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On linear extension for interpolating sequences

by

Eric Amar (Bordeaux)

Abstract. Let A be a uniform algebra on X and σ a probability measure on X.
We define the Hardy spaces Hp(σ) and the Hp(σ) interpolating sequences S in the p-
spectrumMp of σ. We prove, under some structural hypotheses on A and σ, that if S is a
“dual bounded” Carleson sequence, then S is Hs(σ)-interpolating with a linear extension
operator for s < p, provided that either p =∞ or p ≤ 2.

In the case of the unit ball of Cn we find, for instance, that if S is dual bounded in
H∞(B) then S is Hp(B)-interpolating with a linear extension operator for any 1 ≤ p <∞.
Already in this case this is a new result.

1. Introduction. Let B be the unit ball of Cn; in this case we take the
algebra of holomorphic functions in B continuous on B for A and for σ the
normalized Lebesgue measure on ∂B and, as usual, we denote by Hp(B) the
Hardy space of holomorphic functions in B, i.e. the closure in Lp(σ) of A if
p <∞ and the algebra of bounded holomorphic functions in B if p =∞.

Let S be a sequence of points in B and 1 ≤ p ≤ ∞; we say that S is
Hp(B)-interpolating, S ∈ IHp for short, if

∀λ ∈ `p(S), ∃f ∈ Hp(B), ∀a ∈ S, f(a) = λa(1− |a|2)n/p;

for p =∞, we set, as usual, (1− |a|2)n/p = 1 for all a ∈ B.
It is a well known consequence of Baire’s theorem that if S ∈ IHp(B) we

can choose an f interpolating the sequence λ ∈ `p such that ‖f‖p ≤ C‖λ‖p
with a constant C > 0 independent of λ.

Let a ∈ B and ka(z) := 1/(1− a · z)n be the reproducing kernel for a
(the Cauchy kernel), i.e.

∀f ∈ H1(B), f(a) = 〈f, ka〉 :=
�

∂B
f(ζ)ka(ζ) dσ(ζ).

Let kp,a := ka/‖ka‖p, the normalized reproducing kernel for a in Hp(B).
Because ‖ka‖p′ ' (1 − |a|2)−n/p, with p′ the conjugate exponent for p,

S ∈ IHp(B) is equivalent to
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∀λ ∈ `p, ∃f ∈ Hp(B), ∀a ∈ S, 〈f, kp′,a〉 = λa.

Now if S is Hp(B)-interpolating, then by interpolating the basic se-
quences of `p we have

∃C > 0, ∀a ∈ S, ∃%a ∈ Hp(B), ‖%a‖p ≤ C, 〈%a, kp′,b〉 = δab.

Hence the system {%a}a∈S is dual to {kp′,a}a∈S and bounded in Hp(B). This
leads to the definition:

Definition 1.1. We shall say that S is dual bounded (or uniformly min-
imal [15]) in Hp(B) if:

∃C > 0, ∀a ∈ S, ∃%a ∈ Hp(B), ‖%a‖p ≤ C, 〈%a, kp′,b〉 = δab.

Hence if S is Hp(B)-interpolating, then it is dual bounded in Hp(B).

Definition 1.2. We say that the Hp(B)-interpolating sequence S has
the linear extension property (L.E.P.) if there is a bounded linear operator
E : `p→Hp(B) such that for every λ ∈ `p, Eλ interpolates the sequence λ
in Hp(B) on S, i.e.

∀λ ∈ `p, ∀a ∈ S, Eλ(a) = λa‖ka‖p′ .
Natural questions are the following:

• If S is dual bounded in Hp(B), is S ∈ IHp(B)?
• If S ∈ IHp(B), does S automatically have the L.E.P.?

This is true in the classical case of the Hardy spaces of the unit disc D:
For p = ∞ the positive answer to the first question is the famous char-

acterization of H∞-interpolating sequences by L. Carleson [8].
The positive answer to the second question was given by P. Beurling [7].
For p ∈ [1,∞[ the positive answer to the first question was established

by H. Shapiro and A. Shields [18], who also proved that the interpolating
sequences are the same for all p ∈ [1,∞].

The positive answer to the second question was obtained explicitly by ∂
methods in [2].

For the Bergman classes Ap(D), it is no longer true that the interpolating
sequences are the same for Ap(D) and Aq(D), q 6= p. But A. P. Schuster and
K. Seip [17], [16] proved that S dual bounded in Ap(D) implies that S is
Ap(D)-interpolating with the L.E.P.

