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Abstract. Motivated by the concept of separation between propositions in quantum
logic, we introduce the so-called separation metric or Santos metric on the space of all
projections in a Hilbert space. We show that the resulting metric space has only “nice”
surjective isometries. On the nontrivial projections they are all unitarily or antiunitarily
equivalent to the identity or to taking the orthogonal complement. We relate this result
to Wigner’s classical theorem on the form of quantum mechanical symmetry transforma-
tions.

1. Introduction and statement of the main result. In [9] Santos
defined the separation Sµ(p, q) between quantum mechanical propositions
p, q in a given state µ as

Sµ(p, q) = µ(p) + µ(q)− 2µ(p ∧ q).

He proved that if the underlying lattice of propositions is a Boolean ortho-
complemented lattice, then Sµ is a pseudometric. Furthermore, he showed
that the famous Bell inequalities which play a fundamental role in the foun-
dations of quantum mechanics are easily derivable from the triangle inequal-
ity for Sµ. In this way he could present a new approach to the Bell inequalities
that stresses their fundamental and general character (see also [8]).

In the usual Hilbert space description of quantum mechanics, the propo-
sitions are represented by projections on a (complex) Hilbert space H and
the (pure) states by unit vectors in H. Let P(H) denote the lattice of all
projections (i.e., self-adjoint idempotents) on H. For any P,Q ∈ P(H) and
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unit vector x ∈ H, the corresponding separation in the sense of Santos is

Sx(P,Q) = 〈Px, x〉+ 〈Qx, x〉 − 2〈(P ∧Q)x, x〉.
Taking the supremum over all unit vectors and referring to the fact that the
norm of a self-adjoint operator equals its numerical radius, we arrive at the
quantity

dS(P,Q) = ‖P +Q− 2P ∧Q‖ (P,Q ∈ P(H)).

It turns out to be a metric on P(H). To see this, first observe that P +Q−
2P ∧ Q can be written as the sum of the projections P0 = P − P ∧ Q and
Q0 = Q − P ∧ Q. It then follows that if P differs from Q and hence one of
the projections P0 and Q0 is nonzero, then 1 ≤ d(P,Q) ≤ 2. Clearly, this
property alone implies the validity of the triangle inequality. Suppose now
that dS(P,Q) = 0. Then 0 = ‖(P −P ∧Q)+(Q−P ∧Q)‖. But if the sum of
two projections is zero, then the projections themselves are necessarily zero.
Therefore, P = P ∧Q = Q and, as the symmetry of dS is obvious, it follows
that dS is really a metric. In what follows we call dS the separation metric
or Santos metric on P(H).

This metric has a certain geometrical meaning. To see this, suppose that
P,Q ∈ P(H) are not comparable, i.e., neither P ≤ Q nor Q ≤ P (in the
opposite case we have dS(P,Q) = 0 or 1 depending on whether P equals Q
or not). Set, as before, P0 = P −P ∧Q and Q0 = P −P ∧Q. We then have

dS(P,Q) = ‖P0 +Q0‖.
The norm of the sum of two projections can be computed by using Vidav’s
theorem [13] saying that for any projections e, f in a C∗-algebra we have
‖e + f‖ = 1 + ‖ef‖ provided that e, f are not both zero. Observing that
P0, Q0 6= 0, we thus obtain dS(P,Q) = 1 + ‖P0Q0‖. Set

M0 = rngP0, N0 = rngQ0

(rng stands for the range of operators). Lemma 4.3 in [2] tells us that
‖P0Q0‖ = cos(M0, N0) where the cosine between nonzero subspaces is de-
fined by

cos(M0, N0) = sup
{
|〈m,n〉|
‖m‖ ‖n‖

: 0 6= m ∈M0, 0 6= n ∈ N0

}
.

Therefore,
dS(P,Q) = 1 + cos(M0, N0).

