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On the approximation by compositions of fixed

multivariate functions with univariate functions

by

Vugar E. Ismailov (Baku)

Abstract. The approximation in the uniform norm of a continuous function f(x) =
f(x1, . . . , xn) by continuous sums g1(h1(x)) + g2(h2(x)), where the functions h1 and h2

are fixed, is considered. A Chebyshev type criterion for best approximation is established
in terms of paths with respect to the functions h1 and h2.

1. Exposition of the problem. It is well known that in many prob-
lems of approximation of bivariate functions by sums of univariate functions
the concept of a path is central. A path is a finite or infinite ordered set of
points in the xy plane such that the line segments joining consecutive points
are of positive length and are alternately parallel to the x and y axes. The
idea of paths, in this context, was first introduced by Diliberto and Straus [4]
and exploited further in a number of works, e.g. [5, 7, 8, 10, 13]. In connection
with the problem of interpolation by linear combinations of ridge functions,
Braess and Pinkus [1] introduced the notion of a path with respect to dis-
tinct directions a and b. This is an ordered set of points (v1, . . . ,vn) ⊂ R

2

with edges vivi+1 in alternating directions a and b. These objects give a
geometric method for deciding if a set of points {xi}m

i=1 has the NI-property
(non-interpolation property) (see [1]).

Our aim is to bring into consideration more general objects: paths with
respect to two continuous functions. We will show how these objects appear
in the characterization of extremal elements in the approximation problem
considered below.

Let Q be a compact set in R
n. Consider the approximation of a function

f ∈ C(Q) by elements of the set

Ch1h2
= Ch1h2

(Q) = {g ∈ C(Q) : g(x) = g1(h1(x)) + g2(h2(x))},

where the functions hi ∈ C(Q) are prescribed and we vary over functions
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gi : hi(Q) → R, i = 1, 2. The continuity of gi on hi(Q), i = 1, 2, is not
necessary, but the sum g1(h1(x)) + g2(h2(x)) should be continuous on Q.
It is not difficult to see that linear combinations of functions from Ch1h2

belong to Ch1h2
.

Our aim is to find necessary and sufficient geometrical conditions for
a function g0 ∈ Ch1h2

to be a best approximation to f , i.e. for

‖f − g0‖ = max
x∈Q

|f(x) − g0(x)| = E(f, Ch1h2
),

where

E(f) = E(f, Ch1h2
) := inf

g∈Ch1h2

‖f − g‖

is the error in approximating from Ch1h2
(Q).

In multivariate approximation theory and in some applications such as
computerized tomography, statistics, and neural networks, special functions
called ridge functions are widely used (see, e.g., [1–3, 9, 11, 12, 14, 16–19]).
A ridge function is a multivariate function of the form g(a · x), where g is a
univariate function, a is a fixed vector (direction) in R

n different from zero,
x ∈ R

n and a · x is the inner product of a and x. Note that the problem
of approximation by sums of two ridge functions with fixed directions is a
special case of the problem considered here.

2. Main result. We begin with a definition. Let Q be a compact set
in R

n and hi ∈ C(Q), i = 1, 2.

Definition 2.1. A finite or infinite set p = (p1,p2, . . . ) ⊂ Q, where
pi 6= pi+1, with either h1(p1) = h1(p2), h2(p2) = h2(p3), h1(p3) = h1(p4), . . .
or h2(p1) = h2(p2), h1(p2) = h1(p3), h2(p3) = h2(p4), . . . is called a path

with respect to the functions h1 and h2.

In the following, we will simply say “path” instead of “path with respect
to the functions h1 and h2”.

If in a finite path (p1, . . . ,pn+1), pn+1 = p1 and n is even, then the path
(p1, . . . ,pn) is said to be closed. Note that a minimal closed path may consist
of two distinct points p1 and p2. In this case, the equality hi(p1) = hi(p2)
must be satisfied for both i = 1 and i = 2.

