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On the uniqueness of uniform norms and C∗-norms

by

P. A. Dabhi and H. V. Dedania (Vallabh Vidyanagar)

Abstract. We prove that a semisimple, commutative Banach algebra has either ex-
actly one uniform norm or infinitely many uniform norms; this answers a question asked
by S. J. Bhatt and H. V. Dedania [Studia Math. 160 (2004)]. A similar result is proved
for C∗-norms on ∗-semisimple, commutative Banach ∗-algebras. These properties are pre-
served if the identity is adjoined. We also show that a commutative Beurling ∗-algebra
L1(G, ω) has exactly one uniform norm if and only if it has exactly one C∗-norm; this is
not true in arbitrary ∗-semisimple, commutative Banach ∗-algebras.

1. Introduction. A uniform norm on an algebra A is a (not necessarily
complete) algebra norm | · | on A satisfying the square property

|x2| = |x|2 (x ∈ A).

Note that any two equivalent uniform norms on A are identical. A Banach
algebra A has the unique uniform norm property (UUNP) if it admits ex-
actly one uniform norm; in this case the spectral radius r(·) on A is the
only uniform norm. This property was introduced and extensively studied
by S. J. Bhatt and H. V. Dedania (see [2–6]). It was proved in [2, Theo-
rem 2] that a commutative Beurling algebra L1(G,ω) has either exactly one
uniform norm or infinitely many uniform norms. We extend this result to all
semisimple, commutative Banach algebras (see Theorem 2.2(i) below). This
result simplifies the proof of [6, Theorem 3.1] which states that a non-unital,
semisimple, commutative Banach algebra A has UUNP if and only if its uni-
tization Ae has UUNP. Using these results we also give a correct proof of [4,
Theorem 6.1] which states that if the multiplier algebra M(A) has UUNP,
then A has UUNP.

A C∗-norm on a ∗-algebra B is a (not necessarily complete) algebra norm
| · | on B satisfying the C∗-property

|x∗x| = |x|2 (x ∈ B).
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Like uniform norms, any two equivalent C∗-norms on B are identical. A Ba-
nach ∗-algebra B has the unique C∗-norm property (UC ∗NP) if it admits
exactly one C∗-norm. This property was first studied by B. A. Barnes in [1].
Here we shall prove that a ∗-semisimple, commutative Banach ∗-algebra has
either exactly one C∗-norm or infinitely many C∗-norms. B. A. Barnes ex-
hibited in [1, Example 4.4] a non-unital, ∗-semisimple, commutative Banach
∗-algebra B such that B has UC∗NP but its unitization Be does not have
UC∗NP. However, this is false because of our Corollary 2.3 below which states
that B has UC∗NP if and only if Be has UC∗NP at least for the commutative
case. We also exhibit a gap in the arguments of [1, Example 4.4].

In an arbitrary ∗-semisimple, commutative Banach ∗-algebra, the UUNP
is stronger than the UC∗NP. However, we prove that they are equivalent in
a commutative Beurling ∗-algebra L1(G,ω).

2. Main results. Throughout, A is a semisimple, commutative Banach
algebra with the complete norm ‖ · ‖, rA(·)(= r(·)) is the spectral radius
on A, 4(A) is the Gel’fand space of A, and x̂ : 4(A) → C, ϕ 7→ ϕ(x),
is the Gel’fand transform of an element x in A. The identity element of
A (if it exists) is denoted by 1. If A is non-unital, we take Ae := A × C
with co-ordinatewise linear operations and the ring multiplication being
(x, α)(y, β) = (xy + αy + βx, αβ). The complete norm ‖ · ‖ is extended
to Ae by ‖(x, α)‖ = ‖x‖+ |α|. For a closed subset F of 4(A), define

|x|F = |x̂|F := sup{|x̂(ϕ)| : ϕ ∈ F} (x ∈ A).

Then | · |F is a uniform seminorm on A and it is dominated by the spectral
radius r(·); the seminorm | · |F is a uniform norm on A if and only if F
is a set of uniqueness for A, that is, for any x ∈ A, ϕ(x) = 0 (ϕ ∈ F )
implies x = 0. On the other hand, let | · | be a uniform norm on A. Set
F := {ϕ ∈ 4(A) : ϕ is | · |-continuous}. Then F is the largest closed subset
of 4(A) such that |x| = |x|F (x ∈ A).