The above cosine between subspaces reminds us an important concept in
quantum mechanics called transition probability, whose geometrical meaning
is the (squared) cosine of the angle between one-dimensional subspaces of a
Hilbert space representing pure states. The bijective transformations on pure
states preserving the transition probability are called quantum mechanical
symmetry transformations. They are described by Wigner’s famous theorem,



A metric on the space of projections 273

which is of fundamental importance in the probabilistic aspects of quantum
mechanics. It says that every such transformation is induced by either a
unitary or an antiunitary operator on the underlying Hilbert space.

In recent years we have obtained several generalizations and extensions of
Wigner’s theorem. Here we refer only to the one that describes the structure
of those maps which preserve the system of canonical angles on the set of all
subspaces of a Hilbert space with some fixed dimension. The result appeared
in [4] (see also [6], and Chapter 2 in [5] for further information and results).

By what we have just learnt about the Santos metric, it is clear that in
the purely mathematical sense, the corresponding isometries of the projec-
tion lattice P(H) can be viewed as generalizations of quantum mechanical
symmetry transformations from the case of rank-one projections to the en-
tire set P(H). This gives the motivation to determine the isometries of this
metric space, which is the main aim of the paper. We shall prove that ev-
ery surjective isometry is of the form either P 7→ UPU∗ or P 7→ UP⊥U∗

on the set of all nontrivial projections, where U is a unitary or antiunitary
operator.

Before turning to the details let us make some remarks concerning an-
other operator-norm-related metric on P(H), called the gap metric:

dg(P,Q) = ‖P −Q‖ (P,Q ∈ P(H)).

In terms of subspaces, this quantity has been originally defined by B. Szőke-
falvi-Nagy and independently by M. G. Krein and M. A. Krasnosel’skĭı under
the name “aperture” (see [1, Section 34]). The gap metric has important
applications, for example, in control theory.

To relate dg to the Santos metric dS, observe that for any P,Q ∈ P(H),
setting P0 = P − P ∧Q and Q0 = Q− P ∧Q as above, we have

dg(P,Q) = ‖P −Q‖ = ‖P0 −Q0‖,

while we recall that
dS(P,Q) = ‖P0 +Q0‖.

Moreover, by the so-called Akhiezer–Glazman equality (see [1, Section 34]),

dg(P,Q) = ‖P0 −Q0‖ = max{‖P0Q
⊥
0 ‖, ‖P⊥0 Q0‖}

= max{cos(M0, N
⊥
0 ), cos(M⊥0 , N0)}.

This shows that both dS and dg are intimately related to angles between the
ranges of P and Q after eliminating their intersection. However, there are
serious differences, for example, in the structure of the corresponding isom-
etry groups. In fact, one can immediately observe that P(H) equipped with
the gap metric has a quite complicated isometry group containing in some
sense rather “irregular” elements (which are not so nice as the ones for the
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Santos metric mentioned above). The reason for this is the following. For any
P,Q ∈ P(H) we have −I ≤ P −Q ≤ I, implying that dg(P,Q) ≤ 1. More-
over, it is well known that if ‖P −Q‖ < 1, then P,Q are unitarily equivalent
(their ranges and kernels have the same Hilbert dimensions; see [1, Section
34]). Now consider the corresponding equivalence classes of P(H). It is clear
that if we have surjective isometries on each of those classes (which may be
completely unrelated to each other, e.g., implemented by different unitary
or antiunitary operators on different equivalence classes), then piecing them
together to a map on the whole space P(H) we obtain a surjective isometry
of P(H) which is “irregular” in the above sense.

We now turn to the result of this paper. Our aim is to determine the
structure of all isometries of the space P(H) with respect to the Santos met-
ric dS. Let us first give some particular examples of such isometries. It is
apparent that for any unitary or antiunitary operator U on H, the transfor-
mation P 7→ UPU∗ is a surjective isometry. It is also rather obvious that any
map π on P(H) which permutes the set {0, I} of trivial projections and acts
as the identity on the remaining part of P(H) is also a surjective isometry.

To present a third example, we show the nontrivial fact that taking the
orthogonal complement is also an isometry.

Proposition. The map P 7→ P⊥ = I − P is a surjective isometry of
P(H) with respect to the metric dS.

So we have three different kinds of transformations which are all sur-
jective isometries with respect to the Santos metric. Our main result states
that in fact every surjective isometry can be obtained as a composition of
transformations of these particular kinds.