The first question is still open, even in the ball B of Cn, n ≥ 2, for Hp(B),
the usual Hardy spaces of the ball and in the polydisc Dn of Cn, n ≥ 2, for
the usual Hardy spaces.

The second one is known only in the case p =∞, and is positive (see [3]
and the references therein).

Nevertheless in the case of the unit ball of Cn, B. Berndtsson [5] proved
that if the product of the Gleason distances of the points of S is bounded
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below away from 0, then S is H∞(B)-interpolating. He also proved that this
condition is not necessary for n > 1, in contrast to the case of n = 1.

B. Berndtsson, S-Y. A. Chang and K.-C. Lin [6] proved the same theorem
in the polydisc of Cn.

In this paper we shall prove that S dual bounded in Hp(B) implies that
for all s < p, S ∈ IHs(B) with the L.E.P., provided that 1 < p ≤ 2 or
p =∞. In particular:

Theorem 1.3. If S ⊂ B is dual bounded in Hp(B), then it is Hs(B)-
interpolating for any 1 ≤ s < p, provided that either p ∈ ]1, 2] or p = ∞.
Moreover , in these cases, S has the linear extension property.

In [3] a generalization of the interpolating Blaschke products to the ball
is studied via ∂ methods, and a condition is given on a sequence S of points
in B to ensure that S is Hp(B)-interpolating for all p ∈ [1,∞[. This condition
implies that S is dual bounded in H∞(B), hence the result here is stronger
than the one in [3].

I want to thank the referee for all his suggestions and his very pertinent
questions.

The methods we use being purely functional-analytic, our results extend
to the setting of uniform algebras.

The paper is organized this way:

• Section 2: we recall facts related to uniform algebras and reproducing
kernels.
• Section 3: we define and study Carleson and weak Carleson sequences.
• Section 4: we state the structural hypotheses we shall need.
• Section 5: we define theHp-interpolating sequences and the dual bound-

edness in this abstract context.
• Section 6: we state our main results. The reader may go directly to

this section to get an idea of the results and to have some comments
about them.
• Section 7: we apply the main results in the special cases of the ball

and of the polydisc.

2. Uniform algebras and reproducing kernels. Let A be a uni-
form algebra on the compact space X, i.e. A is a subalgebra of C(X), the
continuous functions on X, which separates the points of X and contains 1.

Let σ be a probability measure on X. For 1 ≤ p <∞ we define as usual
the Hardy space Hp(σ) as the closure of A in Lp(σ); H∞(σ) will be the
weak-∗ closure of A in L∞(σ).

Let M be the Gelfand spectrum of A, i.e. the non-zero multiplicative
elements of A′, the dual space of A. We denote an element of A and its
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Gelfand transform using the same notation:

∀a ∈M ⊂ A′, ∀f ∈ A, f(a) := f̂(a) = a(f).

We shall use the following notions, already introduced in [4].

Definition 2.1. Let M be the spectrum of A and a ∈ M. We call
ka ∈ Hp(σ) a p-reproducing kernel for the point a if

∀f ∈ A, f(a) =
�

X

f(ζ)ka(ζ) dσ(ζ).

We define the p-spectrum of σ as the subset Mp of those elements of M
that have a p′-reproducing kernel, with p′ the conjugate exponent for p,
1/p+ 1/p′ = 1.

The reproducing kernel for a ∈M, if it exists, is unique. Indeed, suppose
there are two, say ka ∈ Hp(σ) and la ∈ Hq(σ). Then

∀f ∈ A, 0 = f(a)− f(a) =
�

X

f(ka − la) ds, so ka = la σ-a.e.,

because, by definition, A is dense in Hr(σ) with r := min(p, q). Hence it is
correct to denote it by ka without reference to the Hp(σ) where it belongs.

Let a ∈Mp. Then ka ∈ Hp′(σ); if p < q then q′ < p′, hence ka ∈ Hq′(σ)
because σ is a probability measure, so a ∈Mq. Thus p < q ⇒Mp ⊂Mq.

To simplify the notation we shall write 〈f, g〉 :=
	
X fg dσ, whenever this

is meaningful.

