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Fredholm spectrum and growth of cohomology groups

by

Jörg Eschmeier (Saarbrücken)

Abstract. Let T ∈ L(E)n be a commuting tuple of bounded linear operators on a
complex Banach space E and let σF(T ) = σ(T ) \ σe(T ) be the non-essential spectrum
of T . We show that, for each connected component M of the manifold Reg(σF(T )) of all
smooth points of σF(T ), there is a number p ∈ {0, . . . , n} such that, for each point z ∈M ,
the dimensions of the cohomology groups Hp((z− T )k, E) grow at least like the sequence
(kd)k≥1 with d = dimM.

0. Introduction. Let T = (T1, . . . , Tn) ∈ L(E)n be a commuting tu-
ple of bounded linear operators on a complex Banach space E. The joint
spectrum σ(T ) of T in the sense of J. L. Taylor is the set of all points
z ∈ Cn for which the Koszul complex K•(z − T,E) of the commuting tuple
z−T = (z1−T1, . . . , zn−Tn) is not exact. By definition the Koszul complex
K•(T,E) is a finite complex of Banach spaces

0→ Λ0(s, E) T→ Λ1(s, E) T→ · · · T→ Λn(s, E)→ 0,

where Λp(s, E) consists of all forms of degree p in n indeterminates s =
(s1, . . . , sn) with coefficients in E and the coboundary maps act as

T
∑

1≤i1<···<ip≤n
xi1...ipsi1∧· · ·∧sip =

n∑
j=1

∑
1≤i1<···<ip≤n

Tjxi1...ipsj∧si1∧· · ·∧sip .

The Taylor spectrum σ(T ) of T is a compact, non-empty subset of Cn which
carries a natural multidimensional analytic functional calculus [8].

The commuting tuple T is said to be Fredholm if all cohomology groups
Hp(T,X) (p = 0, . . . , n) of its Koszul complex K•(T,E) are finite-dimen-
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sional. In this case the index of T is defined as the Euler characteristic

ind(T ) =
n∑
p=0

(−1)p dimHp(T,X)

of its Koszul complex. The essential spectrum σe(T ) of T consists of all
points z ∈ Cn for which z − T is not Fredholm and the essential resolvent
set is the complement %e(T ) = Cn \ σe(T ) of the essential spectrum.

The observation that a commuting tuple T is Fredholm if and only if
the cohomology sheaves Hp(z − T,OECn) (p = 0, . . . , n) of the associated
complex K•(z − T,OECn) of Banach-free analytic sheaves are coherent near
0 ∈ Cn implies that the inessential spectrum or Fredholm spectrum of T

σF(T ) = σ(T ) \ σe(T ) =
n⋃
p=0

supp(Hp),

where Hp = Hp(z−T,OE%e(T )), is an analytic subset of %e(T ) (Chapter 10 in
[5]). Hence the smooth points of σF(T ) form a dense open subset Reg(σF(T ))
which is a submanifold of Cn.

Let C be a connected component of %e(T ). For p ∈ {0, . . . , n}, define
cp = min{dimHp(z − T,E); z ∈ C}. Then the discontinuity points of the
functions

C → N, z 7→ dimHp(z − T,E) (p ∈ {0, . . . , n})

are proper analytic subsets of C given by {z ∈ C; dimHp(z − T,E) > cp}.
Using the fact that cp is the rank of the coherent sheaf Hp on C, and hence
can be computed as the Samuel multiplicity of its stalks, it was shown in [4]
that

lim
k→∞

dimHp((z − T )k, E)
kn

= cp (p ∈ {0, . . . , n})

for each point z ∈ C. If cp > 0, then C is a connected component of the man-
ifold Reg(σF(T )) of dimension n and the sequence (dimHp((z−T )k, E))k≥1

grows precisely like the sequence (kn)k≥1 for each z ∈ C. If cp = 0, then
the above limit formula only gives an upper estimate. It is the aim of the
present note to show that, for every connected component M of Reg(σF(T ))
of dimension d, there is a number p ∈ {0, . . . , n} such that the sequence
(dimHp((z − T )k, E)k≥1 grows at least like the sequence (kd)k≥1 for every
z ∈M.