Theorem. Let H be a complex Hilbert space with dimH ≥ 2. Let φ :
P(H)→ P(H) be a surjective isometry with respect to the metric dS. Then
φ permutes the set {0, I} of trivial projections and there exists a unitary or
antiunitary operator U on H such that either

φ(P ) = UPU∗ (0, I 6= P ∈ P(H)),
or

φ(P ) = UP⊥U∗ (0, I 6= P ∈ P(H)).

As already mentioned above, this result can be considered an extension
of Wigner’s theorem from the case of rank-one projections to the whole space
of projections.

2. Proofs

Proof of the Proposition. Clearly, it is sufficient to verify that dS(P,Q) ≤
dS(P⊥, Q⊥) for any P,Q ∈ P(H). The cases P ≤ Q and Q ≤ P are trivial,
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so suppose that P and Q are not comparable. Set

M = rngP, N = rngQ.

Decompose the Hilbert space H as the orthogonal sum of the closed sub-
spaces M ∧N , (M ∨N)∧ (M ∧N)⊥ and (M ∨N)⊥. Observe that (M ∨N)
∧ (M ∧N)⊥ 6= {0}. We have the corresponding matrix representations

P =

 I 0 0
0 P0 0
0 0 0

 , Q =

 I 0 0
0 Q0 0
0 0 0

 .

Here P0 and Q0 are the restrictions of P and Q onto the subspace (M ∨N)∧
(M ∧N)⊥. We have

rngP0 = M ∧ (M ∧N)⊥, rngQ0 = N ∧ (M ∧N)⊥,

hence P0 ∧ Q0 = 0. On the other hand, we assert that P0 ∨ Q0 equals the
identity (on the space (M ∨N) ∧ (M ∧N)⊥). To see this, first note that

M = (M ∧ (M ∧N)⊥) ∨ (M ∧N), N = (N ∧ (M ∧N)⊥) ∨ (M ∧N).

It follows that

M ∨N = (M ∧ (M ∧N)⊥) ∨ (N ∧ (M ∧N)⊥) ∨ (M ∧N).

Since the last subspace on the right hand side is orthogonal to the previous
ones, we obtain

(M ∧ (M ∧N)⊥) ∨ (N ∧ (M ∧N)⊥) = (M ∨N) ∧ (M ∧N)⊥,

and this proves P0 ∨Q0 = I.
Observe that P0, Q0 are nontrivial projections. Using the above represen-

tation, it is easy to see that

dS(P,Q) = ‖P0 +Q0‖, dS(P⊥, Q⊥) = ‖P⊥0 +Q⊥0 ‖.

Applying Vidav’s already mentioned result of [13], we obtain

dS(P,Q) = 1 + ‖P0Q0‖, dS(P⊥, Q⊥) = 1 + ‖P⊥0 Q⊥0 ‖.

We now distinguish two possibilities. First suppose that 0 /∈ σ(P0 +Q0).
Then P0 + Q0 is surjective and rngP0, rngQ0 give a direct sum decompo-
sition of the Hilbert space where these operators act. Next we apply a nice
observation from [3]: if a Hilbert space is the direct sum of nontrivial closed
subspaces R and K, then the norm of the idempotent with range R and
kernel K equals

√
1− ‖PKPR‖2

−1
(here PK and PR denote the orthogo-

nal projections onto K and R, respectively). As mentioned in the proof of
Theorem 2 in [3], it then follows immediately that ‖PKPR‖ = ‖P⊥KP⊥R ‖.
Therefore, ‖P0Q0‖ = ‖P⊥0 Q⊥0 ‖, yielding dS(P,Q) = dS(P⊥, Q⊥).
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Suppose now that 0 ∈ σ(P0 + Q0). This implies that 2 ∈ σ(P⊥0 + Q⊥0 )
and

‖P0 +Q0‖ ≤ 2 = ‖P⊥0 +Q⊥0 ‖,
which shows dS(P,Q) ≤ dS(P⊥, Q⊥).