3. Carleson sequences. We denote by kq,a := ka/‖ka‖q the normalized
reproducing kernel in Hq(σ).

Definition 3.1. Let 1 ≤ q <∞. We say that a sequence S ⊂Mq′ is a
q-Carleson sequence if

∃Dq > 0, ∀µ ∈ `q,
∥∥∥∑
a∈S

µakq,a

∥∥∥
q
≤ Dq‖µ‖q.

Let 2 ≤ q < ∞. We say that the sequence S ⊂ Mq′ is a weakly q-Carleson
sequence if

∃Dq > 0, ∀µ ∈ `q,
∥∥∥∑
a∈S
|µa|2|kq,a|2

∥∥∥
q/2
≤ Dq‖µ‖2q .

We call the second condition “weakly” Carleson because:

Lemma 3.2. If 2 ≤ q < ∞ and S is q-Carleson then it is weakly q-
Carleson.
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Proof. With every sequence S we associate a sequence {εa}a∈S of inde-
pendent random variables with the same law P (εa = 1) = P (εa = −1) =
1/2. We shall denote by E the associated expectation.

In the following, a . b means that there exists a constant C, independent
of a and b, such that a ≤ Cb; a ' b means that a . b and b . a.

Let S be a q-Carleson sequence. For the associated {εa}a∈S we have∥∥∥∑
a∈S

µaεakq,a

∥∥∥q
q

. ‖µ‖qq

because |εa| = 1. Taking expectation on both sides leads to∥∥∥E[∣∣∣∑
a∈S

µaεakq,a

∣∣∣q]∥∥∥
1

= E
[∥∥∥∑

a∈S
µaεakq,a

∥∥∥q
q

]
. ‖µ‖qq.

Now using Khinchin’s inequalities for the left expression,∥∥∥E[∣∣∣∑
a∈S

µaεakq,a

∣∣∣q]∥∥∥
1
'
∥∥∥∑
a∈S
|µa|2|kq,a|2

∥∥∥q/2
q/2
,

we get ∥∥∥∑
a∈S
|µa|2|kq,a|2

∥∥∥q/2
q/2

. E
[∥∥∥∑

a∈S
µaεakq,a

∥∥∥q
q

]
. ‖µ‖qq,

and the lemma.

Now if S is weakly q-Carleson, is S weakly p-Carleson for other p? Notice
that any sequence S is weakly 2-Carleson:

∀ν ∈ `1,
∥∥∥∑
a∈S

νa|k2,a|2
∥∥∥

1
≤
∑
a∈S
|νa| ‖|k2,a|2‖1 ≤ ‖ν‖1,

because ‖k2,a‖2 = ‖ |k2,a|2‖1 = 1. Hence if S is weakly q-Carleson with q > 2
we can try to use interpolation of linear operators.

By a theorem of E. Stein and G. Weiss [19] we know that if a linear
operator U is bounded from `q(γq) to Lq(σ) and from `1(γ1) to L1(σ) then
U is bounded from `p(γp) to Lp(σ) with 1 ≤ p ≤ q provided that the weight
satisfies the condition

(∗) 1
p

=
1− θ

1
+
θ

q
⇒ ∀a ∈ S, γp(a) = γ1(a)p(1−θ)γq(a)pθ/q.

Here the weighted `q space `q(γq) is defined by

`q(γq) :=
{
λ : ‖λ‖q`q(γq) :=

∑
a∈S
|λa|qγq(a) <∞

}
.

The hypothesis means that

∀λ ∈ `q(γq), ‖Uλ‖Lq(σ) ≤Mq‖λ‖`q(γq),
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and
∀λ ∈ `1(γq), ‖Uλ‖L1(σ) ≤M1‖λ‖`1(γq),

and the conclusion is, provided that (∗) is true:

∀p ∈ [1, q], ∃Mp > 0, ∀λ ∈ `p(γq), ‖Uλ‖Lp(σ) ≤Mp‖λ‖`p(γp).

In order to use this result, we need

Lemma 3.3. Let q ≥ 1 and 1/p = (1− θ)/1 + θ/q with 0 < θ < 1. Then

‖ka‖2p ≤ ‖ka‖1−θ2 ‖ka‖θ2q.
Proof. Let

1
p

=
1− θ

1
+
θ

q
=

1
s

+
1
r

with s =
1

1− θ
and r =

q

θ
.

Hölder’s inequality gives, for f ∈ Ls(σ), g ∈ Lr(σ),( �
X

|fg|p dσ
)1/p

≤
( �
X

|f |s dσ
)1/s( �

X

|g|r dσ
)1/r

.