Throughout, B stands for a ∗-semisimple, commutative Banach ∗-algebra.
A complex homomorphism ϕ ∈ 4(B) is self-adjoint if ϕ(x∗) = ϕ(x) (x ∈ B).
Let 4̃(B) := {ϕ ∈ 4(B) : ϕ is self-adjoint}. Then it is easy to see that
4̃(B) is closed in 4(B). If F is a closed subset of 4̃(B) and if F is a set
of uniqueness for B, then | · |F is a C∗-norm on B. Conversely, if | · | is a
C∗-norm on B, then there exists a largest closed subset F of 4̃(B) such that
|x| = |x|F (x ∈ B). Now it is clear that every C∗-norm is a uniform norm.

Theorem 2.1.

(i) Let A be non-unital. Then A has infinitely many uniform norms if
and only if Ae has infinitely many uniform norms.
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(ii) Let B be non-unital. Then B has infinitely many C∗-norms if and
only if Be has infinitely many C∗-norms.

Proof. (i) Let | · |1 and | · |2 be two distinct uniform norms on A. For
i = 1, 2, define

|(x, α)|i,op := sup{|xy + αy|i : y ∈ A, |y|i ≤ 1} ((x, α) ∈ Ae).
Then both | · |1,op and | · |2,op are uniform norms on Ae, and they are distinct
as they are distinct on A [6, Proposition 2.2]. Thus if A has infinitely many
uniform norms, then so does Ae. Now suppose that | · |1 and | · |2 are two
distinct uniform norms on Ae. For i = 1, 2, define

Fi = {ϕ ∈ 4(Ae) : ϕ is | · |i-continuous}.
Then F1 6= F2. Without loss of generality assume that F2 \ F1 6= ∅. Choose
ϕ ∈ F2 \ F1. We may assume that ϕ 6= ϕ∞. Then ϕ is not | · |1-continuous.
So there exists a sequence {(xk, αk)} in Ae such that |(xk, αk)|1 ≤ 1 and
|ϕ((xk, αk))| → ∞ as k → ∞. Since ϕ 6= ϕ∞, there exists b ∈ A such
that ϕ(b) 6= 0. Then |xkb+ αkb|1 ≤ |(xk, αk)|1|b|1 ≤ |b|1 and |ϕ(xkb+ αkb)|
= |ϕ((xk, αk))| |ϕ(b)| → ∞ as k → ∞. Therefore |xkb + αkb|2 ≥
|ϕ(xkb+ αkb)| → ∞ as k →∞. So | · |1 6= | · |2 on A.

Now suppose that Ae has infinitely many distinct uniform norms. Let
{| · |i : i ∈ N} be an infinite collection of distinct uniform norms on Ae. For
i ∈ N, define

Fi := {ϕ ∈ 4(Ae) : ϕ is | · |i-continuous}.
Since | · |i 6= | · |j (i 6= j), we must have Fi 6= Fj (i 6= j). First, assume that
ϕ∞ ∈ Fi for infinitely many i’s. In this case, we may assume that ϕ∞ ∈ Fi
for all i. Then, by the argument as in the paragraph above, we can show
that | · |i 6= | · |j on A. Thus A has infinitely many uniform norms. Second,
assume that ϕ∞ ∈ Fi for finitely many i’s only. In this case, we may assume
that ϕ∞ /∈ Fi for all i. Then, by the same argument as in the paragraph
above, one can show that A has infinitely many uniform norms.

(ii) This follows from (i) and the fact that every C∗-norm is a uniform
norm on a commutative Banach ∗-algebra.

It was asked in [2, p. 179] whether there exists A with finitely many
uniform norms. Part (i) of the next result settles this question in the negative.

Theorem 2.2.

(i) A has either exactly one uniform norm or infinitely many uniform
norms.

(ii) B has either exactly one C∗-norm or infinitely many C∗-norms.

Proof. (i) First, assume that A is unital. Let | · | be a uniform norm on A
and suppose | · | 6= rA(·). Set F := {ϕ ∈ 4(A) : ϕ is | · |-continuous}. Then F
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is a compact subset of4(A) and |·| = |·|F on A. Certainly, |·| ≤ rA(·) ≤ ‖ · ‖
on A. Since | · | 6= rA(·), F 6= 4(A). Set U = 4(A) \ F .

We claim that U is not closed in 4(A). Suppose that, if possible, U is
closed in 4(A). Then, by the Shilov Idempotent Theorem, χU ∈ Â, i.e.,
there exists x0 ∈ A such that x̂0 = χU . Then x0 6= 0. On the other hand,
|x0| = |x̂0|F = |χU |F = 0. Since | · | is a norm on A, x0 = 0, which is a
contradiction. This proves our claim.