Proof of the Theorem. First we assert that the commutativity of pro-
jections can be expressed in terms of the metric dS as follows. For any
P,Q ∈ P(H), P 6= Q, we have

PQ = QP ⇔ dS(P,Q) = 1.

To see this, we use the matrix representation from the proof of the Proposi-
tion. Observe that if P,Q are comparable, then PQ = QP and dS(P,Q) = 1
both hold. So, suppose that P,Q are not comparable. Then dS(P,Q) =
‖P0+Q0‖ = 1+‖P0Q0‖. Consequently, dS(P,Q) = 1 if and only if P0Q0 = 0.
The latter equality implies that P0, Q0 commute, and hence P,Q also com-
mute. Conversely, if P,Q commute, then so do P0, Q0 and we have 0 =
P0 ∧Q0 = P0Q0, implying dS(P,Q) = 1. This proves the asserted character-
ization of commutativity in P(H).

As φ is a surjective isometry, it follows that φ preserves commutativity in
both directions. This means that for any P,Q ∈ P(H) we have PQ = QP if
and only if φ(P )φ(Q) = φ(Q)φ(P ). At this point we can apply an argument
similar to one in [7].

For any set S ⊂ P(H) define

Sk = {Q ∈ P(H) : QP = PQ (P ∈ S)},
which is the commutant of S relative to P(H). Moreover, denote by S ′ the
usual commutant of S in the algebra of all bounded linear operators on H.
Using some elementary von Neumann algebra techniques, it is fairly easy to
verify that Skk = S ′′ ∩ P(H).

This observation implies the following. If a finite sequence P1, . . . , Pn of
mutually orthogonal nonzero projections forms a resolution of the identity
(i.e., its sum equals I), then {P1, . . . , Pn}kk is precisely the set of all linear
combinations of P1, . . . , Pn which are projections, that is, the set of all linear
combinations of P1, . . . , Pn with coefficients 0 or 1. Consequently, the set
{P1, . . . , Pn}kk has exactly 2n elements.

Pick commuting projections P,Q ∈ P(H) and consider the corresponding
resolution of the identity: P ∧ Q,P − (P ∧ Q), Q − (P ∧ Q), (P ∨ Q)⊥. We
clearly have

{P,Q}k = {P ∧Q,P − (P ∧Q), Q− (P ∧Q), (P ∨Q)⊥}k

and hence

{P,Q}kk = {P ∧Q,P − (P ∧Q), Q− (P ∧Q), (P ∨Q)⊥}kk.
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For temporary use, let us call a projection P ∈ P(H) simple if P or P⊥
is of rank one. One can easily check that a nontrivial projection P is simple if
and only if the set {P∧Q,P−(P∧Q), Q−(P∧Q), (P∨Q)⊥} has at most three
nonzero elements for every Q ∈ P(H) commuting with P . As a consequence,
we have the following characterization of simple projections: the nontrivial
element P ∈ P(H) is a simple projection if and only if the cardinality of the
set {P,Q}kk (which is already known to equal 2k, where k is the number of
nonzero elements of {P ∧Q,P − (P ∧Q), Q− (P ∧Q), (P ∨Q)⊥}) is at most
8 for every Q ∈ P(H) commuting with P .

As φ is a bijective map on P(H) which preserves commutativity in both
directions, it follows that φ sends trivial projections to trivial projections and
has the property that φ(Skk) = φ(S)kk for any S ⊂ P(H). Therefore, by the
above characterization of simple projections we see that φ preserves those
elements in both directions, i.e., for any P ∈ P(H) we have: P is simple if
and only if φ(P ) is simple.