Particular cases of this result, together with the Scott Brown technique,
have been used to obtain joint invariant subspace results for commuting
tuples of contractions (see [2] and [1]). The question whether also a corre-
sponding upper estimate holds remains open.
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1. Coherent sheaves. Let F be a coherent sheaf on a complex manifold
X. The section spaces F(U), U ⊂ X open, carry a canonical nuclear Fréchet-
space topology (see Section 4.1 in [5]). For a Banach space E, we denote by
FE = F ⊗̂ E the sheaf of OX -modules given by the presheaf

U 7→ F(U) ⊗̂ E (U ⊂ X open).

Here ⊗̂ denotes the projective (or injective) tensor product of locally con-
vex spaces. Since this presheaf satisfies the sheaf axioms, there are natural
identifications FE(U) ∼= F(U) ⊗̂ E for each open set U ⊂ X.

For each sequence F → G → H of coherent OX -sheaves, the resulting
sequences of section spaces

F(U) ⊗̂ E → G(U) ⊗̂ E → H(U) ⊗̂ E
remain exact on all Stein open subsets U ⊂ X. Therefore the functor of
passing from coherent analytic sheaves F over X to the stalks FEx of the
tensorized sheaf FE = F ⊗̂ E at a given point x ∈ X is exact.

Suppose, in addition, that X ⊂ Cn is a complex submanifold. Let T =
(T1, . . . , Tn) ∈ L(E)n be a commuting tuple of bounded operators on a
complex Banach space E, and let F be a coherent sheaf on X. Then, for
every open set U ⊂ X, we may regard the tuple z−T = (z1−T1, . . . , zn−Tn)
as a commuting tuple of continuous linear operators on the Fréchet space
FE(U) = F(U) ⊗̂ E. We denote by K•(z − T,FE(U)) the Koszul complex
of this commuting tuple and write as usual

Hj(z − T,FE(U)) (j = 0, . . . , n)

for the cohomology spaces of the Koszul complex K•(z−T,FE(U)). Similar
notations will be used for the induced sequences of sheaves K•(z − T,FE)
or stalks K•(z − T,FEx ) at a given point x ∈ X.

Proposition 1.1. Let X ⊂ Cn be a complex submanifold with 0 ∈ X,
and let T ∈ L(E)n be a commuting tuple of bounded operators on a complex
Banach space E. Suppose that p ∈ {0, . . . , n} is an integer with

Hj(z − T,OEX,0) = 0 (j = p+ 1, . . . , n).

Then, for each epimorphism G q→ H of coherent OX-sheaves G and H, the
induced map

Hp(z − T,GE0 )
q→ Hp(z − T,HE0 )

is surjective.

Proof. Since G and H are coherent OX -sheaves, the same is true for the
kernel sheaf F = Ker(q : G → H). By shrinking X to a sufficiently small
open neighbourhood of 0 in X, we may suppose that F has a finite free
resolution of the form

0→ OrqX → O
rq−1

X → · · · → Or0X → F → 0.
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The remarks preceding the proposition show that the induced sequences

0→ FE0 → GE0
q→ HE0 → 0

and

0→ OE
rq

X,0 → OE
rq−1

X,0 → · · · → OEr0X,0 → FE0 → 0

remain exact. Let us consider the double complex

0 0 0

↓ ↓ ↓

0 −→ OEp,qX,0
z−T−→ OEp+1,q

X,0
z−T−→ · · · z−T−→ OEn,qX,0 −→ 0

↓ ↓ ↓

0 −→ OEp,q−1

X,0
z−T−→ OEp+1,q−1

X,0
z−T−→ · · · z−T−→ OEn,q−1

X,0 −→ 0

↓ ↓ ↓

...
...

...

↓ ↓ ↓

0 −→ OEp,0X,0
z−T−→ OEp+1,0

X,0
z−T−→ · · · z−T−→ OEn,0X,0 −→ 0

↓ ↓ ↓

0 0 0

where Ei,j = Λi(s, E)rj , the rows are given by (direct sums of) the Koszul
complex K•(z − T,OEX,0) and the columns are obtained from the free reso-
lution of the kernel sheaf F chosen above. By construction all rows of this
double complex are exact except in the first place, and all columns are exact
except in the last place.

Standard double complex methods imply that Hj(z − T,FE0 ) = 0 for
j = p + 1, . . . , n (Lemma A2.6 in [5]). Hence the long exact cohomology
sequence induced by the short exact sequence of Koszul complexes

0→ K•(z − T,FE0 )→ K•(z − T,GE0 )→ K•(z − T,HE0 )→ 0
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is of the form

0 → H0(z − T,FE0 ) → H0(z − T,GE0 ) → H0(z − T,HE0 )

→ H1(z − T,FE0 ) → . . . . . .

