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On Gaussian Brunn–Minkowski inequalities

by

Franck Barthe and Nolwen Huet (Toulouse)

Abstract. We are interested in Gaussian versions of the classical Brunn–Minkowski
inequality. We prove in a streamlined way a semigroup version of the Ehrhard inequality
for m Borel or convex sets based on a previous work by Borell. Our method also yields
semigroup proofs of the geometric Brascamp–Lieb inequality and of its reverse form, which
follow exactly the same lines.

1. Introduction. In this paper, we are interested in Gaussian ver-
sions of the classical Brunn–Minkowski inequality on the Lebesgue mea-
sure of sum-sets (see e.g. [19, 20]). On Rn with its canonical Euclidean
structure (〈·, ·〉, | · |) we consider the standard Gaussian measure γn(dx) =
(2π)−n/2 exp(−|x|2/2) dx, x ∈ Rn. Given α, β ∈ R and sets A,B ⊂ Rn, we
recall that their Minkowski combination is defined by

αA+ βB = {αa+ βb : (a, b) ∈ A×B}.

Using symmetrization techniques, Ehrhard [15] proved a sharp lower bound
on the Gaussian measure of a convex combination of convex sets: if α, β ≥ 0
satisfy α+ β = 1 and if A,B ⊂ Rn are convex, then

Φ−1 ◦ γn(αA+ βB) ≥ αΦ−1 ◦ γn(A) + βΦ−1 ◦ γn(B),

where Φ is the cumulative distribution function of γ1. This inequality be-
comes an equality when A and B are parallel half-spaces or the same convex
set. Latała [17] showed that the inequality remains valid when A is convex
and B is an arbitrary Borel set. In the remarkable paper [9], Borell was
able to remove the remaining convexity assumption. He actually derived a
functional version of the inequality (in the spirit of the Prékopa–Leindler
inequality) by a wonderful interpolation technique based on the heat equa-
tion. In a series of papers, Borell extended the inequality to more general
combinations:
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Theorem (Borell [11]). Let α1, . . . , αm > 0. The inequality

(1) Φ−1 ◦ γn
(∑

i

αiAi

)
≥
∑
i

αiΦ
−1 ◦ γn(Ai)

holds for all Borel sets A1, . . . , Am in Rn if and only if∑
i

αi ≥ 1 and ∀j, αj −
∑
i 6=j

αi ≤ 1.

Moreover , (1) holds for all convex sets A1, . . . , Am in Rn if and only if∑
i

αi ≥ 1.

Borell established the case m = 2 for Borel sets in [10] thanks to his
semigroup argument. His proof in [11] of the general case relies on a tricky
and somewhat complicated induction. Observe that a linear combination of
Borel sets need not be a Borel set; however, it is analytic or Suslin, hence
universally measurable (see e.g. [16]).

In this note we give a slight extension of the above statement (the referee
pointed out that it can actually be deduced from Borell’s theorem, thanks to
the Sudakov–Tsirelson inequality Φ−1◦γn(tA) ≥ tΦ−1◦γn(A), valid for t ≥ 1
and A convex. The latter is also a corollary of Borell’s general inequality.)
More importantly, we propose a streamlined version of the semigroup argu-
ment form functions directly, which allows us to take advantage of convexity
type assumptions. This better understanding of the semigroup technique also
allows us to study more general situations. The main result is stated next. It
involves the heat semigroup, for which we recall the definition: given a Borel
non-negative function f on Rn, its evolute at time t ≥ 0 is the function Ptf
given by

Ptf(x) =
�
f(x+

√
t y) γn(dy) = E(f(x+Bt))

where B is an n-dimensional Brownian motion. By convention∞−∞ = −∞
so that inequalities like (1), or the one introduced in the next theorem, make
sense.

Theorem 1. Let Iconv ⊂ {1, . . . ,m} and α1, . . . , αm > 0. The following
assertions are equivalent :

(i) The parameter α = (α1, . . . , αm) satisfies

(2)
∑
i

αi ≥ 1 and ∀j /∈ Iconv, αj −
∑
i 6=j

αi ≤ 1.

(ii) For all Borel sets A1, . . . , Am in Rn such that Ai is convex when
i ∈ Iconv,

Φ−1 ◦ γ
(∑

i

αiAi

)
≥
∑
i

αiΦ
−1 ◦ γ(Ai).
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(iii) For all Borel functions h, f1, . . . , fm from Rn to [0, 1] such that
Φ−1 ◦ fi is concave when i ∈ Iconv, if

∀x1, . . . , xm ∈ Rn, Φ−1 ◦ h
(∑

i

αixi

)
≥
∑
i

αiΦ
−1 ◦ fi(xi),

then
Φ−1

(�
h dγ

)
≥
∑
i

αiΦ
−1
(�
fi dγ

)
.

(iv) For all Borel functions h, f1, . . . , fm from Rn to [0, 1] such that
Φ−1 ◦ fi is concave when i ∈ Iconv, if

∀x1, . . . , xm ∈ Rn, Φ−1 ◦ h
(∑

i

αixi

)
≥
∑
i

αiΦ
−1 ◦ fi(xi),

then for all t ≥ 0,

∀x1, . . . , xm ∈ Rn, Φ−1 ◦ Pth
(∑

i

αixi

)
≥
∑
i

αiΦ
−1 ◦ Ptfi(xi).

Remark. Condition (2) can be rephrased as∑
αi ≥ max(1,max{2αj − 1 : j 6∈ Iconv}).

Actually, the condition will come up in our argument in the following geo-
metric form: there exist vectors u1, . . . , um ∈ Rm such that |ui| ≤ 1 for all
i ∈ Iconv, |ui| = 1 for all i 6∈ Iconv, and |

∑
αiui| = 1.

In the next section we show that the condition on α implies the fourth
(and formally strongest) assumption in the above theorem, when restricted
to smooth enough functions. The third section completes the proof of the
theorem. In the final section we discuss related problems.

Before going further, let us introduce some notation.

• We consider functions depending on a time variable t and a space
variable x. The time derivative is denoted by ∂t, while the gradient,
Hessian, and Laplacian in x are denoted by ∇x, Hessx, and ∆x; we
omit the index x when there is no ambiguity.
• The unit Euclidean (closed) ball and sphere of Rd are denoted respec-

tively by Bd and Sd−1.
• For A ⊂ Rd, we set Aε = A+ εBd. The notation Aεi means (Ai)ε.
• The transposed matrix of the matrix A is denoted by A∗.