In what follows let us suppose that dimH ≥ 3.
Define a new transformation ψ on the set P1(H) of all rank-one pro-

jections in the following way. For P ∈ P1(H), let ψ(P ) = φ(P ) if φ(P ) is
of rank one, and let ψ(P ) = φ(P )⊥ if φ(P )⊥ is of rank one. Clearly, ψ is
a well-defined map from P1(H) into itself which preserves commutativity
in both directions. To verify that ψ is bijective we remark the following.
Pick different commuting simple projections P and Q. It is easy to see that
P + Q = I if and only if {P}k = {Q}k. The already known properties
of φ imply that φ(P ) + φ(P⊥) = I for every rank-one projection P . Now,
to prove the injectivity of ψ take rank-one projections P and Q such that
ψ(P ) = ψ(Q). The nontrivial case that we have to consider is when one of
φ(P ) and φ(Q), say the first, is of rank one and the other is of corank one.
But φ(P ) = φ(Q)⊥ = φ(Q⊥) implies P = Q⊥, which is untenable. This
proves the injectivity of ψ. The surjectivity can be verified in a similar way.

Therefore, we have a bijective map ψ : P1(H)→ P1(H) which preserves
commutativity in both directions. Since the commutativity of two different
rank-one projections is equivalent to their orthogonality, it follows that ψ pre-
serves orthogonality in both directions. Such transformations are completely
described by a famous theorem of Uhlhorn [12] which is a generalization of
Wigner’s theorem. According to that result, there is a unitary or antiunitary
operator U on H such that ψ is of the form

ψ(P ) = UPU∗ (P ∈ P1(H)).

Consider now the new transformation φ′(P ) = U∗φ(P )U (P ∈ P(H)).
This is obviously a surjective isometry of P(H) such that for every rank-one
projection P we have either φ′(P ) = P or φ′(P ) = P⊥. We show that either
φ′(P ) = P for every P ∈ P1(H), or φ′(P ) = P⊥ for every P ∈ P1(H).
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To verify this, pick two unit vectors x and y in H such that their inner
product satisfies |〈x, y〉| 6= 0, 1/

√
2, 1. Let Px and Py denote the rank-one

projections onto the subspaces generated by x and y, respectively. Suppose
that φ′(Px) = Px while φ′(Py) = P⊥y . By Vidav’s result [13] we have

dS(Px, Py) = ‖Px + Py‖ = 1 + ‖PxPy‖ = 1 + ‖Pyx‖
and

dS(Px, P⊥y ) = ‖Px + P⊥y ‖ = 1 + ‖PxP⊥y ‖ = 1 + ‖P⊥y x‖.
But on the other hand, as φ′ is an isometry, we know that dS(Px, Py)
= dS(Px, P⊥y ). Hence ‖Pyx‖ = ‖P⊥y x‖. Since, by Pythagoras’ theorem,
‖Pyx‖2 + ‖P⊥y x‖2 = 1, it follows that |〈x, y〉| = ‖Pyx‖ = 1/

√
2, a con-

tradiction. If x and y are arbitrary unit vectors, then we can choose a third
unit vector z such that both pairs x, z and z, y satisfy the above require-
ments. It now follows that φ′ is either the identity or taking the orthogonal
complement on the set P1(H) of all rank-one projections.

Composing φ′ if necessary with taking the orthogonal complement (which
is a surjective isometry as we have learnt from the Proposition), there is no
loss of generality in assuming that φ′ acts as the identity on P1(H). It then
remains to prove that φ′ is the identity on the set of all nontrivial projections.
Pick a nontrivial Q ∈ P(H). We know that the rank-one projection P does
not commute with Q if and only if P = φ′(P ) does not commute with the
nontrivial projection R = φ′(Q). Take a unit vector x in H which is neither
in the range nor in the kernel of Q. Then the rank-one projection Px does
not commute with Q. Therefore,

dS(Px, Q) = ‖Px +Q‖ = 1 + ‖PxQ‖ = 1 + ‖Qx‖
and similarly

dS(Px, R) = 1 + ‖Rx‖.
For dS(Px, Q) = dS(φ′(Px), φ′(Q)) = dS(Px, R), it follows that

〈Qx, x〉 = ‖Qx‖2 = ‖Rx‖2 = 〈Rx, x〉.
Since this equality holds on a dense set of vectors x in H, by continuity it
holds for every x ∈ H. This shows that Q = R = φ′(Q). Thus φ′ is the
identity on the set of all nontrivial projections. Going back to the original
transformation φ we see that either

φ(P ) = UPU∗ (0, I 6= P ∈ P(H)),

or
φ(P ) = UP⊥U∗ (0, I 6= P ∈ P(H)).