. . . . . . . . .

→ Hp(z − T,FE0 ) → Hp(z − T,GE0 ) → Hp(z − T,HE0 )→ 0.

In particular the last map is surjective.

Let Ω ⊂ Cn be an open set with 0 ∈ Ω, and let H be a coherent sheaf
on Ω. Fix an arbitrary connected open zero neighbourhood U ⊂ Ω. The set
A of all points z ∈ U for which H is not locally free at z is a nowhere dense
analytic subset of U and its complement U \A in U is connected ([7, pp. 92
and 145]). The rank rkU H is by definition the constant value of the function
rkOz(Hz) (the rank of the Oz-module Hz) for z ∈ U \A. Since this number
does not depend on the choice of U , one may define the rank of H at 0 as
rk0H = rkU H.

Let M• = (Mp, up)np=0 be a finite analytically parametrized complex
of Banach spaces Mp over Ω such that dimHp(d•(0),M•) < ∞ for p =
0, . . . , n. It is well known (Proposition 9.4.5 and Remark 9.4.6 in [5]) that
there exist an analytically parametrized complex L• = (Lp, up)np=0 of finite-
dimensional vector spaces Lp on a suitable open zero neighbourhood U ⊂ Ω
and a family h = (hp)np=0 of holomorphic mappings hp ∈ O(U,L(Lp,Mp))
such that the resulting maps

(L•, u•(z))
h•(z)−→ (M•, d•(z)) (z ∈ U)

as well as the induced maps between the associated complexes of sheaves

(OL•U , u•) h•−→ (OM•U , d•)

are quasi-isomorphisms. Let us restrict to the case where U is connected.
Then, by Corollary 9.4.7 in [5], the discontinuity sets of the functions

U → N, z 7→ dimHp(d•(z),M•) = dimHp(u•(z), L•)

(p = 0, . . . , n) are given by the proper analytic subsets

Sp = {z ∈ U ; dimHp(d•(z),M•) > cp} ⊂ U,
where cp = min{dimHp(d•(z),M•); z ∈ U}.

Lemma 1.2. Let M• = (Mp, dp)np=0 be a finite analytically parametrized
complex of Banach spaces on an open set Ω ⊂ Cn containing 0 ∈ Cn such
that dimHp(d•(z),M•) < ∞ for p = 0, . . . , n and z ∈ Ω. Let U ⊂ Ω be
an arbitrary connected open neighbourhood of 0 ∈ Cn. Then the cohomology
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sheaves Hp = Hp(d•,OM•Ω ) (p = 0, . . . , n) are coherent and , for p = 0, . . . , n,
we have

rk0(Hp) = min{dimHp(d•(z),M•); z ∈ U}.
Furthermore, the sets

Sp = {z ∈ U ; dimHp(d•(z),M•) > rk0(Hp)} ⊂ U
are proper analytic subsets for p = 0, . . . , n.

Proof. The coherence of the cohomology sheaves Hp is well known and
follows directly from the fact that the complex M• = (Mp, dp)np=0 is locally
quasi-isomorphic to a complex L• = (Lp, up)np=0 of finite-dimensional vector
spaces.

By Corollary 9.4.7 in [5] the minimum occurring in the lemma is the con-
stant value of the function z 7→ dimHp(d•(z),M•) outside a proper analytic
subset of U. Since this number does not depend on the choice of U , we may
suppose that there is an analytically parametrized complex L• = (Lp, up)np=0

of finite-dimensional vector spaces on U which is quasi-isomorphic to M• in
the sense explained before the lemma.

Let Ap be the set of points z ∈ U for which Hp is not locally free at z
and let µ ∈ U \Ap be arbitrary. By an inductive application of Lemma 9.4.4
in [5], starting on the right-hand side of the complex

0→ L0 u0

−→ L1 u1

−→ · · · u
n−1

−→ Ln → 0,

one can show that there is an open neighbourhood W of µ in U such that
all sheaves Ker(up : OLpW → OL

p+1

W ) and Im(up : OLpW → OL
p+1

W ) are (up to
isomorphisms) free OW -sheaves and such that there are vector-space iso-
morphisms Hp(u•(z), L•) ∼= Hpz ⊗Oz (Oz/mz) for p = 0, . . . , n and z ∈ W.
Here mz denotes the maximal ideal of the local ring Oz. Since the C-linear
dimension of the module tensor product on the right is the rank of Hpz as
an Oz-module, this observation completes the proof.

