STUDIA MATHEMATICA 191 (3) (2009)

On smooth points of boundaries of open sets

by

S. ROLEWICZ (Warszawa)

Abstract. The notions of smooth points of the boundary of an open set and $\alpha(\cdot)$ intrinsically paraconvex sets are introduced. It is shown that for an $\alpha(\cdot)$ intrinsically paraconvex open set the set of smooth points is a dense G_{δ} -set of the boundary.

Let $(X, \|\cdot\|)$ be a Banach space. Let C be an open set in X and let $x_0 \in \overline{C}$.

The tangent cone $\mathcal{T}_C(x_0)$ of the set C at the point x_0 consists of $h \in X$ such that for every neighbourhood Q of h there is $t_Q > 0$ such that for $0 < t < t_Q$,

(1)
$$(x_0 + tQ) \cap C \neq \emptyset$$

(Dubovitskiĭ and Milyutin (1965)). It is easy to see that each tangent cone is closed.

Using the distance function we can rewrite this definition in the following form: $\mathcal{T}_C(x_0)$ consists of $h \in X$ such that for every $\varepsilon > 0$ there is a $t_0 > 0$ such that for $0 < t < t_0$,

$$\operatorname{dist}(x_0 + th, C) < \varepsilon t.$$

Here the arbitrariness of ε means that the directional derivative of the function dist (\cdot, C) at the point x_0 in the direction h is equal to 0, $\partial \operatorname{dist}(x, C)|_{x_0}(h) = 0.$

A point $x_0 \in \partial C$ is called a *smooth point* of ∂C if the cone $\mathcal{T}_C(x_0)$ is a halfspace, i.e.

$$\mathcal{T}_C(x_0) = \{x \in X : x^*(x) \ge 0\}$$

for some continuous linear functional x^* . The set of all smooth points of ∂C is called the *smooth set* of the ∂C and denoted by $\mathcal{S}(C)$.

It is a natural question how big part of ∂C is the smooth set $\mathcal{S}(C)$.

If $\mathcal{S}(C) = \partial C$ we say that ∂C is smooth.

Now we give an example of a smooth set C.

2000 Mathematics Subject Classification: 46B99, 52A30.

Key words and phrases: smooth points, $\alpha(\cdot)$ intrinsically paraconvex sets.

PROPOSITION 1. Let $(Y, \|\cdot\|)$ be a Banach space. Let Ω be an open set in Y. Let $C \subset \mathbb{R} \times \Omega$ be the epigraph of a function $f : \Omega \to \mathbb{R}, C = \{(r, y) \in \mathbb{R} \times \Omega : r \geq f(y), y \in \Omega\}$. If f is Gateaux differentiable at y_0 then $(f(y_0), y_0)$ is a smooth point of ∂C .

Proof. We take $X = \mathbb{R} \times Y$ and we put $x^*((t,y)) = t + \partial f|_{y_0}(y)$ and $H_{x^*} = \{(r,y) : r \ge f(y_0) + \partial f|_{y_0}(y)\}$. Since f is Gateaux differentiable at y_0 , for every $(r,y) \in H_{x^*}$ and every neighbourhood Q of zero in X there is s > 0 such that for all 0 < t < s,

$$(f(y_0), y_0) + t(r - f(y_0), y - y_0) \in C + tQ.$$

Thus $H_{x^*} \subset \mathcal{T}_C((f(y_0), y_0)).$

On the other hand, if $(r, y) \notin H_{x^*}$ then for all s > 0 there are $t_s > 0$ and a neighbourhood Q of zero such that $0 < t_s < s$ and $(f(y_0), y_0) + t_s(r - f(y_0), y - y_0) \notin C + t_s Q$. This implies that $(r, y) \notin \mathcal{T}_C((f(y_0), y_0))$. Therefore we have the equality

$$H_{x^*} = \mathcal{T}_C((f(y_0), y_0)).$$

The converse assertion does not hold:

EXAMPLE 2. Let
$$Y = \mathbb{R}$$
. Let

$$f(x) = \begin{cases} |x|(-1 + \sin \frac{1}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Of course, the function $f(\cdot)$ is not differentiable at 0. On the other hand, the tangent cone of the epigraph $C = \{(t, x) : t \ge f(x)\}$ at the point (0, 0) is a halfplane: $\mathcal{T}_C((0, 0)) = \{(t, x) : t \ge 0\}.$

Mazur (1933) proved that if X is separable, then every convex real-valued function defined on an open convex set $\Omega \subset X$ is Gateaux differentiable on a dense G_{δ} -set. Of course, such sets are residual (i.e. their complements in Ω are of the first Baire category).

Asplund (1968) found a class of Banach spaces X such that every convex real-valued function defined on an open convex set $\Omega \subset X$ is Fréchet differentiable on a dense G_{δ} -set. Such spaces are now called *Asplund spaces* and can be characterized in the following way. A Banach space X is an Asplund space if and only if each of its separable subspaces has a separable dual (see Phelps (1989)). As an obvious consequence of the Mazur and Asplund results we get

PROPOSITION 3. Let $(X, \|\cdot\|)$ be either a separable Banach space or an Asplund space. Let C be an open convex set in X. Then $\mathcal{S}(C)$ is a dense G_{δ} -set in the boundary ∂C .