2. Functional and semigroup approach. As already mentioned, we
follow Borell’s semigroup approach to the Gaussian Brunn–Minkowski in-
equalities (see [9] and [10]): for parameters α satisfying (2), the plan is to
show the functional version of the inequality (Theorem 1(iii)) by means of the
heat semigroup. Note that (iv) implies (iii) by choosing t = 1 and xi = 0 in
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the last inequality of (iv). So our aim is to establish (iv). More precisely, given
Borel functions h, f1, . . . , fm from Rn to (0, 1), we define C on [0, T ]×(Rn)m

by

C(t, x) = C(t, x1, . . . , xm) = Φ−1 ◦ Pth
(∑

αixi

)
−
∑
i

αiΦ
−1 ◦ Ptfi(xi).

Since P0f = f the assumption

(3) ∀xi ∈ Rn, Φ−1 ◦ h
(∑

αixi

)
≥
∑
i

αiΦ
−1 ◦ fi(xi)

translates as C(0, ·) ≥ 0. Our task is to prove

C(0, ·) ≥ 0 ⇒ ∀t ≥ 0, C(t, ·) ≥ 0.

2.1. Preliminaries. When the functions h and fi are smooth enough,
the time evolution of Pth and Ptfi is described by the heat equation. This
yields a differential equation satisfied by C. Our problem boils down to de-
termining whether this evolution equation preserves non-negative functions.
This is clearly related to the maximum principle for parabolic equations (see
e.g. [13]). We will use the following lemma.

Lemma 1. Assume that C is twice differentiable. If

(4)


Hess(C) ≥ 0
∇C = 0
C ≤ 0

⇒ ∂tC ≥ 0

and if for some T > 0,

(5) lim inf
|x|→∞

(
inf

0≤t≤T
C(x, t)

)
≥ 0,

then
C(0, ·) ≥ 0 ⇒ ∀t ∈ [0, T ], C(t, ·) ≥ 0.

Proof. For ε > 0, set Cε(t, x) = C(t, x)+εt on [0, T ]×(Rn)m. If Cε < 0 at
some point, then Cε reaches its minimum at a point (t0, x0) where ∇C = 0,
Hess(C) ≥ 0, C < 0, and ∂tC+ε ≤ 0 (= 0 if t0 < T ). By the hypotheses, this
implies ∂tC ≥ 0, which contradicts ∂tC ≤ −ε. So for all ε > 0 and T > 0,
Cε is non-negative on [0, T ]× (Rn)m, thus C is non-negative everywhere.

Property (5) is true under mild assumptions on h and fi which are related
to the initial condition C(0, ·) ≥ 0 in the large:

Lemma 2. If there exist a1, . . . , am ∈ R such that

• lim sup|x|→∞ fi(x) ≤ Φ(ai),
• h ≥ Φ(

∑
i αiai),
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then for all T > 0,
lim inf
|x|→∞

(
inf

0≤t≤T
C(x, t)

)
≥ 0.

Proof. Let δ > 0. By continuity of Φ−1, there exists ε > 0 such that

Φ−1(Φ(ai) + 2ε) ≤ ai + δ/
∑

αj .

Let r > 0 be such that γn(rBn) = 1− ε. Then, for 0 ≤ t ≤ T ,

Ptfi(xi) =
�

rBn

fi(xi +
√
t y) γn(dy) +

�

(rBn)c

fi(xi +
√
t y) γn(dy)

≤ (1− ε) sup
xi+r

√
tBn

fi + ε sup fi

≤ sup
xi+r

√
T Bn

fi + ε ≤ Φ(ai) + 2ε for |xi| large enough.

Moreover, Pth ≥ Φ(
∑
αiai) so for |x| large enough and for 0 ≤ t ≤ T , we

have C(t, x) ≥ −δ. As δ > 0 was arbitrary, the proof is complete.
Checking property (4) of Lemma 1 requires the following lemma:
Lemma 3. Let d ≥ 2 and α1, . . . , αm > 0. Let k be an integer with

0 ≤ k ≤ m and

ϕ : (Sd−1)k × (Bd)m−k → R+, (v1, . . . , vm) 7→
∣∣∣∑
i

αivi

∣∣∣.
Then the image of ϕ is the interval

J :=
[
max

(
{0} ∪

{
αj −

∑
i 6=j

αi : 1 ≤ j ≤ k
})
,
∑
i

αi

]
.

Proof. As ϕ is continuous on a compact connected set, we have Im(ϕ) =
[minϕ,maxϕ]. Plainly |

∑
αivi| ≤

∑
αi, with equality if v1 = · · · = vm is

a unit vector. So maxϕ =
∑

i αi. For all j ≤ k, since |vj | = 1, the triangle
inequality gives∣∣∣∑

i

αivi

∣∣∣ ≥ αj |vj | −∑
i 6=j

αi|vi| ≥ αj −
∑
i 6=j

αi.

Hence Im(ϕ) ⊂ J and these two intervals have the same upper bound. Next
we deal with the lower bound. Let us consider a point (v1, . . . , vm) where ϕ
achieves its minimum, and differentiate:

For j ≤ k, vj lies in the unit sphere. Applying the Lagrange multipliers
theorem to ϕ2 with respect to vj gives a real number λj such that

(6) αj
∑
i

αivi = λjvj .

For j > k, the jth variable lives in Bd. If |vj | < 1 the minimum is achieved
at an interior point and the full gradient of ϕ2 with respect to the jth variable
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is zero. Hence
∑

i αivi = 0. On the other hand, if at the minimum point,
|vj | = 1, differentiating in the jth variable only along the unit sphere gives
again the existence of λj ∈ R such that (6) is satisfied.

Eventually, we face two cases:

Case 1:
∑
αivi = 0 and minϕ = 0. In this case, the triangle inequality

gives 0 = |
∑
αivi| ≥ αj −

∑
i 6=j αi whenever j ≤ k.