In the next section we apply Lemma 1.2 to analytically parametrized
complexes arising as Koszul complexes of commuting multioperators.

2. Fredholm theory. Let T = (T1, . . . , Tn) ∈ L(E)n be a Fredholm
tuple on a complex Banach space E. Suppose that p ∈ {0, . . . , n} is an
integer with Hp(T,E) 6= 0 and

Hj(T,E) = 0 (j = p+ 1, . . . , n).

By Lemma 2.1.5 in [5] it follows that

Hj(z − T,OECn,0) = 0 (j = p+ 1, . . . , n).

Corollary 9.4.7 in [5] implies that

A = {z ∈ %e(T ); Hp(z − T,E) 6= 0} ⊂ %e(T )
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is an analytic subset. Let us assume in the following that dim0(A) > 0
and that 0 is a regular point of A, that is, there is a biholomorphic map
f : X → Y from a suitable open neighbourhood X of 0 in A onto an open
connected zero neighbourhood Y ⊂ Cd such that f(0) = 0. Fix an open
neighbourhood U of 0 in Cn with X = A∩U. By construction the minimum

c = min{dimHp(z − T,E); z ∈ X}

is a positive integer. It follows from Corollary 9.4.7 in [5] that the disconti-
nuity set of the function

X → N, z 7→ dimHp(z − T,E),

is given by the proper analytic subset

S = {z ∈ X; dimHp(z − T,E) > c} ⊂ X.

Via the biholomorphic map f : X → Y the set S corresponds to a proper
analytic subset S̃ = f(S) ⊂ Y such that

dimHp(f−1(z)− T,E) > c = dimHp(f−1(w)− T,E)

for all z ∈ S̃ and w ∈ Y \ S̃. Using the fact that proper analytic subsets of
connected open sets in Cd have 2d-dimensional Lebesgue measure zero, one
easily sees that the number c does not depend on the choice of X.

Replacing Y (and X) by smaller zero neighbourhoods, we may suppose
that there exist an analytically parametrized complex L• = (Lj , uj)nj=0 of
finite-dimensional vector spaces on Y and a family of holomorphic mappings

hj ∈ O(Y, L(Lj , Λj(s, E)))

such that the resulting maps

(L•, u•(z))
h•(z)−→ K•(f−1(z)− T,E) (z ∈ Y )

as well as the induced cochain maps between the associated complexes of
sheaves

OL•Y
h•−→ K•(f−1 − T,OEY )

are quasi-isomorphisms (Proposition 9.4.5 and Remark 9.4.6 in [5]). In par-
ticular, all cohomology sheaves Hj = Hj(f−1 − T,OEY ) (j = 0, . . . , n) are
coherent OY -sheaves. By Lemma 1.2 we know that c = rk0(Hp).

On the other hand, it is well-known (see [6] or [4]) that the rank of the
coherent sheaf Hp at z = 0 is given by the Samuel multiplicity of its stalk
Hp0 at z = 0, that is,

rk0(Hp) = d! lim
k→∞

dim(Hp0/m
k
Y,0H

p
0)/kd,

where mY,0 denotes the maximal ideal of the local ring OY,0.
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By construction the complex K•(f−1 − T,OEY,0) is quasi-isomorphic to
the complex

L• : 0→ OL0

Y,0
u0

−→ OL1

Y,0
u1

−→ · · · u
n−1

−→ OLnY,0 → 0

of finitely generated OY,0-modules. Hence we find that

c = d! lim
k→∞

dimHp(L•)/mk
Y,0H

p(L•)
kd

.

Using the additivity of the Samuel multiplicity for short exact sequences
of finitely generated OY,0-modules, one can show exactly as in the proof of
Theorem 2.2 from [5] that

c = d! lim
k→∞

dimHp(L•/mk
Y,0L•)

kd
.

Lemma 2.1. Let k be a positive integer. The cochain map h = (hj)nj=0

induces isomorphisms of cohomology

Hj(u•,L•/mk
Y,0L•)→ Hj(f−1 − T,OEY,0/mk

Y,0OEY,0)

for j = 0, . . . , n.

