
convex combinations, one may always assume that S∗α → IX∗ and Sα → IX
pointwise whenever S∗α → IX∗ pointwise. This means that the λ-bounded
duality A-approximation property is equivalent to the well-known concept
of the λ-bounded A-approximation property with conjugate operators.

Let A be a linear subspace of L(X). If x∗∗ ∈ X∗∗ and x∗ ∈ X∗, then the
functional x∗ ⊗ x∗∗ : A→ K is defined by the equality

(x∗ ⊗ x∗∗)(T ) = x∗∗(T ∗x∗), T ∈ A.
Clearly x∗ ⊗ x∗∗ ∈ A∗ and ‖x∗ ⊗ x∗∗‖ ≤ ‖x∗‖ ‖x∗∗‖.

By the proof of [O1, Theorem 2.1], the following holds (in [O1, Theorem
2.1], A was assumed to be the component of an arbitrary Banach operator
ideal).

Theorem 3.4 (cf. [O1, Theorem 2.1]). Let X be a Banach space and let
A be a linear subspace of L(X). Let λ ≥ 1. Then:

(a) X has the λ-bounded A-approximation property if and only if there
exists Φ ∈ A∗∗ such that ‖Φ‖ ≤ λ and

Φ(x∗ ⊗ jXx) = x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X.
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(b) X has the λ-bounded duality A-approximation property if and only if
there exists Φ ∈ A∗∗ such that ‖Φ‖ ≤ λ and

Φ(x∗ ⊗ x∗∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.
Proof of Theorem 1.2. Necessity. Let A = {R ∈ F(X) : R(Y ) ⊂ Y } and

B = {S ∈ F(X∗) : S(Y ⊥) ⊂ Y ⊥} be as in Lemma 2.2.
Assume that the pair (X∗, Y ⊥) has the λ-bounded approximation prop-

erty. This is the same as the λ-bounded B-approximation property of X∗.
According to Theorem 3.4(a), there exists Φ ∈ B∗∗ such that ‖Φ‖ ≤ λ and

Φ(x∗∗ ⊗ jX∗x∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.
Since A ⊂ F(X) and B ⊂ F(X∗), A∗ and B∗ are isometrically isomorphic to
(F(X))∗/A⊥ and (F(X∗))∗/B⊥, respectively. Hence, under canonical iden-
tifications (see Theorem 2.1), A∗ and B∗ are isometrically isomorphic to
I(X∗, X∗)/A⊥ and I(X∗, X∗∗∗)/B⊥, respectively. Let t1 : I(X∗, X∗)/A⊥→A∗

and t2 : I(X∗, X∗∗∗)/B⊥ → B∗ denote the corresponding isometric isomor-
phisms.

Let i1 : A → F(X) and i2 : B → F(X∗) be the identity embed-
dings and let q1 : I(X∗, X∗) → I(X∗, X∗)/A⊥ and q2 : I(X∗, X∗∗∗) →
I(X∗, X∗∗∗)/B⊥ denote the quotient mappings (as in Corollary 2.3). Then,
under canonical identifications (see Theorem 2.1), we have i∗1 = t1q1 and
i∗2 = t2q2.

Define Ψ : A∗ → K by Ψ = Φt2J̄ t
−1
1 , where J̄ is the operator from

Corollary 2.3. Then the diagrams

A∗

t−1
1

��

Ψ // K B∗
Φoo

I(X∗, X∗)/A⊥
J̄ // I(X∗, X∗∗∗)/B⊥

t2

OO

I(X∗, X∗)

q1

OO

J // I(X∗, X∗∗∗)

q2

OO

commute, Ψ ∈ A∗∗ and ‖Ψ‖ ≤ ‖Φ‖ ≤ λ.
Let x∗ ∈ X∗ and x∗∗ ∈ X∗∗. We shall show that Ψ(x∗ ⊗ x∗∗) = x∗∗(x∗).
Denote f := x∗ ⊗ x∗∗ ∈ A∗. Then f(R) = x∗∗(R∗x∗) for all R ∈ A.