Case 2: the vi’s are collinear unit vectors and there exists a partition
S+ ∪ S− = {1, . . . ,m} and a unit vector v such that

minϕ =
∣∣∣∑
S+

αiv −
∑
S−

αiv
∣∣∣ =∑

S+

αi −
∑
S−

αi > 0.

Assume that S+ contains two indices j and `. Let e1 and e2 be two orthonor-
mal vectors of Rd and denote by R(θ) the rotation of angle θ in the plane
Vect(e1, e2). The length of the vector αjR(θ)e1 + α`e1 is a decreasing and
continuous function of θ ∈ [0, π]. Denote by U(θ) the rotation in Vect(e1, e2)
which maps this vector to |αjR(θ)e1 + α`e1|e1. Then

αjU(θ)R(θ)e1 + α`U(θ)e1 +
∑

S+\{j,`}

αie1 −
∑
S−

αie1 = λ(θ)e1,

where λ(0) =
∑

S+
αi −

∑
S−
αi = minϕ > 0 and λ is continuous and

decreasing in θ ∈ [0, π]. This contradicts the minimality of minϕ. So S+

contains a single index j and

minϕ =
∣∣∣αjv −∑

i 6=j
αiv
∣∣∣ = αj −

∑
i 6=j

αi > 0.

Note that necessarily j ≤ k, otherwise one could get a shorter vector by
replacing vj = v by (1 − ε)v. Moreover, the condition αj −

∑
i 6=j αi > 0

ensures that αj > α` for ` 6= j. This implies that for ` 6= j,

α` −
∑
i 6=`

αi ≤ α` − αj < 0 < αj −
∑
i 6=j

αi.

So minϕ = max({0} ∪ {αj −
∑

i 6=j αi : 1 ≤ j ≤ k}) as claimed.

2.2. Semigroup proof for smooth functions. We deal with smooth func-
tions first, in order to ensure that Ptfi and Pth satisfy the heat equation.
This restrictive assumption will be removed in Section 3 where the proof of
Theorem 1 is completed.

Theorem 2. Let fi, i = 1, . . . ,m, and h be twice continuously differ-
entiable functions from Rn to (0, 1) satisfying the hypotheses of Lemma 2.
Assume moreover that for f = fi or h,

∀t > 0, ∀x ∈ Rn, |∇f(x+
√
t y)|e−|y|2/2 −−−−→

|y|→∞
0.



Gaussian Brunn–Minkowski inequalities 289

Let α1, . . . , αm be positive real numbers such that∑
i

αi ≥ 1 and ∀j, αj −
∑
i 6=j

αi ≤ 1.

If
∀xi ∈ Rn, Φ−1 ◦ h

(∑
i

αixi

)
≥
∑
i

αiΦ
−1 ◦ fi(xi),

then

∀t ≥ 0, ∀xi ∈ Rn, Φ−1 ◦ Pth
(∑

i

αixi

)
≥
∑
i

αiΦ
−1 ◦ Ptfi(xi).

Proof. Let us recall that C is defined by

C(t, x) = C(t, x1, . . . , xm) = H
(
t,
∑

αixi

)
−
∑

αiFi(t, xi)

where we have set

H(t, y) = Φ−1 ◦ Pth(y) and Fi(t, y) = Φ−1 ◦ Ptfi(y).
In what follows, we omit the variables and write H for H

(
t,
∑
αixi

)
and Fi

instead of Fi(t, xi). With this simplified notation,

C = H −
∑

αiFi,

∇xiC = αi(∇H −∇Fi),
∇xi∇∗xj

C = αiαj Hess(H)− δijαi Hess(Fi).

Moreover, one can use the property of the heat kernel to derive a differential
equation for Fi and H. Indeed, for any f satisfying the hypotheses of the
theorem, we can perform an integration by parts to obtain

∂tPtf = 1
2∆Ptf.

Then we set F = Φ−1 ◦ Ptf and use the identity (1/Φ′(x))′ = x/Φ′(x) to
show

∂tF =
∂tPtf

Φ′(F )
=

∆Ptf

2Φ′(F )
,

∇F =
∇Ptf
Φ′(F )

,

∆F =
∆Ptf

Φ′(F )
+ F

|∇Ptf |2

(Φ′(F ))2
.

We put all this together to get

∂tF = 1
2(∆F − F |∇F |2)

and to deduce the following differential equation for C:

∂tC = 1
2(S + P)
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where the second order part is

S = ∆H −
∑

αi∆Fi

and the terms of lower order are

P = −
(
H|∇H|2 −

∑
αiFi|∇Fi|2

)
.

We will conclude the proof using Lemma 1. So we need to check condition (4).
First we note that P is non-negative when ∇C = 0 and C ≤ 0, regardless
of α. Indeed, ∇C = 0 implies that ∇Fi = ∇H for all i. So P = −|∇H|2C,
which is non-negative if C ≤ 0.

It remains to deal with the second order part. It is enough to express S
as EC for some elliptic operator E , since then Hess(C) ≥ 0 implies S ≥ 0.
Such a second order operator can be written as E = ∇∗A∇ where A is a
symmetric nm×nm matrix. Moreover, E is elliptic if and only if A is positive
semidefinite. In view of the structure of the problem, it is natural to look for
matrices of the following block form:

A = B ⊗ In = (bijIn)1≤i,j≤m ,

where In is the identity n×n matrix and B is a positive semidefinite matrix
of size m. Writing xi = (xi,1, . . . , xi,n), we have

EC =
m∑

i,j=1

bi,j

( n∑
k=1

∂2

∂xi,k∂xj,k
C

)
=

m∑
i,j=1

bi,j
(
αiαj∆H − δi,jαi∆Fi

)
= 〈α,Bα〉∆H −

m∑
i=1

bi,iαi∆Fi.

Hence there exists an elliptic operator E of the above form such that EC =
S = ∆H −

∑m
i=1 αi∆Fi if there exists a positive semidefinite matrix B of

size m such that

〈α,Bα〉 = 〈e1, Be1〉 = · · · = 〈em, Bem〉 = 1

where (ei)i is the canonical basis of Rm. Now a positive semidefinite matrix
B can be decomposed into B = V ∗V where V is a square matrix of size m.
Letting v1, . . . , vm ∈ Rm be the columns of V , we can translate the latter into
conditions on the vectors vi. Actually, we are looking for vectors v1, . . . , vm
∈ Rm with

|v1| = · · · = |vm| =
∣∣∣∑αivi

∣∣∣ = 1.