Proof. Exactly as in the proof of Lemma 2.1 from [5], the result can be
proved by applying standard exactness results for analytically parametrized
complexes of Banach spaces (see Lemma 2.1.5 in [5]) to the mapping cone
of the cochain map

L•/mk
Y,0L•

h→ K•(f−1 − T,OEY,0/mk
Y,0OEY,0).

To see that all arguments remain correct when the ideal (zk1 , . . . , z
k
d) ⊂ OY,0

used in [4] is replaced by the ideal mk
Y,0 ⊂ OY,0, the reader should use the

identity

mk
Y,0O(V,E) = {f ∈ O(V,E); fα = 0 for all α ∈ Nd with |α| < k},

where fα = (∂αf)(0) and V is an arbitrary open polydisc centred at 0.

To relate the invariant

c = d! lim
k→∞

dimHp(f−1 − T,OEY,0/mk
Y,0OEY,0)

kd

to the growth of the cohomology groups Hp(T k, E), we first remark that the
isomorphism of local rings

OX,0 → OY,0, (g, U)0 7→ (g ◦ f−1, f(U))0,

induces isomorphisms of cohomology

Hj(z − T,OEX,0/mk
X,0OEX,0)→ Hj(f−1 − T,OEY,0/mk

Y,0OEY,0)

for j = 0, . . . , n and k ≥ 1. We use Proposition 1.1 to replace the ideals
mk
X,0 by the ideals (zk) = (zk1 , . . . , z

k
n) ⊂ OX,0.
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Lemma 2.2. Let T ∈ L(E)n be a Fredholm tuple as described at the
beginning of Section 2, and let the submanifold X ⊂ %e(T ) be chosen as
above. Then, for every integer k ≥ 1,

dimHp(z − T,OEX,0/(zk)OEX,0) ≥ dimHp(z − T,OEX,0/mk
X,0OEX,0).

Proof. The maximal ideal mX,0 ⊂ OX,0 is generated by (the germs of)
the functions f1, . . . , fd. Therefore its kth power mk

X,0 is generated by the
functions fα where α ∈ Nd runs through all multiindices with |α| = k. Let
Nk,d be the number of those multiindices.

To prove the assertion, we apply Proposition 1.1 to the coherent OX -
sheaves

G = OX/Im(OnX
(zk1 ,...,z

k
n)

−−−−−→ OX),

H = OX/Im(ONk,dX

(fα)|α|=k
−−−−−→ OX).

Since zki ∈ mk
X,0 for i = 1, . . . , n and since the support of both sheaves is

the one-point set {0}, the map

G → H, [(g)z]→ [(g)z],

is a well-defined epimorphism between coherent OX -sheaves. By Lemma
2.1.5 in [5], applied to the complex K•(f−1(z)− T,E), it follows that

Hj(z − T,OEX,0) = 0 (j = p+ 1, . . . , n).

Hence Proposition 1.1 implies that the induced map Hp(z − T,GE0 ) →
Hp(z − T,HE0 ) remains surjective. Since the functor of passing from coher-
ent sheaves to the stalks of the sheaf tensorized with E is exact, there are
canonical isomorphisms GE0 ∼= OEX,0/(zk)OEX,0 and HE0 ∼= OEX,0/mk

X,0OEX,0.
This observation completes the proof.

Summarizing the results obtained so far, we obtain the estimate

d! lim inf
k→∞

dimHp(z − T,OEX,0/(zk)OEX,0)
kd

≥ c,

where T and X are as described at the beginning of Section 2 and

c = min{dimHp(z − T,E); z ∈ X}.
A second application of Proposition 1.1 allows us to replace OEX,0 by the
stalk OECn,0 of all E-valued convergent power series near the origin z = 0
in Cn.