Considering the rank one operator f̄ := x∗∗ ⊗ x∗ ∈ I(X∗, X∗), it is easily
verified that 〈f̄ , R〉 = x∗∗(R∗x∗) for all R ∈ F(X). Hence, i∗1f̄ = f , i.e.,
f = t1q1f̄ . Now denote g := x∗∗ ⊗ jX∗x∗ ∈ B∗ and consider the rank one
operator ḡ := x∗∗ ⊗ jX∗x∗ ∈ I(X∗, X∗∗∗). Then, similarly, g(S) = x∗∗(Sx∗)
for all S ∈ B and 〈ḡ, S〉 = x∗∗(Sx∗) for all S ∈ F(X∗). Hence, g = t2q2ḡ.
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Therefore, since ḡ = jX∗ f̄ and Φ(g) = x∗∗(x∗), we get

Ψ(x∗ ⊗ x∗∗) = Ψ(f) = Ψ(t1q1f̄) = Φ(t2J̄ t
−1
1 t1q1f̄) = Φ(t2J̄q1f̄)

= Φ(t2q2Jf̄) = Φ(t2q2jX∗ f̄) = Φ(t2q2ḡ) = Φ(g) = x∗∗(x∗).

According to Theorem 3.4(b), X has the λ-bounded duality A-approxima-
tion property. This means that there exists a net (Sα) ⊂ F(X) such that
Sα(Y ) ⊂ Y and ‖Sα‖ ≤ λ for all α, and Sα → IX and S∗α → IX∗ pointwise.

Finally, it is natural to make the following definition.

Definition 3.5. Let X be a Banach space and let Y be a closed sub-
space of X. Let λ ≥ 1. We say that the pair (X,Y ) has the λ-bounded
duality approximation property if there exists a net (Sα)⊂ F(X) such that
Sα(Y )⊂ Y and ‖Sα‖ ≤ λ for all α, and Sα → IX and S∗α → IX∗ pointwise.

Thus, the result we proved may be reformulated as follows.

Theorem 3.6. Let X be a Banach space and let Y be a closed subspace
of X. Let λ ≥ 1. The pair (X∗, Y ⊥) has the λ-bounded approximation prop-
erty if and only if the pair (X,Y ) has the λ-bounded duality approximation
property.

If, in the definitions of the λ-bounded and of the λ-bounded duality
approximation properties of a pair (X,Y ), one does not put any restriction
on the norms ‖Sα‖ (i.e., one deletes “and ‖Sα‖ ≤ λ”), then one obtains the
notions which are naturally called the approximation property of (X,Y ) and
the duality approximation property of (X,Y ).

Remark 3.7. The version of Theorem 3.6 stating that the pair (X∗, Y ⊥)
has the approximation property if and only if the pair (X,Y ) has the dual-
ity approximation property was essentially established in [LisO, Proposition
5.11]. The proof in [LisO] uses the principle of local reflexivity. Also the spe-
cial case of Theorem 3.6 when Y is of finite codimension can be proved using
the principle of local reflexivity. But, as was mentioned in the Introduction,
even the most sophisticated forms of the principle of local reflexivity, in our
opinion, cannot be used to prove Theorem 3.6 in its full generality.

Corollary 3.8. Let X be a Banach space and let Y be a closed subspace
of X. Let X∗ or X∗∗ have the Radon–Nikodým property. If the pair (X∗, Y ⊥)
has the approximation property, then the pair (X,Y ) has the metric duality
approximation property.

Proof. By [LisO, Corollary 5.12], the pair (X∗, Y ⊥) has the metric ap-
proximation property. The metric duality approximation property of (X,Y )
follows from Theorem 3.6.

Concerning Corollary 3.8, let us recall the following famous open problem
(see, e.g., [C, Problem 3.8]; for an overview see [O2, Section 3]): does the
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approximation property of the dual space X∗ of an arbitrary Banach space
X imply the metric approximation property?