By Lemma 3 for k = m, this is possible exactly when α satisfies the claimed
condition: ∑

αi ≥ 1 and ∀j, αj −
∑
i 6=j

αi ≤ 1.

The following corollary will be useful in the next section.
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Corollary 1. Let f be a function on Rn taking values in (0, 1) and
vanishing at infinity , i.e. lim|x|→∞ f(x) = 0. Assume also that

∀t > 0, ∀x ∈ Rn, |∇f(x+
√
t y)|e−|y|2/2 −−−−→

|y|→∞
0.

If Φ−1 ◦ f is concave, then Φ−1 ◦ Ptf is concave for all t ≥ 0.

Proof. Let 0 < ε < 1 and αi > 0 with
∑
αi = 1. Choosing h = ε +

(1 − ε)f ≥ f and fi = f for i ≥ 1, one can check that the latter theorem
applies. Hence for all t ≥ 0 and xi ∈ Rn,

Φ−1 ◦ Pt(ε+ (1− ε)f)
(∑

αixi

)
≥
∑

αiΦ
−1 ◦ Ptf(xi).

Letting ε go to 0, we conclude by monotone convergence that Φ−1 ◦ Ptf is
concave.

2.3. Φ−1-concave functions. When some of the fi’s are Φ−1-concave, the
conditions on the parameters can be relaxed. Such functions allow one to ap-
proximate characteristic functions of convex sets, as we will see in Section 3.

Theorem 3. Let Iconv ⊂ {1, . . . ,m}. Let fi, i = 1, . . . ,m, and h be
twice continuously differentiable functions from Rn to (0, 1) satisfying the
hypotheses of Lemma 2. Assume also that for f = fi or h,

∀t > 0, ∀x ∈ Rn, |∇f(x+
√
t y)|e−|y|2/2 −−−−→

|y|→∞
0.

Assume moreover that Φ−1 ◦ fi is concave and decreasing to −∞ at infinity
for all i ∈ Iconv.

Let α1, . . . , αm be positive numbers satisfying∑
i

αi ≥ 1 and ∀j /∈ Iconv, αj −
∑
i 6=j

αi ≤ 1.

If
∀xi ∈ Rn, Φ−1 ◦ h

(∑
i

αixi

)
≥
∑
i

αiΦ
−1 ◦ fi(xi),

then

∀t ≥ 0, ∀xi ∈ Rn, Φ−1 ◦ Pth
(∑

i

αixi

)
≥
∑
i

αiΦ
−1 ◦ Ptfi(xi).

Proof. As in the proof of Theorem 2, we try to apply Lemma 1 to the
equation satisfied by C:

∂tC(t, x) = 1
2(S + P).

We have already shown that P is non-negative when ∇C = 0 and C ≤ 0,
for any α1, . . . , αm. We would like to prove that the conditions on α in the
theorem imply that S is non-negative whenever Hess(C) ≥ 0.
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By Corollary 1, for all i ∈ Iconv the function Fi is concave, hence∆Fi ≤ 0.
So we are done if we can write

S = EC −
∑

i∈Iconv

λi∆Fi

for some elliptic operator E and some λi ≥ 0. As in the proof of the previous
theorem, we are looking for operators of the form E = ∇∗A∇ with A =
B⊗ In = (bijIn)1≤i,j≤m where B is a symmetric positive semidefinite m×m
matrix. Hence our task is to find B ≥ 0 and λi ≥ 0 such that λi = 0 when
i /∈ Iconv and

∆H −
∑

αi∆Fi = 〈α,Bα〉∆H −
∑

(biiαi + λi)∆Fi.

When i ∈ Iconv, we can find λi ≥ 0 such that biiαi + λi = αi whenever
bii ≤ 1. Consequently, the problem reduces to finding a positive semidefinite
m×m matrix B such that

〈ei, Bei〉 ≤ 1, ∀i ∈ Iconv,

〈ei, Bei〉 = 1, ∀i /∈ Iconv,

〈α,Bα〉 = 1,

where (ei)i is the canonical basis of Rm. Equivalently, do there exist v1, . . . , vm
∈ Rm such that 

|vi| ≤ 1, ∀i ∈ Iconv,

|vi| = 1, ∀i /∈ Iconv,

|
∑
αivi| = 1?

We conclude with Lemma 3.

3. Back to sets. This section explains how to complete the proof of The-
orem 1. The main issue is to get rid of the smoothness assumptions made
so far. A key point is that the conditions on α do not depend on the dimen-
sion n. The plan of the argument is summed up in the next figure, where we
are referring to the assertions of Theorem 1, and “(iv) for smooth functions”
means assertion (iv) (of Theorem 1) restricted to functions satisfying all the
assumptions of the first paragraph of Theorem 3:

(i) ⇒ (iv) for smooth functions ⇒ (ii) ⇒ (iv) ⇒ (iii) ⇒ (i).

Note that “(iv)⇒(iii)” is obvious, whereas “(i) ⇒ (iv) for smooth functions”
was established in Theorem 3. Next we prove the remaining implications.

“(iv) for smooth functions ⇒ (ii)”: Fix an arbitrary α. Let A1, . . . , Am
be Borel sets in Rn with Ai convex when i ∈ Iconv. By inner regularity of
the measure, we can assume that they are compact. Let ε > 0 and b > a be
fixed. Then:
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• For i /∈ Iconv: there exists a smooth function fi such that fi = Φ(b) on
Ai, fi = Φ(a) off Aεi , and 0 < Φ(a) ≤ fi ≤ Φ(b) < 1.
• For i ∈ Iconv: there exists a smooth function fi such that Fi = Φ−1 ◦ fi

is concave, Fi = b on Ai, Fi ≤ a off Aεi , and Fi ≤ b on Rn.
For instance, take a point xi in Ai and define the gauge of Aε/3i with
respect to xi by

%(x) = inf
{
λ > 0 : xi +

1
λ

(x− xi) ∈ Aε/3i

}
.

We know that % is convex since Ai is convex (see for instance [20]).
Then set

F̃i(x) = b+ c(1−max(%(x), 1))

where c > 0 is chosen large enough to ensure that F̃i ≤ a off A
2ε/3
i .