To each closed path p = (p1, . . . ,p2n) we associate the functional

Gp(f) =
1

2n

2n
∑

k=1

(−1)k+1f(pk).

It has the following obvious properties:

(a) If g ∈ Ch1h2
, then Gp(g) = 0.

(b) ‖Gp‖ ≤ 1 and if pi 6= pj for all i 6= j, 1 ≤ i, j ≤ 2n, then ‖Gp‖ = 1.
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We need the following auxiliary lemmas.

Lemma 2.2. If a compact set Q contains closed paths, then

(1) sup
p⊂Q

|Gp(f)| ≤ E(f, Ch1h2
),

where the sup is taken over all closed paths. Moreover , inequality (1) is

sharp, i.e., there exist functions for which (1) turns into equality.

Proof. Let p be any path of Q and g ∈ Ch1h2
(Q). Then by the linearity

of Gp and properties (a) and (b),

(2) |Gp(f)| = |Gp(f − g)| ≤ ‖f − g‖.

Since the left-hand and right-hand sides of (2) do not depend upon g and p,
respectively, it follows from (2) that

(3) sup
p⊂Q

|Gp(f)| ≤ inf
g∈Ch1h2

‖f − g‖.

To prove the sharpness of (1) note that if p is a closed path, then there
is a closed path p′ = (p′

1, . . . ,p
′

2n) such that p′ ⊂ p and all points of p′ are
distinct. Indeed, p′ can be obtained by the following simple algorithm: if the
points of p are not all distinct, let i and k > 0 be the minimal indices such
that pi = pi+2k; delete from p the subsequence pi+1, . . . ,pi+2k and call the
resulting path p; repeat the above step until all points of p are distinct; set
p′ := p. By Urysohn’s lemma, there exists a continuous function f ′ such
that f ′(p′

i) = 1 for i = 1, 3, . . . , 2n− 1, f ′(p′

j) = −1 for j = 2, 4, . . . , 2n, and
−1 < f ′(x) < 1 for all x ∈ Q \ p′. Then

(4) Gp
′ (f ′) = ‖f ′‖ = 1.

On the other hand, it is obvious that

(5) E(f ′, Ch1h2
) ≤ ‖f ′‖.

From (3)–(5) it follows that

sup
p⊂Q

|Gp(f
′)| = E(f ′, Ch1h2

),

and moreover sup is attained by the closed path p′, so 0 ∈ Ch1h2
is a best

approximation to f ′.

For any h ∈ C(Q), set

Qt = {x ∈ Q : h(x) = t}, Th = {t ∈ R : Qt 6= ∅}.

Lemma 2.3. Let Q be a convex compact set in R
n and f, h ∈ C(Q).

Then the functions

g1(t) = max
x∈Q

h(x)=t

f(x), g2(t) = min
x∈Q

h(x)=t

f(x), t ∈ Th,

are defined and continuous on Th.
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Proof. Observe that Th is a closed interval or a point. The case of a point
is trivial. So, assume that Th = [c1, c2], where c1 6= c2. Suppose g1 is not
continuous on [c1, c2] and t0 is a point of discontinuity. First assume that t0 ∈
[c1, c2). Without loss of generality we may consider g1 to be discontinuous
from the right at t0, i.e.

∃ε > 0 ∀t′ > t0, t
′ ∈ [c1, c2] ∃t1 ∈ (t0, t

′] : |g1(t1) − g1(t0)| > ε.(6)

Fix some t′. Since f is continuous on the compact setQ, there exist y0,y1∈Q
such that g1(t0) = f(y0) and g1(t1) = f(y1). Since Q is convex, it contains
the line segment [y0,y1]. Set

Y0 = {y ∈ Q : f(y) = g1(t0)}.

It is obvious that Y0 is closed, y0 ∈ Y0 and y1 6∈ Y0. Write

Y ′

0 = Y0 ∩ [y0,y1].

There is a point y′

0 ∈ Y ′

0 such that

̺(y1, Y
′

0) = ̺(y1,y
′

0).