Since 4(A) is Hausdorff and since U is not closed, U must be an infinite
set. Let {ϕj : j ∈ N} be an infinite subset of U . Set Fn := F ∪ {ϕ1, . . . , ϕn}
(n ∈ N). Then Fn is a compact subset of 4(A) and | · |Fn gives a uniform
norm on A because | · | ≤ | · |Fn . Take any n ∈ N. Then ϕi 6= ϕn (1 ≤ i < n).
So there exist a1, . . . , an−1 in A such that ϕi(ai) = 0 while ϕn(ai) 6= 0
(1 ≤ i < n). Hence ϕi(a1 . . . an−1) = 0 and ϕn(a1 . . . an−1) 6= 0. Therefore,
there is x ∈ A such that ϕi(x) = 0 (1 ≤ i < n) and ϕn(x) = 1. Since ϕn is
not | · |F -continuous, there exists a sequence (xj) in A such that |xj |F ≤ 1
and |ϕn(xj)| → ∞ as j → ∞. Now ϕi(xxj) = 0 (1 ≤ i < n, j ∈ N). This
implies that for 1 ≤ i < n and j ∈ N,

|xxj |Fi = sup{|ϕ(xxj)| : ϕ ∈ Fi} = sup{|ϕ(xxj)| : ϕ ∈ F} = |xxj |F
and |xxj |Fn ≥ |ϕn(xxj)| = |ϕn(xj)| → ∞ as j → ∞. Hence, | · |Fn 6= | · |Fi

(1 ≤ i < n). Since n ∈ N was arbitrary, A has infinitely many distinct
uniform norms.

Second, assume that A is non-unital. Suppose A does not have exactly
one uniform norm. Let | · |1 and | · |2 be two distinct uniform norms on A.
Then, by [6, Proposition 2.2], we get two distinct uniform norms on Ae. By
Theorem 2.1(i), A has infinitely many uniform norms. This proves (i).

(ii) First, assume that B is unital. Let | · | be a C∗-norm on B and
| · | 6= m(·), where m(x) = sup{|ϕ(x)| : ϕ ∈ 4̃(B)} (x ∈ B), that is, the
largest C∗-norm on B. Set F := {ϕ ∈ 4̃(B) : ϕ is | · |-continuous}. Then F
is closed and hence compact in 4̃(B). Also,

|x| = |x|F = |x̂|F .

Certainly, | · | ≤ m(·) ≤ ‖ · ‖ on B. Since | · | 6= m(·), F 6= 4̃(B). Set
U = 4̃(B) \ F . Then U is not closed in 4̃(B). Indeed, if U is closed in
4̃(B), then U is closed in 4(B) because 4̃(B) is closed in 4(B). Then, by
the Shilov Idempotent Theorem, χU ∈ B̂, i.e., there exists x0 ∈ B such that
x̂0 = χU . Hence x0 6= 0 and |x0| = |x̂0|F = |χU |F = 0. This is a contradiction
because | · | is a norm on B.

Now as in (i) above, we can show that B has either exactly one C∗-norm
or infinitely many C∗-norms. This remains true in non-unital B due to Theo-
rem 2.1(ii). Hence (ii) is proved.



Uniqueness of uniform norms 267

Part (i) of the next corollary was proved in [6, Theorem 3.1]. However,
Theorems 2.1(i) and 2.2(i) simplify its proof. Corollary 2.3(ii) exhibits that
Example 4.4 given by B. A. Barnes in [1] is false. It was argued there that
C∗(A) ∼= C∗(B) because A is γB-dense in B; but A is, in fact, a proper,
γB-closed, ∗-ideal in B.

Corollary 2.3.

(i) Let A be non-unital. Then A has UUNP if and only if Ae has UUNP.
(ii) Let B be non-unital. Then B has UC ∗NP if and only if Be has

UC ∗NP .

Proof. (i) Assume that A has UUNP. By Theorems 2.2(i) and 2.1(i),
Ae does not have infinitely many uniform norms. So, by Theorem 2.1(i),
Ae has UUNP. The converse follows by similar arguments.

(ii) This is in the line of (i).

A multiplier on A is a linear map T : A → A satisfying (Tx)y =
x(Ty) = T (xy) (x, y ∈ A). By [8, Theorem 1.1.1], T is automatically
continuous. Let M(A) denote the algebra of all multipliers on A. Then
M(A) is a semisimple, commutative Banach algebra with the operator norm
‖T‖ = sup{‖Tx‖ : x ∈ A, ‖x‖ ≤ 1}. For a ∈ A, let La : A → A be the
multiplication operator La(x) = ax (x ∈ A). Then a 7→ La is a one-one con-
tinuous homomorphism of A onto the ideal {La : a ∈ A} of M(A). Hence
we shall identify A with that ideal. The Gel’fand space 4(M(A)) is a dis-
joint union of the Gel’fand space 4(A) and h(A), the hull of A in 4(M(A))
(see [8, Theorem 1.4.3]).