Now, we can take a smooth function g with compact support small
enough and of integral 1, such that fi = Φ(F̃i ∗ g) is a smooth Φ−1-
concave function satisfying the required conditions.

• For h: set

a0 = max
ui=a or b
u6=(b,...,b)

∑
αiui and b0 =

∑
αib.

Again, we can choose a smooth function h such that h = Φ(b0) on∑
αiA

ε
i , h = Φ(a0) off (

∑
αiA

ε
i )
ε, and 0 < Φ(a0) ≤ h ≤ Φ(b0) < 1.

From these definitions, the functions h and fi are “smooth” and satisfy

∀xi ∈ Rn, Φ−1 ◦ h
(∑

αixi

)
≥
∑

αiΦ
−1 ◦ fi(xi).

By our hypothesis, the inequality remains valid with Pth and Ptfi for all
t > 0. Choosing t = 1 and xi = 0 yields

Φ−1
(�
h dγn

)
≥
∑

αiΦ
−1
(�
fi dγn

)
.

By construction, the functions fi and h actually depend on the parameters
a, b, ε (but we decided not to use the heavy notation h(a,b,ε)). Fixing ε > 0
and b, it is easily seen that

lim inf
a→−∞

fi ≥ Φ(b)1Ai and lim sup
a→−∞

h ≤ Φ(b0)1(
P
αiAε

i )
ε ,

where 1Ai is the characteristic function of Ai. Hence, using Fatou’s lemma
twice, we get

Φ−1
(
Φ(b0)γn

((∑
αiA

ε
i

)ε))
≥
∑
i

αiΦ
−1(Φ(b)γn(Ai)).

Next we let b, and consequently b0, go to +∞. Finally, the compactness of
the sets easily yields

⋂
k≥1(

∑
αiA

1/k
i )1/k =

∑
αiAi. Therefore we get, as
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expected,

Φ−1 ◦ γn
(∑

αiAi

)
≥
∑

αiΦ
−1 ◦ γn(Ai).

“(ii) (in Rn+1) ⇒ (iv) (in Rn)”. Here we assume that (ii) of Theorem 1
is valid for all Borel sets in Rn+1 and we derive (iv) for functions defined
on Rn.

For any Borel function f on Rn taking values in [0, 1], t > 0, and x ∈ Rn,
we define

Bt,x
f = {(u, y) : u ≤ Φ−1 ◦ f(x+

√
t y)} ⊂ R× Rn.

Then
γn+1

(
Bt,x
f

)
= Ptf(x).

Let h, f1, . . . , fn be Borel functions on Rn with values in [0, 1] such that
Φ−1 ◦ fi is concave when i ∈ Iconv. Assume that

∀xi ∈ Rn, Φ−1 ◦ h
(∑

αixi

)
≥
∑

αiΦ
−1 ◦ fi(xi).

Then for (ui, yi) in Bt,xi

fi
, we get∑

αiui ≤
∑

αiΦ
−1 ◦ fi(xi +

√
t yi) ≤ Φ−1 ◦ h

(∑
αi(xi +

√
t yi)

)
,

which means that ∑
αiB

t,xi

fi
⊂ Bt,

P
αixi

h .

The same argument shows that Bt,x
f is convex if Φ−1 ◦ f is concave. Thus,

the result for sets in Rn+1 implies that

Φ−1 ◦ Pth
(∑

αixi

)
≥ Φ−1 ◦ γn+1

(∑
αiB

t,xi

fi

)
≥
∑

αiΦ
−1 ◦ Ptfi(xi).

“(iii)⇒(i)”: We will prove the contraposed assertion: if the conditions on
αi are violated, then there exist Borel functions h and fi such that Φ−1 ◦ fi
is concave for i ∈ Iconv and the relation Φ−1 ◦ h(

∑
αixi) ≥

∑
Φ−1 ◦ fi(xi)

holds for all xi, but

Φ−1
(�
h dγ

)
<
∑

αiΦ
−1
(�
fi dγ

)
.

Let f : Rn → (0, 1) be an even Borel function such that

f(0) >
1
2
,

�
f dγ <

1
2
, and F = Φ−1 ◦ f is concave.

For instance, we may take f(x) = Φ(1−|ax|2) for a large enough. Note that
for 0 ≤ t ≤ 1,

(7) F (tx) ≥ tF (x) + (1− t)F (0) ≥ tF (x).
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Assume first that
∑
αi < 1. Then by concavity and the latter bound, we

get, for all xi,

Φ−1 ◦ f
(∑

i

αixi

)
= F

(∑
i

αixi

)
≥
∑
i

αi∑
j αj

F
((∑

j

αj

)
xi

)
≥
∑
i

αiF (xi) =
∑
i

αiΦ
−1 ◦ f(xi).

However, since 1 >
∑
αi and Φ−1(

	
f dγ) < 0, we have

Φ−1
(�
f dγ

)
<
∑
i

αiΦ
−1
(�
f dγ

)
.

Assume now that there exists j /∈ Iconv such that αj−
∑

i 6=j αi > 1. Then
using (7) and concavity again, we obtain, for all xi,

αjF (xj) ≥
(
1 +

∑
i 6=j

αi

)
F

(
αjxj

1 +
∑

i 6=j αi

)
≥ F

(
αjxj −

∑
i 6=j

αixi

)
+
∑
i 6=j

αiF (xi).

Let g = 1− f . Since −F = −Φ−1 ◦ f = Φ−1 ◦ (1− f) = Φ−1 ◦ g and f is even
we may rewrite the last inequality as

Φ−1 ◦ g
(
αjxj +

∑
i 6=j

αi(−xi)
)
≥ αjΦ−1 ◦ g(xj) +

∑
i 6=j

αiΦ
−1 ◦ f(−xi).

However, since Φ−1(
	
g dγ) = −Φ−1(

	
f dγ) > 0 and αj −

∑
i 6=j αi > 1, we

also have

Φ−1
(�
g dγ

)
< αjΦ

−1
(�
g dγ

)
+
∑
i 6=j

αiΦ
−1
(�
f dγ

)
.

Therefore the proof is complete.