Setting f = |ka|2(1−θ) and g := |ka|2θ we get( �
X

|ka|2p dσ
)1/p

≤
( �
X

|ka|2(1−θ)s dσ
)1/s( �

X

|ka|2θr dσ
)1/r

,

hence replacing s, r gives( �
X

|ka|2p dσ
)1/p

≤
( �
X

|ka|2 dσ
)1−θ( �

X

|ka|2q dσ
)θ/q

.

For p ∈ [1, q] define

T : `p(ωp)→ Lp(σ), Tλ :=
∑
a∈S

λa|ka|2,

with ωp(a) := ‖ka‖−2p
2p .

To say that T is bounded is the same as saying that the sequence S is
weakly p-Carleson.

Lemma 3.4. If S is weakly s-Carleson with s > 2, then it is weakly
r-Carleson for any 2 ≤ r ≤ s.

Proof. Let q := s/2. We know that T is bounded for p = 1 and for p = q.
Applying the Stein–Weiss result to U := T with γ1 = ω1, γq = ωq, we get,
for any 1 ≤ p ≤ q,

‖Tλ‖Lp(σ) ≤Mp‖λ‖`p(γp),

with the weight γp defined as:

if
1
p

=
1− θ

1
+
θ

q
, then γp(a) := γ1(a)p(1−θ)γq(a)pθ/q for a ∈ S.
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Replacing ω1, ωq by their values, this means

γp(a) = ‖ka‖−2p(1−θ)
2 ‖ka‖−2pθ

2q .

Hence

∃Mp > 0, ‖Tλ‖pp ≤Mp‖λ‖p`p(γp) = Mp

∑
a∈S
|λa|pγp(a).

But Lemma 3.3 gives ‖ka‖2p ≤ ‖ka‖1−θ2 ‖ka‖θ2q, which precisely says that
γp(a) ≤ ωp(a) for all a ∈ S, hence

‖Tλ‖pp ≤Mp

∑
a∈S
|λa|pωp(a),

and T is indeed bounded from lp(ωp) to Lp(σ), which proves the lemma with
r = 2p.

We also notice that any sequence S is 1-Carleson:

∀µ ∈ `1,
∥∥∥∑
a∈S

µak1,a

∥∥∥
1
≤
∑
a∈S
|µa| ‖k1,a‖1 ≤ ‖µ‖1,

and the same proof as above also gives

Lemma 3.5. If S is q-Carleson with q > 1, then S is p-Carleson for any
1 ≤ p ≤ q.

4. Structural hypotheses. We shall need some structural hypotheses
on σ relative to the reproducing kernels.

Definition 4.1. Let q ∈ ]1,∞[. Then we say that the measure σ satisfies
the structural hypothesis SH(q) if, with q′ the conjugate of q:

∃α = αq > 0, ∀a ∈Mq ∩Mq′ ⊂M2, ‖ka‖22 ≥ α‖ka‖q‖ka‖q′ .(4.1)

This goes the opposite way to Hölder inequalities. Because a ∈ Mq ∩
Mq′ ⊂ M2, we have ka(a) =

	
X ka(ζ)ka(ζ) dσ = ‖ka‖22 and the condition

above is the same as
‖ka‖q‖ka‖q′ ≤ α−1

q ka(a).

Definition 4.2. Let p, s ∈ [1,∞] and q be such that 1/s = 1/p + 1/q.
We say that the measure σ satisfies the structural hypothesis SH(p, s) if

∃β = βp,q > 0, ∀a ∈Ms, ‖ka‖s′ ≤ β‖ka‖p′‖ka‖q′ .(4.2)

This is meaningful because s < p, s < q, and hence Ms ⊂Mp ∩Mq.
We proved in [4] that SH(q) and SH(p, s) are true for all values of q, p

and s in the case of the unit ball of Cn with σ the Lebesgue mesure on ∂B
and the algebra A(B) of holomorphic functions in B, continuous in B.

The same is true [4] in the case of the unit polydisc Dn of Cn, with σ the
Lebesgue mesure on Tn and the algebra A(Dn) of holomorphic functions in
Dn, continuous in Dn

, still for all values of q, p and s.
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5. Interpolating sequences

Definition 5.1. We say that S ⊂ Mp is Hp(σ)-interpolating for 1 ≤
p <∞, abbreviated as S ∈ IHp(σ), if

∀λ ∈ `p, ∃f ∈ Hp(σ), ∀a ∈ S, f(a) = λa‖ka‖p′ .