It is clear that h(y′

0) = t0 and h(y1) = t1. Since h is continuous on [y0,y1],
for any t ∈ (t0, t1] there exists y ∈ (y′

0,y1] such that h(y) = t. Then it is not
difficult to see that there exist sequences {tn} ⊂ (t0, t1] and {yn} ⊂ (y′

0,y1]
such that tn ↓ t0, yn → y′

0 and h(yn) = tn. It follows from (6) that there
exists a sequence {t′n} such that t0 < t′n ≤ tn and at the same time

|g1(t
′

n) − g1(t0)| > ε for all n.(7)

For each n there exist y′

n ∈ (y′

0,yn] and y′′

n ∈ Q such that h(y′

n) = t′n
and f(y′′

n) = g1(t
′

n). Then (7) can be written in the following form:

|f(y′′

n) − f(y′

0)| > ε for all n.(8)

Since h(y′′

n) = t′n and f(y′′

n) is the maximum of all f(y), whereas h(y) = t′n,
we find that

f(y′

n) ≤ f(y′′

n) for all n.(9)

Since yn → y′

0, y
′

n also tends to y′

0. Then f(y′

n) → f(y′

0) and h(y′

n) →
h(y′

0). The sequence {y′′

n} contains a converging subsequence. Without loss
of generality we may assume that {y′′

n} itself converges to some point y′′ ∈ Q.
Then we deduce from (8) and (9) that

∣

∣f(y′′) − f(y′

0)
∣

∣ ≥ ε(10)

and

f(y′

0) ≤ f(y′′).(11)

Let us prove that f(y′′) = f(y′

0). Indeed, since h(y′′

n) = t′n, y′′

n → y′′,
t′n → t0, it follows from the continuity of h that h(y′′) = t0. Now, since
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h(y′

0) = h(y′′) = t0 and f(y′

0) is the maximum of all f(y), whereas h(y)
= t0, it follows from (11) that

f(y′

0) = f(y′′).

The last equality together with (10) contradicts the choice of ε.
In the same way we can prove that g1 is continuous at t = c2 and g2 is

also continuous on Th.

Definition 2.4. A finite or infinite path (p1,p2, . . .) is said to be ex-

tremal for a function u ∈ C(Q) if u(pi) = (−1)i‖u‖, i = 1, 2, . . . , or
u(pi) = (−1)i+1‖u‖, i = 1, 2, . . .

Theorem 2.5. Let Q be a convex compact set in R
n. A necessary and

sufficient condition for a function g0 ∈ Ch1h2
to be a best approximation to

the given function f ∈ C(Q) \ Ch1h2
is the existence of a closed or infinite

path l = (p1,p2, . . .) extremal for the function f1 = f − g0.

Proof. Necessity. Let g0(x) = g1,0(h1(x)) + g2,0(h2(x)) ∈ Ch1h2
(Q) be a

best approximation. We must show that if there is no closed path extremal
for f1, then there exists a path extremal for f1 with infinite length (number
of points). Suppose that, on the contrary, there exists a positive integer N
such that the length of each path extremal for f1 is at most N and no path
extremal for f1 is closed. Define

f0 = f, fn = fn−1 − g1,n−1 − g2,n−1, n = 2, 3, . . . ,

where

g1,n−1(x) = g1,n−1(h1(x)) =
1

2

(

max
y∈Q

h1(y)=h1(x)

fn−1(y) + min
y∈Q

h1(y)=h1(x)

fn−1(y)
)

g2,n−1(x) = g2,n−1(h2(x)) =
1

2

(

max
y∈Q

h2(y)=h2(x)

(fn−1(y) − g1,n−1(h1(y)))

+ min
y∈Q

h2(y)=h2(x)

(fn−1(y) − g1,n−1(h1(y)))
)

.