4. Reformulating the bounded (duality) approximation prop-
erty of pairs. Well-known reformulations of the λ-bounded approximation
property of Banach spaces (see, e.g., [C, Theorem 3.3] or [S, p. 604, Theo-
rem 18.1]) can be extended to the following conditions (a)–(d) in Theorem
4.1 below, all equivalent to the λ-bounded approximation property of pairs.
The original notion of λ-bounded approximation property of (X,Y ) in [FJP]
was defined as property (d). In the present paper, we preferred to define the
λ-bounded approximation property of (X,Y ) through condition (b), since it
seems to be more appropriate for expressing duality properties (cf. Defini-
tion 3.5).

Theorem 4.1 (cf. [FJP, Lemma 1.5]). Let X be a Banach space and let
Y be a closed subspace of X. Let λ ≥ 1. Then the following properties of the
pair (X,Y ) are equivalent:

(a) For every compact subset K of X and for every ε > 0 there exists
S ∈ F(X) such that S(Y ) ⊂ Y and ‖S‖ ≤ λ, and ‖Sx− x‖ ≤ ε for
all x ∈ K.

(b) There exists a net (Sα) ⊂ F(X) such that Sα(Y ) ⊂ Y and ‖Sα‖ ≤ λ
for all α, and Sα → IX pointwise.

(c) For every finite-dimensional subspace E of X and for every ε > 0
there exists S ∈ F(X) such that S(Y ) ⊂ Y and ‖S‖ ≤ λ, and
‖Sx− x‖ ≤ ε‖x‖ for all x ∈ E.

(d) For every finite-dimensional subspace E of X and for every ε > 0
there exists S ∈ F(X) such that S(Y ) ⊂ Y and ‖S‖ ≤ λ + ε, and
Sx = x for all x ∈ E.

Proof. The implications (a)⇒(b)⇒(c) and (d)⇒(a) are standard to de-
duce, and (c)⇒(d) is proved in [FJP, Lemma 1.5].

Theorem 3.6 asserts that the λ-bounded approximation property of the
pair (X∗, Y ⊥) is precisely the same as the λ-bounded duality approximation
property of the pair (X,Y ). Here the former property may be equivalently
expressed using Theorem 4.1. To reformulate the latter property, one can
apply Theorem 4.2 below. Note that we used condition (b) of Theorem 4.2
in Definition 3.5.

Theorem 4.2. LetX be a Banach space and let Y be a closed subspace of X.
Let λ ≥ 1. Then the following properties of the pair (X,Y ) are equivalent:

(a) For all compact subsets K of X and L of X∗, and for every ε > 0,
there exists S ∈ F(X) such that S(Y ) ⊂ Y and ‖S‖ ≤ λ, and
‖Sx− x‖ ≤ ε for all x ∈ K and ‖S∗x∗ − x∗‖ ≤ ε for all x∗ ∈ L.
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(b) There exists a net (Sα) ⊂ F(X) such that Sα(Y ) ⊂ Y and ‖Sα‖ ≤ λ
for all α, and Sα → IX and S∗α → IX∗ pointwise.

(c) For all finite-dimensional subspaces E of X and F of X∗, and for
every ε > 0, there exists S ∈ F(X) such that S(Y ) ⊂ Y and ‖S‖ ≤ λ,
and ‖Sx− x‖ ≤ ε‖x‖ for all x ∈ E and ‖S∗x∗ − x∗‖ ≤ ε‖x∗‖ for all
x∗ ∈ F .

(d) For all finite-dimensional subspaces E of X and F of X∗, and for
every ε > 0, there exists S ∈ F(X) such that S(Y ) ⊂ Y and ‖S‖ ≤
λ+ ε, and Sx = x for all x ∈ E and S∗x∗ = x∗ for all x∗ ∈ F .