Proof. Let $x_0 \in C$ and let $f(x) = \inf\{t > 0 : (x - x_0)/t \in C\}$ be the Minkowski norm induced by the set $C - x_0$. The function f(x) is convex,

and thus it is Gateaux differentiable on a dense G_{δ} -set C_f . Since f(x) is positively homogeneous, $\partial C \cap C_f$ is a dense G_{δ} -set in ∂C .

It is a natural question to which classes of sets Proposition 3 can be extended.

Let $\alpha(\cdot): [0, +\infty) \to [0, +\infty]$ be a nondecreasing function such that

(2)
$$\lim_{t \downarrow 0} \frac{\alpha(t)}{t} = 0.$$

Let $f(\cdot)$ be a real-valued continuous function defined on an open convex subset $\Omega \subset X$. We say that $f(\cdot)$ is strongly $\alpha(\cdot)$ -paraconvex (Rolewicz (2000)) if for all $x, y \in \Omega$ and $0 \le t \le 1$ we have

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \min[t, (1-t)]\alpha(||x-y||).$$

We say that an open set $C \subset X$ is $\alpha(\cdot)$ -intrinsically paraconvex (cf. Ngai–Pénot (2008)) if for all $x, y \in C$,

$$dist(tx + (1 - t)y, C) \le t(1 - t)\alpha(||x - y||).$$

PROPOSITION 4. Let $(X, \|\cdot\|)$ be either a separable Banach space or an Asplund space. Let C be an open bounded $\alpha(\cdot)$ -intrinsically paraconvex set in X. Assume that there is $x_0 \in C$ such that C is starshaped with respect to x_0 . Then $\mathcal{S}(C)$ is a dense G_{δ} -set in ∂C .

Proof. Let $f(x) = \inf\{t > 0 : (x - x_0)/t \in C\}$. It is easy to see that there is c > 0 such that $f(\cdot)$ is strongly $c\alpha(\cdot)$ -paraconvex. Thus it is Gateaux differentiable on a dense G_{δ} -set C_f (Rolewicz (2002), (2005a), (2006)). Since f(x) is positively homogeneous, $\partial C \cap C_f$ is a residual subset of ∂C .

QUESTION 5. Is Proposition 4 valid without the assumption that C is starshaped with respect to some point?

By using Proposition 4 we can show this only for locally starshaped intrinsically paraconvex sets.

We say that an open set C is a *locally starshaped intrinsically paraconvex* set if for any $x_0 \in \partial C$, there are a neighbourhood U of x_0 and $\alpha(\cdot)$ satisfying (2) such that $U \cap C$ is an α -intrinsically paraconvex set starshaped with respect to some $x_1 \in U \cap C$.

PROPOSITION 6. Let $(X, \|\cdot\|)$ be either a separable Banach space or an Asplund space. Let C be an open locally starshaped intrinsically paraconvex set in X. Then $\mathcal{S}(C)$ is a dense G_{δ} -set in ∂C .

Proof. Fix $x_0 \in \partial C$. By our assumption there are a neighbourhood U of x_0 and $\alpha(\cdot)$ satisfying (2) such that $U \cap C$ is an intrinsically paraconvex set starshaped with respect to some $x_1 \in U \cap C$. Thus by Proposition 4, $\mathcal{S}(U \cap C)$ is a dense G_{δ} -set in $\partial(U \cap C)$. This implies that $\mathcal{S}(C)$ is a locally

 G_{δ} -set in ∂C . Therefore by the Michael theorem (Michael (1954)) it is a G_{δ} -set in ∂C . Since x_0 was arbitrary, $\mathcal{S}(C)$ is dense in ∂C .

References

- E. Asplund (1966), Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4, 213–216.
- E. Asplund (1968), Fréchet differentiability of convex functions, Acta Math. 121, 31-47.
- A. Ya. Dubovitskiĭ and A. A. Milyutin (1965), Extremal problems in presence of constraints, Zh. Vychisl. Mat. i Mat. Fiz. 5, 395–453 (in Russian).
- S. Mazur (1933), Uber konvexe Mengen in linearen normierten R\u00e4umen, Studia Math. 4, 70-84.
- E. Michael (1954), Local properties of topological spaces, Duke Math. J. 21, 163–174.
- H. V. Ngai and J.-P. Pénot (2008), Paraconvex functions and paraconvex sets, Studia Math. 184, 1–29.
- R. R. Phelps (1989), Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer.
- S. Rolewicz (2000), On $\alpha(\cdot)$ -paraconvex and strongly $\alpha(\cdot)$ -paraconvex functions, Control Cybernet. 29, 367–377.
- S. Rolewicz (2002), On $\alpha(\cdot)$ -monotone multifunctions and differentiability of strongly $\alpha(\cdot)$ -paraconvex functions, ibid. 31, 601–619.
- S. Rolewicz (2005a), On differentiability of strongly $\alpha(\cdot)$ -paraconvex functions in nonseparable Asplund spaces, Studia Math. 167, 235–244.
- S. Rolewicz (2005b), Paraconvex analysis, Control Cybernet. 34, 951–965.
- S. Rolewicz (2006), An extension of Mazur's theorem on Gateaux differentiability to the class of strongly $\alpha(\cdot)$ -paraconvex functions, Studia Math. 172, 243–248.
- S. Rolewicz (2007), Paraconvex analysis on $C_{\mathbf{E}}^{1,u}$ -manifolds, Optimization 56, 49–60.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 P.O. Box 21 00-956 Warszawa 10, Poland E-mail: rolewicz@impan.pl

> Received February 9, 2008 Revised version June 19, 2008

(6299)