The next theorem was proved in [4, Theorem 6.1]. However, the proof
given there is not correct. In [4, Theorem 6.1], it is not clear why | · |r is a
uniform norm on M(A). Here we apply a different technique.

Theorem 2.4. If M(A) has UUNP , then A has UUNP.

Proof. It is sufficient to prove that if A has infinitely many uniform
norms, then so does M(A). It is enough to show that any uniform norm on
A can be extended to a uniform norm on M(A).

Let | · | be a uniform norm on A. Then there is a closed subset F of 4(A)
such that | · | = | · |F on A. Let F̃ := F ∪ h(A). Define

|T | eF := sup{|ϕ(T )| : ϕ ∈ F̃} (T ∈M(A)).

It is clear that | · | eF is a uniform seminorm on M(A) and | · | eF = | · | on A.
So all we need to prove is that | · | eF is a norm on M(A).

Suppose |T | eF = 0; then T̂ |h(A) = 0 and T̂ |F = 0. Let ψ ∈ 4(A)\F . Then
there is x ∈ A such that ψ(x) = 1. Since A is an ideal in M(A), xT ∈ A.
Now (̂xT )(ϕ) = x̂(ϕ)T̂ (ϕ) = 0 (ϕ ∈ F ). Therefore |xT | = 0. Since | · | is a
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norm on A, xT = 0. So 0 = (̂xT )(ψ) = x̂(ψ)T̂ (ψ) = T̂ (ψ). Thus T̂ |4(A) = 0
and T̂ |h(A) = 0, so T̂ = 0 on 4(M(A)). Since M(A) is semisimple, T = 0.
Thus | · | eF is a uniform norm on M(A).

We remark that the converse of Theorem 2.4 is not true; for example, if
G is a non-discrete, locally compact, abelian group, then the group algebra
L1(G) has UUNP but its multiplier algebra M(L1(G)) ∼= M(G) does not
have UUNP (see [4, p. 233]).

Let G be a Hausdorff, locally compact, abelian topological group with the
binary operation being addition. The Haar measure on G is denoted by m.
A weight on G is a measurable function ω : G→ R such that 0 < ω(s+ t) ≤
ω(s)ω(t) (s, t ∈ G). The weight ω onG is symmetric if ω(−s) = ω(s) (s ∈ G).
Define

L1(G,ω) :=
{
f : G→ C : f is measurable and

�

G

|f |ω dm <∞
}
.

For f, g ∈ L1(G,ω), define the convolution product f ∗ g as follows:

(f ∗ g)(s) :=
�

G

f(s− t)g(t) dm(t) (s ∈ G).

Then L1(G,ω) is a commutative Banach algebra with the convolution prod-
uct and the norm being ‖f‖ω :=

	
G |f(s)|ω(s) dm(s); it is called a Beurling

algebra. By [3, Theorem 1], L1(G,ω) is semisimple. Note that if G is not
abelian, then it is not known whether or not the Beurling algebra L1(G,ω)
is always semisimple (see [7, p. 175]). If the weight ω is symmetric, then the
Beurling algebra L1(G,ω) is in fact a ∗-semisimple Banach ∗-algebra with
respect to the involution f∗(s) = f(−s) (s ∈ G).

An ω-bounded generalized character on G is a continuous homomorphism
α : (G,+)→ (C\{0},×) such that |α(s)| ≤ ω(s) (s ∈ G). LetH(G,ω) be the
set of all ω-bounded generalized characters endowed with the compact-open
topology. Let Ĝ be the dual group of G. Then H(G,ω) ∼= 4(L1(G,ω)) via
the mapping α 7→ ϕα, where

ϕα(f) =
�

G

f(s)α(s) dm(s) (f ∈ L1(G,ω)).

If the weight ω on G is symmetric, then ω(s) ≥ 1 (s ∈ G), Ĝ ⊂ H(G,ω)
and ϕα is self-adjoint if and only if α ∈ Ĝ. Hence 4̃(L1(G,ω)) ∼= Ĝ (see
[2] and [4]). In an arbitrary ∗-semisimple, commutative Banach ∗-algebra,
UUNP implies UC∗NP; but the converse is not true (see [4, Proposi-
tion 2.10]). However, here we show that the converse is true in the case
of L1(G,ω). To prove this we shall need the following simple lemma.
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Lemma 2.5. Let ω be a symmetric weight on G and H(G,ω) 6= Ĝ. Then
there exists t ∈ G such that ∑

n∈Z

logω(nt)
1 + n2

=∞.