We say that S ⊂M∞ is H∞(σ)-interpolating , written S ∈ IH∞(σ), if

∀λ ∈ `∞, ∃f ∈ H∞(σ), ∀a ∈ S, f(a) = λa.

Remark 5.2. If S is Hp(σ)-interpolating then there is a constant CI ,
the interpolating constant, such that [4]

∀λ ∈ `p, ∃f ∈ Hp(σ), ‖f‖p ≤ CI‖λ‖p, f(a) = λa‖ka‖p′ , ∀a ∈ S.

Definition 5.3. We say that the Hp(σ)-interpolating sequence S has
the linear extension property (L.E.P.) if there is a bounded linear operator
E `p → Hp(σ) such that for every λ ∈ `p, Eλ interpolates the sequence λ
in Hp(σ) on S, i.e.

∀λ ∈ `p, ∀a ∈ S, Eλ(a) = λa‖ka‖p′ .

Let S ⊂ Mp, so kp′,a := ka/‖ka‖p′ , the normalized reproducing ker-
nel, exists for any a ∈ S; consider a dual system {%a}a∈S ⊂ Hp(σ), i.e.
〈%a, kp′,b〉 = δa,b for all a, b ∈ S, when it exists.

Definition 5.4. We say that S ⊂ Mp is dual bounded in Hp(σ) if a
dual system {%a}a∈S ⊂ Hp(σ) exists and is bounded in Hp(σ), i.e.

∃C > 0, ∀a ∈ S, ∃%a ∈ Hp(σ), ‖%a‖p ≤ C, 〈%a, kp′,b〉 = δab.

We shall need the following facts proved in [4]:

Theorem 5.5. Let p > 1. If S ⊂Mp and S ∈ IH∞(σ), and σ satisfies
SH(p), then S ∈ IHp(σ) with the L.E.P.

Theorem 5.6. If S ⊂ M1 and S is dual bounded in Hp(σ) for some
p > 1, then S ∈ IH1(σ).

We shall also need to truncate S to its first N elements, written SN .
Clearly if S ∈ IHp(σ) then SN ∈ IHp(σ) with a smaller interpolating
constant. Let IpSN

:= {f ∈ Hp(σ) : f|SN
= 0} be the module over A

of functions that are zero on SN . For λ ∈ `p, with {%a}a∈S a bounded
dual sequence, the function fN :=

∑
a∈SN

λa%a interpolates λ on SN and
‖fN‖Hp(σ)/Ip

SN

≤ CI‖λ‖p.
We also have the converse for 1 < p ≤ ∞, which is all that we need [4]:

Lemma 5.7. If all truncations SN of S are in IHp(σ) for some p > 1,
with a uniform constant CI , then S ∈ IHp(σ) with the same constant.
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6. Main results. Now we are in a position to state and comment on
our main results.

Theorem 6.1. Let 1 < p ≤ 2, 1 ≤ s < p and q be such that 1/s =
1/p+1/q. Suppose that S ⊂Ms∩Mq′ is dual bounded in Hp(σ) and weakly
q-Carleson, and σ satisfies the structural hypotheses SH(q) and SH(p, s).
Then S is Hs(σ)-interpolating and has the L.E.P. in Hs(σ).

The passage from p = 2 to p ≤ 2 in the case of the ball is due to F. Bayart
(oral communication): he uses Khinchin’s inequalities which prove to be very
well fitted to this problem.

Using this time the fact that Khinchin’s inequalities also provide a way
to put absolute values inside sums, we get the other extremity of the range
of p’s:

Theorem 6.2. Let 1 ≤ s < ∞ and p > 2s. Suppose that S ⊂ Ms ∩
Ms′ is dual bounded in H∞(σ) and weakly p-Carleson, and σ satisfies the
structural hypotheses SH(p, s) and SH(q) for q such that 1/s = 1/p+ 1/q.
Then S is Hs(σ)-interpolating with the L.E.P.

This theorem is the best possible in this generality. There is no hope to
show that dual boundedness in H∞ implies H∞-interpolation as L. Carleson
proved for the unit disc:

In [11] and [13] the authors proved that in the spectrumM of the uniform
algebra H∞(D) there are sequences S of points, S ⊂ M\D, such that the
product of the Gleason distances is bounded below away from 0, which
implies that S is dual bounded in H∞(D), but S is not H∞-interpolating.