4. Further remarks

4.1. Brascamp–Lieb type inequalities. In [7, 8], Borell already used his
semigroup approach to derive variants of the Prékopa–Leindler inequality.
The latter is a functional counterpart to the Brunn–Minkowski inequality for
the Lebesgue measure and reads as follows: if λ ∈ (0, 1) and f, g, h : Rn → R+

are Borel functions such that for all x, y ∈ Rn,

h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ

then
	
h ≥ (

	
f)λ(

	
g)1−λ where the integrals are with respect to Lebesgue’s

measure. Borell actually showed the following stronger fact: for all t > 0 and
all x, y ∈ Rn,

Pth(λx+ (1− λ)y) ≥ Ptf(x)λPtg(y)1−λ.
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Setting H(t, ·) = logPth and defining F,G similarly, it is proved that
C(t, x, y) := H(t, λx+(1−λ)y)−λF (t, x)+(1−λ)G(t, y) satisfies a positivity-
preserving evolution equation. The argument is simpler than for Ehrhard’s
inequality since the evolution equation for individual functions is simpler:
2∂tH = ∆H + |∇H|2.

The Brascamp–Lieb inequality [12, 18] is a powerful extension of Hölder’s
inequality. The so-called reverse Brascamp–Lieb inequality, first proved in
[2, 3], appears as an extension of the Prékopa–Leindler inequality. In [4], it
was noted that Borell’s semigroup method could be used to derive the geo-
metric reverse Brascamp–Lieb inequality for functions of one variable. This
observation was also motivated by a proof of the Brascamp–Lieb inequalities
based on semigroup techniques (Carlen, Lieb and Loss [14] for functions of
one variable, and Bennett, Carbery, Christ and Tao [6] for general functions).

In this subsection, we take advantage of our streamlined presentation of
Borell’s method, and quickly reprove the reverse Brascamp–Lieb inequality
in geometric form, but for functions of several variables. More surprisingly, we
will recover the geometric Brascamp–Lieb inequality from inequalities which
are preserved by the heat flow. The result is not new (the inequality for the
law of the semigroup appears in the preprint [5]), but it is interesting to have
semigroup proofs of the direct and reverse inequalities which follow exactly
the same lines. Recall that the transportation argument of [3] provided the
direct and reverse inequalities simultaneously.

The setting of the geometric inequalities is as follows: for i = 1, . . . ,m
let ci > 0 and let Bi : RN → Rni be linear maps such that BiB∗i = Ini and

(8)
m∑
i=1

ciB
∗
iBi = IN .

These hypotheses were put forward by Ball in connection with volume es-
timates in convex geometry [1]. Note that B∗i is an isometric embedding
of Rni into RN and that B∗iBi is the orthogonal projection from RN to
Ei = Im(B∗i ). The Brascamp–Lieb inequality asserts that for all Borel func-
tions fi : Rni → R+,

�

RN

m∏
i=1

fi(Bix)ci dx ≤
m∏
i=1

( �

Rni

fi

)ci
.

The reverse inequality ensures that
�

RN

∗
sup
{ m∏
i=1

fi(xi)ci : xi ∈ Rni ,
m∑
i=1

ciB
∗
i xi = x

}
dx ≥

m∏
i=1

( �

Rni

fi

)ci
,

where
	∗ is the outer integral.

Following [4], we will deduce the latter from the following result.
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Theorem 4. If h : RN → R+ and fi : Rni → R+ satisfy

∀xi ∈ Rni , h
( m∑
i=1

ciB
∗
i xi

)
≥

m∏
i=1

fi(xi)ci

then

∀xi ∈ Rni , Pth
( m∑
i=1

ciB
∗
i xi

)
≥

m∏
i=1

Ptfi(xi)ci .

The reverse inequality is obtained as t→ +∞ since for f on Rd, Ptf(x)
is equivalent to (2πt)−d/2

	
Rd f . To see this, note that

Ptf(x) = (2πt)−d/2
�

Rd

f(y) exp
(
|x− y|2

2t

)
dy.

Note also that taking traces in the decomposition of the identity map yields∑
i cini = N .
In order to recover the Brascamp–Lieb inequality, we will show the fol-

lowing theorem.

Theorem 5. If h : RN → R+ and fi : Rni → R+ satisfy

∀x ∈ RN , h(x) ≤
m∏
i=1

fi(Bix)ci ,

then

∀x ∈ RN , Pth(x) ≤
m∏
i=1

Ptfi(Bix)ci .

Again, the limit as t → +∞ yields the Brascamp–Lieb inequality when
choosing h(x) =

∏m
i=1 fi(Bix)

ci . We sketch the proofs of the above two
statements, omitting the truncation arguments needed to ensure (5).

Proof of Theorem 4. Set H(t, ·) = logPth(·) and Fi(t, ·) = logPtfi(·). As
said above, the functions H and Fi satisfy the equation 2∂tU = ∆U+ |∇U |2.
For (t, x1, . . . , xm) ∈ R+ × Rn1 × · · · × Rnm , set

C(t, x1, . . . , xm) := H
(
t,

m∑
i=1

ciB
∗
i xi

)
−

m∑
i=1

ciFi(t, xi).

By hypothesis C(0, ·) ≥ 0 and we want to prove that C(t, ·) is non-negative as
well. As before, we are done if we can show that the three conditions C ≤ 0,
∇C = 0, and Hess(C) ≥ 0 imply that ∂tC ≥ 0. Actually, the condition
C ≤ 0 is not used in the following argument. Omitting variables, we have

2∂tC =
(
∆H −

∑
i

ci∆Fi

)
+
(
|∇H|2 −

∑
i

ci|∇Fi|2
)

=: S + P.
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Straightforward calculations give

∇xiC = ciBi∇H − ci∇Fi,
Hessxi,xj (C) = cicjBi Hess(H)B∗j − δi,jci Hess(Fi).

Note that the decomposition (8) implies that for all v ∈ RN ,

|v|2 =
〈
v,
∑

ciB
∗
iBiv

〉
=
∑

ci|Biv|2.

Hence, if ∇C = 0, the above calculation gives ∇Fi = Bi∇H. Consequently
|∇H|2 =

∑
ci|Bi∇H|2 =

∑
ci|∇Fi|2. So ∇C = 0⇒ P = 0.