Lemma 2.3. Let T ∈ L(E)n be a Fredholm tuple as described at the
beginning of Section 2. With the above notations,

dimHp(z − T,OECn,0/(zk)OECn,0) ≥ dimHp(z − T,OEX,0/(zk)OEX,0)

for every integer k ≥ 1.
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Proof. Let us recall that

A = {z ∈ %e(T ); Hp(z − T,E) 6= 0} ⊂ %e(T )

is an analytic subset and that U ⊂ Cn is an open neighbourhood of zero
such that X = A ∩ U is a d-dimensional complex submanifold of Cn. Since
X ⊂ U is an analytic subset, the ideal sheaf I = i(X) of X in U , that is,
the OU -sheaf given by the presheaf

W 7→ i(X)(W ) = {g ∈ O(W ); g|W ∩X = 0} (W ⊂ Uopen),

is coherent by the theorem of Oka–Cartan (Section 4.2 in [7]).
Let k ≥ 1 be an integer. Then the sheaves

G = OU/(zk)OU , H = (OU/I)/(zk)(OU/I)

are coherent and the quotient map OU → OU/I induces an epimorphism
G → H of coherent OU -sheaves. For each element a ∈ (OU/I)0, there is an
analytic function ga ∈ O(W ) on an open neighbourhood W of 0 in U such
that a = (ga)0 + I0, and the map

(OU/I)0 → OX,0, a 7→ (ga|W ∩X)0,

is a well-defined isomorphism of local rings. Since by hypothesis

Hj(z − T,OEX,0) = 0 (j = p+ 1, . . . , n),

Proposition 1.1 implies that the induced map

Hp(z − T,GE0 )
q→ Hp(z − T,HE0 )

is surjective. The observation that there are canonical isomorphisms

GE0 ∼= OECn,0/(zk)OECn,0, HE0 ∼= OEX,0/(zk)OEX,0
completes the proof.

The results obtained so far, together with a base change theorem proved
in [4], allow us to prove the first main result of this paper.

Theorem 2.4. Let T ∈ L(E)n be a Fredholm tuple such that Hp(T,E)
6= 0 and Hj(T,E) = 0 for j = p+ 1, . . . , n. Suppose that 0 is a regular point
of the analytic set

A = {z ∈ %e(T ); Hp(z − T,E) 6= 0} ⊂ %e(T )

and that the dimension d = dim0(A) of A at z = 0 is positive. Then, for
every connected open neighbourhood X of 0 in A such that X ⊂ Cn is a
submanifold , there exist a proper analytic subset S ⊂ X and a positive real
number c with

dimHp(z − T,E) > c = dimHp(w − T,E) (z ∈ S,w ∈ X \ S).
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The number c is independent of the choice of X and satisfies the estimate

d! lim inf
k→∞

dimHp(T k, E)
kd

≥ c.

Proof. Define c = min{dimHp(z − T,E); z ∈ X}. By Corollary 9.4.7
in [5], the set

S = {z ∈ X; dimHp(z − T,E) > c}
is a proper analytic subset of X. In particular, S has no interior in X (The-
orem 9.1.2 in [7]). Let X0 be any connected open neighbourhood of 0 in X.
Define c0 and S0 as above, but this time with respect to X0 instead of X.
Then S ∩X0 and S0 are proper analytic subsets of X0, and hence Theorem
9.1.2 in [7] implies that S0 ∪ (S ∩X0) 6= X0. But then it follows that c = c0.
This argument implies that c is independent of the choice of X.

The results obtained before Theorem 2.4 show that

d! lim inf
k→∞

dimHp(z − T,OECn,0/(zk)OECn,0)
kd

≥ c.

Since by Corollary 1.3 in [4] there are vector-space isomorphisms

Hp(T k, E) ∼= Hp(z − T,OECn,0/(zk)OECn,0) (k ≥ 1),

the proof of Theorem 2.4 is complete.

Suppose that dim0(A) = 0, but that T ∈ L(E)n satisfies all the remain-
ing conditions in Theorem 2.4. Then 0 is an isolated point of A, and the
only connected open neighbourhood of 0 in A is the set X = {0}. Choose an
open neighbourhood U of 0 in Cn with U ∩A = {0} and denote by I ⊂ OU
the ideal sheaf of the one-point set X = {0} in U. Then (zk)(OU/I) = {0}
for all integers k ≥ 1 and, as in the proof of Lemma 2.3, an application of
Proposition 1.1 with

G = OU/(zk)OU and H = OU/I
leads to the estimates

dimHp(T k, E) ≥ dimHp(z − T,OEX,0) = dimHp(T,E)

for all k ≥ 1. Thus the assertion of Theorem 2.4 remains true in this case if
one defines c = dimHp(T,E).