The above theorems will be consequences of the next lemma.
As above, to a sequence S of points in M, we associate a sequence

{εa}a∈S of independent Bernoulli variables.

Lemma 6.3. Let S ⊂Mp be a sequence of points such that a dual system
{%p,a}a∈S exists in Hp(σ). Let 1 ≤ s < p and q be such that 1/s = 1/p+1/q.
Suppose that

∀λ ∈ `p(S), E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥p
p

]
. ‖λ‖p`p ,

S is weakly q-Carleson (if q > 2), and σ satisfies SH(q) and SH(p, s). Then
S is Hs(σ)-interpolating and moreover S has the L.E.P.

Remark 6.4. If q ≤ 2 we do not assume any Carleson condition on S.

Proof. If p = 1 we set

∀λ ∈ `1, T (λ) :=
∑
a∈S

λa%1,a;
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the sum converges inH1(σ) because the functions %1,a are uniformly bounded
in H1(σ). Then T (λ) interpolates the sequence λ, and clearly the operator
T is linear. Moreover, ‖T (λ)‖1 ≤ supa∈S ‖%1,a‖ ‖λ‖`1 , so T is bounded.

If p > 1, we may suppose that 1 < s < p because if S ∈ IHs(σ) then by
Theorem 5.6, for S ⊂M1 we also have S ∈ IH1(σ).

First we truncate the sequence to the first N elements and get estimates
independent of N, i.e. for s ∈ [1, p[ and ν ∈ `sN we shall build a function
h ∈ Hs(σ) such that

∀j = 0, . . . , N − 1, h(aj) = νj‖kaj‖s′ and ‖h‖Hs ≤ C‖ν‖`sN ,
with the constant C independent of N. The conclusion then follows using
Lemma 5.7.

Since 1/s = 1/p + 1/q, we have q ∈ ]p′,∞[. We set νj = λjµj with
µj := |νj |s/q ∈ `q and λj := (νj/|νj |)|νj |s/p ∈ `p. Then ‖ν‖s = ‖λ‖p‖µ‖q.
Let

ca :=
‖ka‖s′

‖ka‖p′kq,a(a)
=
‖ka‖s′‖ka‖q
‖ka‖p′ka(a)

.

By SH(q) we have ka(a) ≥ α‖ka‖q‖ka‖q′ , hence

ca ≤
‖ka‖s′

α‖ka‖p′‖ka‖q′
≤ β

α

by SH(p, s).
Now set h(z) =

∑
a∈S νaca%akq,a. Then

∀a ∈ S, h(a) = νa‖ka‖s′ ,
because %a(b) = δab‖ka‖p′ . This means that h interpolates ν and clearly h
is linear in ν. To estimate the Hs(σ) norm of h, set

f(ε, z) :=
∑
a∈S

λacaεa%a(z), g(ε, z) :=
∑
a∈S

µaεakq,a(z).

Then h(z) = E(f(ε, z)g(ε, z)) because E(εjεk) = δjk. So we get

|h(z)|s = |E(fg)|s ≤ (E(|fg|))s ≤ E(|fg|s),
hence

‖h‖s =
( �
X

|h(z)|s dσ(z)
)1/s

≤
( �
X

E(|fg|s) dσ(z)
)1/s

.

Using Hölder’s inequality, we obtain
�

X

E(|fg|s) dσ(z) = E
[ �
X

|fg|s dσ(z)
]

(6.1)

≤
(
E
[ �
X

|f |p dσ
])s/p(

E
[ �
X

|g|q dσ
])s/q

.
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Let λ̃a := caλa for a ∈ S. Then ‖λ̃‖p ≤ α−1β‖λ‖p and the first factor
above is controlled by hypothesis:

E
[ �
X

|f |p dσ
]

= E
[∥∥∥∑

a∈S
λacaεa%p,a

∥∥∥p
p

]
. ‖λ̃‖pp . ‖λ‖p`p .(6.2)

Fubini’s theorem gives, for the second factor in (6.1),

E
[ �
X

|g|q dσ
]

=
�

X

E[|g|q] dσ.