Remark 4.3. The λ-bounded duality approximation property of a Banach
space X is usually defined as the special case of either property (b) or (c)
in Theorem 4.2 when Y = {0} (equivalently, Y = X) (see, e.g., [J] or [C,
p. 288] or [S, p. 314]). The equivalence of (c) and (d) in the context of the
λ-bounded duality approximation property of a Banach space X has been
established in [J, Lemma 3] (see also, e.g., [S, p. 315, Lemma 9.2]).

In the proof of Theorem 4.2, we shall need the following auxiliary result.
Its special case when X is a Banach space was applied in the proof of [FJP,
Lemma 1.5]. However, even in this special case, we have not found its proof
in the literature. Therefore we include a proof for completeness.

Lemma 4.4. Let X be a locally convex Hausdorff space. Let Y be a closed
subspace and F be a finite-dimensional subspace of X. Then there exists a
continuous linear projection P on X such that ranP = F and P (Y ) ⊂ Y .

Proof. 1. Let us consider first a particular case, assuming that F ∩ Y
= {0}. Let (xi)

n
i=1 be a basis of F . Denote Fj = span{xi : i 6= j}. Then Y +Fj

is a closed subspace ofX and xj /∈ Y +Fj . According to a separation theorem,
there exist continuous linear functionals fj , j = 1, . . . , n, such that fj(xj) = 1
and fj |Y+Fj = 0, in particular, fj |Y = 0 and fi(xj) = δij , i, j = 1, . . . , n.

Define P : X → X by

Px =

n∑
i=1

fi(x)xi.

Then ranP = F , P (Y ) = {0} ⊂ Y , and P is a continuous linear projection
on X.

2. Let us show that the general case can be reduced to the particular case
above.

We start by decomposing F = (F ∩Y )⊕G. Then (F ∩Y )∩G = {0} and
G∩ Y = {0}. Hence, by the above, there exist continuous linear projections
Q and R on X such that ranQ = F ∩ Y , Q(G) ⊂ G, and ranR = G,
R(Y ) ⊂ Y . Define P = Q + R − RQ. Then P (Y ) ⊂ Y . Since QR = 0, it is
easily checked that ranP = F and P 2 = P . Hence, P is a continuous linear
projection on X as desired.
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Proof of Theorem 4.2. The proofs of the implications (a)⇒(b)⇒(c) and
(d)⇒(a) are standard.

Let us prove the implication (c)⇒(d). Let E ⊂ X and F ⊂ X∗ be finite-
dimensional subspaces and let ε > 0. Using Lemma 4.4, choose a projection
P ∈ L(X) such that ranP = E and P (Y ) ⊂ Y . Look at X∗ endowed
with its weak∗ topology and notice that Y ⊥ is weak∗ closed. Again using
Lemma 4.4 choose a weak∗-to-weak∗ continuous linear projection R on X∗
such that ranR = F and R(Y ⊥) ⊂ Y ⊥. Then there exists Q ∈ L(X) such
that R = Q∗. Hence, by Proposition 3.1, Q(Y ) ⊂ Y .

Let δ > 0 satisfy

δ(‖P‖+ ‖IX − P‖ ‖Q‖) < ε.

According to (c), there exists T ∈ F(X) such that T (Y ) ⊂ Y and ‖T‖ ≤ λ,
and ‖Tx− x‖ ≤ δ‖x‖ for all x ∈ E and ‖T ∗x∗− x∗‖ ≤ δ‖x∗‖ for all x∗ ∈ F .

Applying a perturbation argument inspired by [OP, proof of Lemma 1.2],
we denote

S = IX + (IX −Q)(T − IX)(IX − P ),

i.e.,
S = T + P − TP +Q−QT +QTP −QP.

Then, clearly, S ∈ F(X), S is the identity on E = ranP , and S∗ is the
identity on F = ranQ∗. Also, S(Y ) ⊂ Y because Py, Ty,Qy ∈ Y for all
y ∈ Y .

Finally, let us observe that

S = T + (IX − T )P −Q(T − IX)(IX − P ).