Next, we deal with the second order term. Using (8) again we obtain

∆H = Tr(Hess(H)) = Tr
((∑

i

ciB
∗
iBi

)
Hess(H)

(∑
j

cjB
∗
jBj

))
=
∑
i,j

Tr(B∗i (cicjBi Hess(H)B∗j )Bj).

Also note that∑
i,j

Tr(B∗i (δi,jci Hess(Fi))Bj) =
∑
i

Tr(B∗i ci Hess(Fi)Bi)

=
∑
i

ci Tr(Hess(Fi)BiB∗i ) =
∑
i

ci∆Fi,

since BiB∗i = Ini . Combining the former and the latter and denoting by Ji
the canonical embedding of Rni into Rn1+···+nm we see that

S = ∆H −
∑
i

ci∆Fi =
∑
i,j

Tr(B∗i Hessxi,xj (C)Bj)

=
∑
i,j

Tr(B∗i (J
∗
i Hess(C)Jj)Bj) = Tr

((∑
i

JiBi

)∗
Hess(C)

(∑
j

JjBj

))
is non-negative when Hess(C) ≥ 0. This is enough to conclude that C re-
mains non-negative.

Proof of Theorem 5. As before, we set H(t, ·) = logPth(·) and Fi(t, ·) =
logPtfi(·). For (t, x) ∈ R+ × RN ,

C(t, x) :=
m∑
i=1

ciFi(t, Bix)−H(t, x).

Omitting variables, C evolves according to the equation

∂tC =
(∑

i

ci∆Fi −∆H
)

+
(∑

i

ci|∇Fi|2 − |∇H|2
)

=: S + P.

Next,

∇C =
∑
i

ciB
∗
i∇Fi −∇H, Hess(C) =

∑
i

ciB
∗
i Hess(Fi)Bi −Hess(H).
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Taking traces in the latter equality and since BiB∗i = Ini we obtain

∆C =
∑
i

ci Tr(Hess(Fi)BiB∗i )−∆H =
∑
i

ci∆Fi −∆H = S.

Therefore the second order term is clearly elliptic.
It remains to check that ∇C = 0 implies that the first order term P is

non-negative. We will need the following easy consequence of the decompo-
sition (8): if xi ∈ Rni , i = 1, . . . ,m, then∣∣∣∑ ciB

∗
i xi

∣∣∣2 ≤∑ ci|xi|2.

The proof is easy: set v =
∑
ciB
∗
i xi. Then by Cauchy–Schwarz,

|v|2 =
〈
v,
∑

ciB
∗
i xi

〉
=
∑

ci〈Biv, xi〉

≤
(∑

ci|Biv|2
)1/2(∑

ci|xi|2
)1/2

.

But (8) ensures that |v|2 =
∑
ci|Biv|2 so after simplification we get the

claim. Finally, note that ∇C = 0 means that ∇H =
∑
ciB
∗
i∇Fi. Hence

|∇H|2 ≤
∑
ci|∇Fi|2. In other words, P ≥ 0. The proof is therefore com-

plete.

Remark. As explained in [6], general (non-geometric) Brascamp–Lieb
inequalities can be derived from the geometric form, via change of variables
and twisted products. The same methods apply to the reverse inequalities.

4.2. Looking for Gaussian Brascamp–Lieb inequalities. It is natural to
ask about Gaussian versions of the Brascamp–Lieb or inverse Brascamp–
Lieb inequalities. For 0 ≤ i ≤ m, take a non-zero real di, a positive integer
ni ≤ N , a linear surjective map Li : RN → Rni , and a Borel function fi on
Rni taking values in (0, 1). Does the inequality

∀x ∈ RN ,
m∑
i=0

diΦ
−1 ◦ fi(Lix) ≥ 0

upgrade for all t ≥ 0 to

∀x ∈ RN ,
m∑
i=0

diΦ
−1 ◦ Ptfi(Lix) ≥ 0 ?

This general formulation allows negative di’s and would encompass Gaussian
extensions of Theorem 4 or Theorem 5. It also enables a better understanding
of the essential properties in the semigroup argument. Note that from now
on, the index i goes from 0 to m, the function f0 =: h playing a priori no
particular role any more.
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As before, for t ≥ 0 and x ∈ RN we define

C(t, x) =
m∑
i=0

diΦ
−1 ◦ Ptfi(Lix) =

m∑
i=0

diFi(t, Lix).

We are interested in the conditions on the data (di, Li)mi=0 for which C(0, ·)
≥ 0 implies C(t, ·) ≥ 0 for all t ≥ 0. Assume that our functions are smooth
enough for the calculations to follow. We have

C =
∑

diFi,

∇C =
∑

diL
∗
i∇Fi,

Hess(C) =
∑

diL
∗
i Hess(Fi)Li,

and thanks to the heat equation, C satisfies the differential equation 2∂tC =
S + P where

S =
∑

di∆Fi and P = −
∑

di|∇Fi|2Fi.

We require that 
Hess(C) ≥ 0
∇C = 0
C ≤ 0

⇒ P + S ≥ 0

in order to apply Lemma 1 (the condition at infinity is satisfied, provided one
restricts to good enough functions fi; we omit the details). In other words,
if (di, Li)mi=0 satisfy

infP
diFi≤0P

diL
∗
i∇Fi=0P

diL
∗
i Hess(Fi)Li≥0

(
−
∑

di|∇Fi|2Fi +
∑

di Tr(Hess(Fi))
)
≥ 0,

then C(0, ·) ≥ 0 implies C(t, ·) ≥ 0 for all t. Let us look for workable condi-
tions on (di, Li)mi=0 which ensure that the latter infimum is non-negative.