By Lemma 2.3, all the functions fn, n = 2, 3, . . . , are continuous on Q.
By assumption g0 is a best approximation to f . Hence ‖f1‖ = E(f). Now
we show that ‖f2‖ = E(f). Indeed, for any x ∈ Q,

(12) f1(x)−g1,1(h1(x)) ≤
1

2

(

max
y∈Q

h1(y)=h1(x)

f1(y)− min
y∈Q

h1(y)=h1(x)

f1(y)
)

≤ E(f)

and

(13) f1(x) − g1,1(h1(x)) ≥
1

2

(

min
y∈Q

h1(y)=h1(x)

f1(y) − max
y∈Q

h1(y)=h1(x)

f1(y)
)

≥−E(f).
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In the same way, using (12) and (13), it can be shown that for any x ∈ Q,

−E(f) ≤ f2(x) = f1(x) − g1,1(h1(x)) − g2,1(h2(x)) ≤ E(f).

Therefore,

(14) ‖f2‖ ≤ E(f).

Since f2 − f belongs to Ch1h2
, we deduce from (14) that ‖f2‖ = E(f).

In the same way, one can show that ‖fn‖ = E(f) for any n.
We now prove that if f1(p0) < E(f) for some p0 ∈ Q, then f2(p0) <

E(f). We first prove that if f1(p0) < E(f), then

(15) f1(p0) − g1,1(h1(p0)) < E(f).

Indeed, if

max
y∈Q

h1(y)=h1(p0)

f1(y) = E(f) and min
y∈Q

h1(y)=h1(p0)

f1(y) = −E(f),

then

f1(p0) − g1,1(h1(p0)) = f1(p0) < E(f).

And if

max
y∈Q

h1(y)=h1(p0)

f1(y) = E(f) − ε1 and min
y∈Q

h1(y)=h1(p0)

f1(y) = −E(f) + ε2,

where ε1, ε2 ≥ 0, ε1 + ε2 6= 0, then it is not difficult to verify that

f1(p0) − g1,1(h1(p0)) ≤ E(f) −
ε1 + ε2

2
< E(f).

In the same way we can prove that if f1(p0)− g1,1(h1(p0)) < E(f), then

(16) f1(p0) − g1,1(h1(p0)) − g2,1(h2(p0)) < E(f).

So, if f1(p0) < E(f), then f2(p0) < E(f). Repeating the same techniques
from (15) to (16), it can be shown that if f1(p0) > −E(f), then f2(p0) >
−E(f). Therefore, if f2(p0) = E(f), then f1(p0) = E(f), and if f2(p0) =
−E(f), then f1(p0) = −E(f). This simply means that each path extremal
for f2 will be extremal for f1.

Now we show that if any path extremal for f1 has length at most N , then
any path extremal for f2 has length at most N − 1. Suppose that, on the
contrary, there is a path extremal for f2 of length N , say q = (q1, . . . ,qN ).
We may assume that h2(qN−1) = h2(qN ). As shown above, q is also extremal
for f1. Assume that f1(qN ) = E(f). Then there is no q0 ∈ Q such that
q0 6= qN , h1(q0) = h1(qN ) and f1(q0) = −E(f). Indeed, if there were such
a q0 and q0 6∈ q, then the path (q1, . . . ,qN ,q0) would be extremal for f1.
But this would contradict our assumption that any path extremal for f1 has
length at most N . Also, if there were such a q0 with q0 ∈ q, we could form
some closed path extremal for f1, contrary to our assumption.
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Hence

max
y∈Q

h1(y)=h1(qN )

f1(y) = E(f), min
y∈Q

h1(y)=h1(qN )

f1(y) > −E(f).

Therefore,

|f1(qN ) − g11(h1(qN ))| < E(f).

From the last inequality it is not difficult to deduce that

|f2(qN )| < E(f).

This means that, contrary to our assumption, the path (q1, . . . ,qN ) cannot
be extremal for f2. Hence any path extremal for f2 has length at most N−1.

In the same way, it can be shown that any path extremal for f3 has
length at most N − 2, any path extremal for f4 has length at most N − 3
and so on. Finally, we conclude that there is no path extremal for fN+1. In
this case, for any x ∈ Q,

(17) |fN+1(x)| < E(f).