Our next aim is to deduce a global version of Theorem 2.4. Fix a commut-
ing tuple T ∈ L(E)n of bounded operators on a complex Banach space E.
By Corollary 9.4.7 in [5] the sets

Sj = {z ∈ %e(T ); Hj(z − T,E) 6= 0} (j = 0, . . . , n)

are analytic subsets of the essential resolvent set %e(T ) of T . Hence also the
inessential spectrum σF(T ) = σ(T )\σe(T ) =

⋃n
j=0 Sj ⊂ %e(T ) is an analytic

subset. The set Reg(σF(T )) of all regular points of this analytic set is an



248 J. Eschmeier

open and dense subset of σF(T ) which forms a complex submanifold of Cn

(Section 6.2 in [7]).

Theorem 2.5. Let T ∈ L(E)n be a commuting tuple and let M be a
component of Reg(σF(T )) of dimension d. Then there is an integer p ∈
{0, . . . , n} such that

d! lim inf
k→∞

dimHp((z − T )k, E)
kd

≥ min
w∈M

dimHp(w − T,E) > 0

for all z ∈M .

Proof. Let us denote by h : M → [0,∞] the function that assigns
to each z ∈ M the number occurring on the left-hand side of the claimed
inequality. Fix z ∈M. Since M is the union of the analytic subsets Sj ∩M
(j = 0, . . . , n), the union formula for analytic sets (Section 5.3.1 in [7]) shows
that

max
j=0,...,n

dimz(Sj ∩M) = d.

Let j ∈ {0, . . . , n} with dimz(Sj ∩M) = d. Then M ⊂ Sj by the identity
lemma for analytic sets (Lemma 9.1.1 in [7]). Let p ∈ {0, . . . , n} be maximal
with M ⊂ Sp.

If d = 0, then M = {z} and z is an isolated point of σF(T ). In this case
the assertion follows from the remarks following Theorem 2.4. If d > 0, then
A = M ∩(Sp+1∪· · ·∪Sn) is a nowhere dense analytic subset of M (Theorem
9.1.2 in [7]). For z ∈M \A, the claimed estimate follows from Theorem 2.4
applied to z − T.

For each fixed integer k ≥ 1, there is a proper analytic subset Ak ⊂ M
such that

dimHp((z − T )k, E) = min
w∈M

dimHp((w − T )k, E)

for all z ∈ M \ Ak (Corollary 9.4.7 in [5]). Since proper analytic subsets of
the manifold M are zero sets with respect to the surface measure on M , it
follows that the union of all Ak (k ∈ N) and A is a zero set Z ⊂ M such
that

h(z) ≥ h(w) ≥ min
u∈M

dimHp(u− T,E) > 0

for all z ∈M and w ∈M \ Z. This observation completes the proof.

If T ∈L(E)n has no isolated inessential spectral points, then dimz(σF(T ))
≥ 1 for every z ∈ σF(T ). Using the density of the set Reg(σF(T )) of all
smooth points in σF(T ), one obtains the following special case.

Corollary 2.6. Let T ∈ L(E)n be a commuting tuple and let d ≥ 0 be
a non-negative integer such that dimM ≥ d for every connected component
M of Reg(σF(T )). Then the set of all points z ∈ σF(T ) for which there is
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a p ∈ {0, . . . , n} with

d! lim inf
k→∞

dimHp((z − T )k, E)
kd

≥ 1

is dense in σF(T ). In particular , if there are no isolated points in σ(T ) which
belong to the essential resolvent set %e(T ), then the above estimate holds true
with d = 1 in a dense set of points z in σF(T ).

Suppose that z is an isolated inessential spectral point of a commuting
tuple T ∈ L(E)n. Then by J. L. Taylor’s version of Shilov’s idempotent
theorem (Theorem 4.9 in [8]), there is a direct sum decomposition E =
E0 ⊕ E1 of E into closed invariant subspaces E0, E1 of T such that

σ(T |E0) = {z}, σ(T |E1) = σ(T ) \ {z}.
As σe(T ) = σe(T |E0) ∪ σe(T |E1), the essential spectrum of T |E0 is empty.
It follows that dim(E0) <∞ and

dimHp((z − T )k, E) = dimHp((z − T |E0)k, E0) ≤
(
n

p

)
dim(E0)

for p = 0, . . . , n and k ∈ N. Therefore the last part of Corollary 2.6 is no
longer true if we drop the condition that T does not have isolated inessential
spectral points.
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