Let us also observe that

‖(IX − T )P‖ = sup
x∈BX

‖TPx− Px‖ ≤ sup
x∈BX

δ‖Px‖ = δ‖P‖

and
‖Q(T − IX)(IX − P )‖ ≤ ‖IX − P‖ ‖(T ∗ − IX∗)Q∗‖

with

‖(T ∗ − IX∗)Q∗‖ = sup
x∗∈BX∗

‖T ∗Q∗x∗ −Q∗x∗‖ ≤ sup
x∗∈BX∗

δ‖Q∗x∗‖ = δ‖Q‖.

Hence,

‖S − T‖ ≤ ‖(IX − T )P‖+ ‖Q(T − IX)(IX − P )‖
≤ δ(‖P‖+ ‖IX − P‖ ‖Q‖) ≤ ε

and therefore
‖S‖ ≤ ‖T‖+ ε ≤ λ+ ε.



Duality of bounded approximation properties of pairs 91

5. Lifting the bounded approximation property of pairs to dual
spaces. Let X be a Banach space and let Y be a closed subspace of X.
As mentioned in the Introduction, in general, the λ-bounded approximation
property cannot be lifted from the pair (X,Y ) to the pair (X∗, Y ⊥). However,
Theorems 3.4 and 3.6 appear to be good tools for studying this kind of lifting
possibilities in some special cases (see Theorems 5.2 and 5.4 below).

Recall that a Banach space X is said to have the unique extension prop-
erty if the only operator T ∈ L(X∗∗) such that ‖T‖ ≤ 1 and T |X = IX is the
identity operator on X∗∗, i.e., T = IX∗∗ . This property was introduced and
studied by Godefroy and Saphar in [GS1] (using the term “X is uniquely
decomposed”) and [GS2]. For instance (see [GS2]), the following Banach
spaces have the unique extension property: Hahn–Banach smooth spaces, in
particular, spaces which are M -ideals in their biduals (for example, closed
subspaces of c0); spaces with a Fréchet-differentiable norm; separable polyhe-
dral Lindenstrauss spaces; spaces of compact operators K(X,Y ) for reflexive
Banach spaces X and Y .

By [GS2, Theorem 2.2], the unique extension property permits lifting
the metric and metric compact approximation properties from X to X∗.
An extension of this result to the metric A-approximation property was
established in [O1, Corollary 2.5] for A being the component of an arbitrary
Banach operator ideal. We shall need a slightly more general lifting result
which follows from Theorem 3.4.

Proposition 5.1 (cf. [O1, Corollary 2.5]). Let X be a Banach space and
let A be a linear subspace of L(X). If X has the unique extension property
and the metric A-approximation property, then X has the metric duality
A-approximation property.

Proof. The proof is essentially the same as in [O1, Corollary 2.5]. We
present it for completeness. Since X has the metric A-approximation prop-
erty, by Theorem 3.4(a), there exists Φ ∈ A∗∗ such that ‖Φ‖ ≤ 1 and

Φ(x∗ ⊗ jXx) = x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X.
Define T ∈ L(X∗∗) by

(Tx∗∗)(x∗) = Φ(x∗ ⊗ x∗∗), x∗∗ ∈ X∗∗, x∗ ∈ X∗.
Then clearly ‖T‖ ≤ 1, and T |X = IX because

(Tx)(x∗) = Φ(x∗ ⊗ jXx) = x∗(x) ∀x ∈ X, ∀x∗ ∈ X∗.
By the unique extension property, T = IX∗∗ . Hence,

Φ(x∗ ⊗ x∗∗) = (IX∗∗x
∗∗)(x∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗,

meaning that X has the metric duality A-approximation property (see The-
orem 3.4(b)).
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Since the metric approximation property of the pair (X,Y ) is precisely
the metric A-approximation property ofX, whereA={S∈F(X) : S(Y )⊂Y },
by Proposition 5.1, X has the metric duality A-approximation property. But
the latter is precisely the metric duality approximation property of the pair
(X,Y ). Thus, looking also at Proposition 3.1 (or Theorem 3.6), we have
obtained the following lifting result.