Given i and (t, xi), observe that for any Xi ∈ R, Yi ∈ Rni , and any ni×ni
symmetric matrix Zi, there exists a function fi such that Fi(t, xi) = Xi,
∇Fi(t, xi) = Yi, and Hess(Fi)(t, xi) = Zi. Indeed, since

Fi = Φ−1(Ptfi),

∇Fi =
∇Ptfi
Φ′(Fi)

,

Hess(Fi) =
1

Φ′(Fi)
(Hess(Ptfi)− Φ′′(Fi)∇Fi · ∇F ∗i ),

prescribing the values of (Fi,∇Fi,Hess(Fi)) boils down to prescribing the
values of (Ptfi,∇Ptfi,Hess(Ptfi)). Next, one can find a suitable polynomial
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fi of degree 2 satisfying these equations. At this stage, we do not see how
the initial condition C(0, ·) =

∑
diΦ
−1(fi) ≥ 0 creates relationships between

the values of (Fi,∇Fi,Hess(Fi)) for different values of i. So it is natural to
bound the infimum from below as follows:

infP
diFi≤0P

diL
∗
i∇Fi=0P

diL
∗
i Hess(Fi)Li≥0

(
−
∑

di|∇Fi|2Fi +
∑

di Tr(Hess(Fi))
)

≥ infP
diXi≤0P
diL

∗
i Yi=0

−
∑

di|Yi|2Xi + infP
diL∗iZiLi≥0

∑
di Tr(Zi),

where Xi, Yi, and Zi run respectively over R, Rni , and the set of ni × ni
symmetric real matrices. The last quantity is non-negative if and only if
there exists a real number K such that

infP
diXi≤0P
diL

∗
i Yi=0

−
∑

di|Yi|2Xi ≥ −K,

infP
diL∗iZiLi≥0

∑
di Tr(Zi) ≥ K.

Taking Yi = 0 and Zi = 0 for all i shows that K must be equal to 0. Hence
our new problem is to find sufficient conditions for (di, Li) to satisfy

(9)

infP
diXi≤0P
diL

∗
i Yi=0

−
∑

di|Yi|2Xi ≥ 0,

infP
diL∗iZiLi≥0

∑
di Tr(Zi) ≥ 0.

We remark that this question is related to the formally stronger initial re-
quirement: (C ≤ 0, ∇C = 0)⇒ P ≥ 0 and Hess(C) ≥ 0⇒ S ≥ 0.

Let us deal with the first inequality in (9). It can be rephrased as
∑

diXi ≤ 0∑
diL
∗
iYi = 0

⇒
∑

di|Yi|2Xi ≤ 0.

Reasoning for fixed Yi’s, and viewing the conditions on Xi as equations of
half-spaces, we easily see that the latter implication is equivalent to

(10)
∑

diL
∗
iYi = 0 ⇒ |Y0|2Rn0 = · · · = |Ym|2Rnm .

This condition can be worked out a bit more. Let us assume (10) and define
L : R

P
nj → RN by

L(Y0, . . . , Ym) =
∑

diL
∗
iYi.

If a = (a0, . . . , am) and b = (b0, . . . , bm) belong to kerL then |ai|2, |bi|2, and
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by linearity |ai+ bi|2 are independent of i. Expanding the square of the sum,
we deduce that 〈ai, bi〉 is independent of i and therefore equal to the average
over i of these quantities. Hence for all i, (m+1)〈ai, bi〉 = 〈a, b〉. This means
that ui : kerL → Rni defined by ui(a) =

√
m+ 1 ai is an isometry. Since

ai = ui(u−1
0 (a0)), we conclude that

kerL = {(a0, u1(u−1
0 (a0)), . . . , um(u−1

0 (a0))) : a0 ∈ Im(u0)}.

It is then clear that (10) is equivalent to the following: there exists a subspace
X ⊂ Rn0 and linear isometries Ri : X → Rni , i ≥ 1, such that

(11) kerL = {(x,R1x, . . . , Rmx) : x ∈ X}.

In order to establish the second inequality in (9), it is sufficient to find a
symmetric positive semidefinite N ×N matrix A such that

∑
di Tr(Zi) can

be expressed as

Tr
(
A
∑

diL
∗
iZiLi

)
=
∑

di Tr(LiAL∗iZi).

As we require this identity for arbitrary matrices Zi, we can conclude that
A does the job if and only if for all 0 ≤ i ≤ m,

LiAL
∗
i = Ini .

We may look for A in the form A = σ∗σ for some N × N matrix σ. For
0 ≤ i ≤ m and 1 ≤ j ≤ ni, denote by uji ∈ RN the columns of L∗i . Rewriting
the above conditions in terms of σ we may conclude that the second infimum
in (9) is non-negative provided there exists an N ×N matrix σ such that for
all 0 ≤ i ≤ m the vectors (σuji )

ni
j=1 form an orthonormal system in RN . Note

that the first-order condition (11) requires that the linear relations between
the vectors uji should have a particular structure.

We have been able to find data (di, Li) satisfying the above conditions,
but all of them could be reduced to the Borell theorem, using the rotation
invariance of the Gaussian measure and the fact that its marginals remain
Gaussian. To conclude this section let us briefly explain why the method
does not allow any new Gaussian improvement of Theorems 4 or 5.

For i = 1, . . . ,m, let ci > 0 and Bi : Rn → Rni be linear surjective maps.
If we look for Gaussian versions of the Brascamp–Lieb inequality, we are led
to apply the previous reasoning to N = n, B0 = IN , d0 = −1, and for i ≥ 1,
Li = Bi and di = ci. Now, with the above notation, (Y0, . . . , Ym) ∈ kerL is
equivalent to Y0 =

∑m
i=1 ciB

∗
i Yi. Since this condition can be satisfied even

though |Y1| 6= |Y2| we conclude that the first-order condition (11) is never
satisfied.
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Next, we are looking for inequalities of the reverse Brascamp–Lieb type.
Hence we choose N = n1 + · · · + nm, d0 = 1, L0(x1, . . . , xm) =

∑
ciB
∗
i xi,

and for i ≥ 1, di = −ci and Li(x1, . . . , xm) = xi. For x ∈ Rn, L∗0(x) =
(c1B1x, . . . , cmBmx). For i ≥ 1 and xi ∈ Rni , L∗i (xi) = (0, . . . , 0, xi, 0, . . . , 0)
where xi appears at the ith place. The condition (Y0, . . . , Ym) ∈ kerL, that
is, L∗0(Y0) =

∑
i≥1 ciL

∗
i (Yi), becomes

∀i = 1, . . . ,m, Yi = BiY0.

Hence kerL = {(Y0, B1Y0, . . . , BmY0) : Y0 ∈ Rn
}
. So (11) holds only if

the Bi’s are isometries. This forces ni = n and up to an isometric change
of variables, we are back in the setting of the Gaussian Brunn–Minkowski
inequality.
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