Observe that, as φ preserves commutativity in both directions, φ′ permutes
the set of trivial projections. This completes the proof in the case when
dimH ≥ 3.
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Finally, suppose that dimH = 2. In this case the rank-one projections
are exactly the nontrivial projections. Restricting φ onto this set, we obtain
a bijective map which preserves the so-called transition probability. Indeed,
for any two different rank-one projections P,Q one can easily verify that

dS(P,Q) = ‖P +Q‖ = 1 + ‖PQ‖ = 1 +
√

trPQ.

Therefore,
trPQ = trφ(P )φ(Q).

Bijective maps on the set of rank-one projections with this property are
called quantum mechanical symmetry transformations in quantum mechan-
ics. According to the already mentioned theorem of Wigner, there exists a
unitary or antiunitary operator U on H such that

φ(P ) = UPU∗

for every rank-one projection P onH. Clearly, φ permutes the set of all trivial
projections also in the present case, and hence the proof of the theorem is
complete.

We conclude the paper with some remarks.
Remarks. (1) Firstly, one may ask why taking the orthogonal comple-

ment does not appear in the proof above in the case dimH = 2. The answer
is that it does appear in a certain way. In fact, one can readily check the
following. If e1, e2 form an orthonormal basis in H, then defining

Ux = 〈e2, x〉e1 − 〈e1, x〉e2
for every x ∈ H, we obtain an antiunitary operator on H such that

UPU∗ = P⊥

for every nontrivial projection P . Obviously, such an operator U does not
exist in higher dimensions.

(2) We have seen that the values of the metric dS jump up from 0 to the
interval [1, 2]. It is natural to ask if they really run through the entire set
[1, 2]. Picking unit vectors x, y ∈ H which are not constant multiples of each
other, we see that

dS(Px, Py) = ‖Px + Py‖ = 1 + ‖PxPy‖ = 1 + |〈x, y〉|.
This shows that dS takes every value from the interval [1, 2[. We assert
that it also takes the value 2 if and only if the underlying space is infinite-
dimensional. Indeed, for the sufficiency, suppose without loss of generality
that H = l2. Consider the following closed subspaces in H: let M consist of
all elements of l2 of the form (ξ1, 0, ξ3, 0, ξ5, . . .) and N consist of all elements
of l2 of the form (η1, η1/2, η3, η3/4, η5, η5/6, . . .). (We remark that M and N
are standard examples showing that the sum of two closed subspaces may
not be closed.) Then M ∩N = {0} (and M +N is a dense, proper subspace
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of l2). It follows that dS(PM , PN ) = ‖PM + PN‖. Considering the vector
xk ∈ l2 whose (2k − 1)th coordinate is 1, the next one is 1/(2k) and all the
other coordinates are 0, it follows that

‖PMxk + PNxk‖2

‖xk‖2
=

4 + 1/(4k2)
1 + 1/(4k2)

.

This sequence tends to 4 as k goes to infinity. Hence, d(PM , PN ) = 2. For the
necessity, suppose that H is finite-dimensional. Assume that P,Q ∈ P(H)
with dS(P,Q) = 2. Clearly, P,Q are not comparable. Applying the matrix
representation introduced in the proof of the Proposition, we have

2 = dS(P,Q) = ‖P0 +Q0‖ = 1 + ‖P0Q0‖.
So ‖P0Q0‖ = 1. As we are in finite dimension, there is a unit vector x
such that ‖P0Q0x‖ = 1, which implies that ‖Q0x‖ = 1. But this yields
Q0x = x and so ‖P0x‖ = 1, which in the same manner implies that P0x = x.
Consequently, x is in the ranges of both P0 and Q0, contrary to P0∧Q0 = 0.
This shows that in finite dimension the values of dS are all strictly less than 2.

(3) In the proof of our theorem we have verified and then heavily used
the fact that the surjective isometries are commutativity preserving trans-
formations on the set of all projections. A deep analysis of commutativity
preserving (and related) maps on the space of all idempotents has been car-
ried out by P. Šemrl [10, 11].
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