Since fN+1 is continuous on Q, it follows from (17) that

‖fN+1‖ < E(f).

Since the function fN+1 − f belongs to Ch1h2
, the last strict inequality

contradicts the definition of E(f). Therefore, our assumption that there
does not exist an infinite path extremal for f1 is not valid.

Sufficiency. Let l = (p1, . . . ,p2n) be a closed path extremal for f1. It
can be easily verified that

(18) |Gl(f)| = ‖f − g0‖.

By Lemma 2.2,

(19) |Gl(f)| ≤ E(f).

It follows from (18), (19) and the definition of E(f) that g0 is a best ap-
proximation.

Let now l = (p1,p2 . . . , ) be an infinite path extremal for f1. Without
loss of generality we may assume that the points pi are all distinct (in the
other case, we could form a closed path and prove in a few lines as above
that g0 is a best approximation). Consider the sequence ln = (p1, . . . ,pn),
n = 1, 2, . . . , of finite paths and the path functionals

Fln(f) =
1

n

n
∑

i=1

(−1)i−1f(pi).

Unlike Gl, these functionals do not annihilate the set Ch1h2
. But it can

be easily verified that ‖Fln‖ = 1 for all n ∈ N. Indeed, ‖Fln(w)‖ ≤ ‖w‖ for
all continuous functions w over Q and ‖Fln(w0)‖ = ‖w0‖ for a continuous
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function w0 taking value +1 at the points pi∈ ln with i odd, −1 at pi ∈ ln
with i even, and values from the interval (−1; 1) at all other points of Q.
By the well-known result of functional analysis (any bounded set in E∗, the
dual of a separable Banach space E, is precompact in the weak∗ topology),
the sequence {Fln}

∞

n=1 has a weak∗ cluster point. Denote it by F. Note that
for any n ∈ N,

|Fln(g1 + g2)| ≤
2

n
(‖g1‖ + ‖g2‖),

where g1(x) = g1(h1(x)) and g2(x) = g2(h2(x)). Therefore, F (g) = 0 for all
g ∈ Ch1h2

. Moreover, it is clear that ‖F‖ ≤ 1. From the last two properties
of F it follows that

(20) |F (f)| = |F (f − g)| ≤ ‖f − g‖

for all g ∈ Ch1h2
. Taking inf over g on the right-hand side of (20), we obtain

(21) |F (f)| ≤ E(f).

Since the paths ln are extremal for f1 = f − g0,

|Fln(f − g0)| = ‖f − g0‖.

Hence

(22) |F (f)| = |F (f − g0)| = ‖f − g0‖.

Now by (21) and (22), we conclude that g0 is a best approximation.

It is well known that characterization theorems of this type are essen-
tial in approximation theory. Chebyshev was the first to prove a similar
result for polynomial approximation. Khavinson [10] characterized extremal
elements in a special case of the problem considered. His case allows the
approximation of a continuous bivariate function f(x, y) by functions of the
type ϕ(x) + ψ(y). It should be noted that the techniques used in the proof
of Theorem 2.5 are completely different from those in [10].

Remark. The question of existence of a best approximation from the
set Ch1h2

to a function f in C(Q) (or, in other words, the proximinality of
this set in the space of all continuous functions) is far from trivial. Some
geometrical conditions on Q sufficient for the existence of a best approxima-
tion may be found in [6]. These conditions a priori require that the mapping
h = (h1, h2) : Q → h1(Q) × h2(Q) should separate points of Q. Necessary
conditions for the proximinality of Ch1h2

can be easily obtained from the
known general result of Marshall and O’Farrell [15] established for the sum
of two algebras (see Proposition 4 in [15]). Unfortunately, there is not yet
a complete answer (necessary and sufficient conditions on Q) to the above
question even in the simplest case when Q ⊂ R

2 and hi(x1, x2) = xi for
i = 1, 2 (see, for example, [7]).
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