Proof. Since ω is symmetric, ω(s) ≥ 1 (s ∈ G). Hence Ĝ ⊂ H(G,ω).
Choose α ∈ H(G,ω) \ Ĝ. Then there exists t ∈ G such that |α(t)| 6= 1.
Since 1 = α(0) = α(t)α(−t), we may assume that |α(t)| > 1. Since ω(s) ≥ 1
(s ∈ G), we have∑

n∈Z

logω(nt)
1 + n2

≥
∑
n∈N

logω(nt)
1 + n2

≥
∑
n∈Z

log |α(nt)|
1 + n2

≥
∑
n∈N

log |α(t)|n

1 + n2
= log |α(t)|

∑
n∈N

n

1 + n2
=∞.

Theorem 2.6. Let ω be a symmetric weight on G. Then L1(G,ω) has
UUNP if and only if it has UC ∗NP .

Proof. Since ω is symmetric, Ĝ ⊂ H(G,ω). Assume that L1(G,ω) has
UUNP. Because every C∗-norm on a commutative Banach ∗-algebra is a
uniform norm it is clear that L1(G,ω) has UC∗NP.

For the converse, assume that L1(G,ω) has UC∗NP. First we claim that
H(G,ω) = Ĝ. Suppose, if possible, H(G,ω) 6= Ĝ. Then by Lemma 2.5, there
exists t ∈ G such that ∑

n∈Z

logω(nt)
1 + n2

=∞.

Set U = {θ ∈ Ĝ : Re θ(t) > 0} = {θ ∈ Ĝ : |θ(t)−1| <
√

2}. Then 1G ∈ U and
so U is a non-empty, open subset of Ĝ. Since Ĝ is locally compact, there is a
non-empty open subset V of Ĝ such that V ⊂ V ⊂ U . Set F := Ĝ\V . Then
F is closed in Ĝ and hence in H(G,ω). Define |f |F := sup{|ϕ(f)| : ϕ ∈ F}
(f ∈ L1(G,ω)). It is clear that | · |F is a C∗-seminorm on L1(G,ω). We show
that it is in fact a C∗-norm on L1(G,ω). Suppose that, if possible, there
exists f ∈ L1(G,ω) such that f 6= 0 and |f |F = 0. Then supp f̂ ⊂ V ⊂ U .
So, as in the proof of [9, Theorem A.1.13],∑

n∈Z

logω(nt)
1 + n2

<∞,

which is a contradiction. Hence |·|F is a C∗-norm on L1(G,ω). As in the proof
of [2, Theorem 2] we can show that |·|F 6= |·| bG. This means that L1(G,ω) does
not have UC∗NP, which is again a contradiction. This proves our claim, i.e.,
H(G,ω) = Ĝ. Hence L1(G,ω) is hermitian. So, by [4, Proposition 2.10(2)(i)],
L1(G,ω) has UUNP.



270 P. A. Dabhi and H. V. Dedania

Acknowledgements. The authors are grateful to Prof. S. J. Bhatt for
reading this manuscript and to the referee for giving fruitful suggestions.
They also acknowledge the financial support through UGC-SAP-DRS grant
No. F.510/5/DRS/2004 (SAP-I) provided to the Department of Mathemat-
ics, Sardar Patel University.

References

[1] B. A. Barnes, The properties of ∗-regularity and uniqueness of C∗-norm in general
∗-algebras, Trans. Amer. Math. Soc. 279 (1983), 841–859.

[2] S. J. Bhatt and H. V. Dedania, Beurling algebras and uniform norms, Studia Math.
160 (2004), 179–183.

[3] —, —, A Beurling algebra is semisimple: An elementary proof, Bull. Austral. Math.
Soc. 66 (2002), 91–93.

[4] —, —, Banach algebras with unique uniform norm II, Studia Math. 147 (2001),
211–235.

[5] —, —, Banach algebras with unique uniform norm, Proc. Amer. Math. Soc. 124
(1996), 579–584.

[6] —, —, Uniqueness of the uniform norm and adjoining identity in Banach algebras,
Proc. Indian Acad. Sci. Math. Sci. 105 (1995), 405–409.

[7] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer.
Math. Soc. 177 (2005), no. 836.

[8] R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin, 1971.
[9] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact

Groups, London Math. Soc. Monogr. 22, Clarendon Press, Oxford, 2000.

Department of Mathematics
Sardar Patel University
Vallabh Vidyanagar 388 120
Gujarat, India
E-mail: lightatinfinite@gmail.com

hvdedania@yahoo.com

Received July 11, 2008
Revised version December 3, 2008 (6382)