Theorem 5.2. Let X be a Banach space and let Y be a closed subspace
of X. If X has the unique extension property and the pair (X,Y ) has the
metric approximation property, then the pair (X,Y ) has the metric duality
approximation property; hence, the pair (X∗, Y ⊥) has the metric approxima-
tion property.

In general, the unique extension property does not guarantee the lifting of
the λ-bounded approximation property at least when λ ≥ 6. Indeed, let XJS

be the closed subspace of c0 constructed by Johnson and Schechtman (see
[JO, Corollary JS]). Then XJS has the unique extension property (all closed
subspaces of c0 do, as was already mentioned) and XJS has the 6-bounded
approximation property (see [Z]), but X∗JS does not have the approxima-
tion property, in particular, it does not have the λ-bounded approximation
property for any λ ≥ 1.

Figiel, Johnson, and Pełczyński proved that if X is a Banach space,
q : X → Z is a quotient map, and dim ker q < ∞, then the λ-bounded ap-
proximation property of X implies the same property of Z (see [FJP, Corol-
lary 1.3]). Note that their proof (a straightforward one, which only uses
condition (d) of Theorem 4.1) actually yields the following auxiliary result.

Lemma 5.3 (see the proof of [FJP, Corollary 1.3]). Let X be a Banach
space and let Y be a finite-dimensional subspace of X. Let λ ≥ 1. If X
has the λ-bounded approximation property, then also the pair (X,Y ) has the
λ-bounded approximation property.

The equivalence of conditions (a) and (c) below was established in [FJP,
Proposition 1.6]. We can complement this result as follows, providing also
an alternative proof for the implication (a)⇒(c).

Theorem 5.4 (cf. [FJP, Proposition 1.6]). Let X be a Banach space and
let λ ≥ 1. Then the following conditions are equivalent:

(a) The dual space X∗ has the λ-bounded approximation property.
(b) The pair (X∗, Y ⊥) has the λ-bounded approximation property for

every finite-codimensional closed subspace Y of X.
(c) The pair (X,Y ) has the λ-bounded approximation property for every

finite-codimensional closed subspace Y of X.
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Proof. Since Y ⊥ is a finite-dimensional subspace of X∗, the implication
(a)⇒(b) is immediate from Lemma 5.3. The implication (b)⇒(c) is clear
from Theorem 3.6 because, obviously, the λ-bounded duality approximation
property of the pair (X,Y ) implies its λ-bounded approximation property.
The implication (c)⇒(a) is proved in [FJP, Proposition 1.6].

Finally, let us mention that, as a by-product, we have the following slight
complement to [FJP, Corollary 1.4(i)], asserting that if the dual space X∗ has
the λ-bounded approximation property, then all finite-codimensional closed
subspaces Y of X and their dual spaces Y ∗ have the λ-bounded approximation
property.

Proposition 5.5. Let X be a Banach space and let Y be a finite-co-
dimensional closed subspace of X. Let λ ≥ 1. If X∗ has the λ-bounded ap-
proximation property, then all spaces Y ⊥, X∗/Y ⊥, Y ∗, (X/Y )∗, X, Y and
X/Y have the λ-bounded approximation property.

Proof. By [FJP, Corollary 1.2], the λ-bounded approximation property
of a pair (Z,W ) implies that Z,W and Z/W all have the same property. Ac-
cording to Theorem 5.4, both pairs (X∗, Y ⊥) and (X,Y ) have the λ-bounded
approximation property. Hence, Y ⊥, X∗/Y ⊥, X, Y , and X/Y all have the
λ-bounded approximation property. Since the dual spaces Y ∗ and (X/Y )∗

are naturally isometric to X∗/Y ⊥ and Y ⊥, respectively, Y ∗ and (X/Y )∗ also
have the λ-bounded approximation property.
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