Khinchin’s inequalities yield

E[|g|q] '
(∑
a∈S
|µa|2|kq,a|2

)q/2
Now, if q > 2, S weakly q-Carleson implies

�

X

E[|g|q] dσ .
�

X

(∑
a∈S
|µa|2|kq,a|2

)q/2
dσ . ‖µ‖q`q .(6.3)

If q ≤ 2 then (
∑

a∈S |µa|2|kq,a|2)q/2 ≤
∑

a∈S |µa|q|kq,a|q, hence integrating
over X we get

(6.4)
�

X

E[|g|q] dσ ≤
�

X

(∑
a∈S
|µa|q|kq,a|q

)
dσ ≤

∑
a∈S
|µa|q

�

X

|kq,a|q dσ = ‖µ‖`q .

So putting (6.2) and (6.3) or (6.4) in (6.1) we get the lemma.

6.1. Proof of Theorem 6.1. We state and prove a more precise version
of Theorem 6.1:

Theorem 6.5. Let 1 < p ≤ 2, 1 ≤ s < p and q be such that 1/s =
1/p+1/q. Suppose that S ⊂Ms∩Mq′ , {%p,a}a∈S is a norm bounded sequence
in Hp(σ), S is weakly q-Carleson, and σ satisfies the structural hypotheses
SH(q) and SH(p, s). Then S is Hs(σ)-interpolating with the L.E.P.

Proof. It remains to prove that the hypotheses of the theorem imply
those of Lemma 6.3.

We have to prove that

E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥p
p

]
. ‖λ‖p`p ,

knowing that {%p,a}a∈S is bounded in Hp(σ), i.e. supa∈S ‖%p,a‖p ≤ C. By
Fubini’s theorem,

E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥p
p

]
=

�

X

E
[∣∣∣∑
a∈S

λaεa%p,a

∣∣∣p] dσ,
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and by Khinchin’s inequalities,

E
[∣∣∣∑
a∈S

λaεa%p,a

∣∣∣p] ' (∑
a∈S
|λa|2|%p,a|2

)p/2
.

Now p ≤ 2, so (
∑

a∈S |λa|2|%p,a|2)1/2 ≤ (
∑

a∈S |λa|p|%p,a|p)1/p, hence
�

X

E
[∣∣∣∑
a∈S

λaεa%p,a

∣∣∣p] dσ ≤ �

X

(∑
a∈S
|λa|p|%p,a|p

)
dσ =

∑
a∈S
|λa|p‖%p,a‖pp.

So, finally,

E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥p
p

]
. sup

a∈S
‖%p,a‖pp‖λ‖pp,

and the assertion holds.

An alternative proof was suggested to me by F. Lust-Piquard. Recall
the definition of the type of a Banach space ([14, p. 162]) for the reader’s
convenience:

Definition 6.6. The Banach space X is of type p, 1 ≤ p ≤ 2, if there
is a constant C ≥ 1 such that

∀n ∈ N, ∀x1, . . . , xn ∈ X,
(
E
(∥∥∥ n∑

j=1

εjxj

∥∥∥2

X

))1/2
≤ C

( n∑
j=1

‖xj‖pX
)1/p

.

Now since any subspace of Lp(σ) is of type p for 1 ≤ p ≤ 2 ([14, Th. III.9,
p. 169]), for instance Hp(σ), we get(

E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥2

p

])1/2
≤ C

(∑
a∈S
|λa|p‖%p,a‖pp

)1/p
,

hence(
E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥2

p

])1/2
≤C sup

a∈S
‖%p,a‖p

(∑
a∈S
|λa|p

)1/p
=C sup

a∈S
‖%p,a‖p‖λ‖p.

On the other hand, because p ≤ 2, we have(
E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥p
p

])1/p
≤
(
E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥2

p

])1/2
.

Finally,

E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥p
p

]
≤ Cp(sup

a∈S
‖%p,a‖pp)‖λ‖

p
`p . ‖λ‖p`p ,

and again the conclusion follows.
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6.2. Proof of Theorem 6.2. Again we state a more precise version of
Theorem 6.2:

Theorem 6.7. Let 1 ≤ s <∞ and p > 2s. Suppose that S ⊂Ms∩Ms′ ,
{%a}a∈S is a norm bounded sequence in H∞(σ), S is weakly p-Carleson,
and σ satisfies the structural hypotheses SH(p, s) and SH(q) for q such that
1/s = 1/p+ 1/q. Then S is Hs(σ)-interpolating with the L.E.P.

Proof. The idea is still to use Lemma 6.3, but in two steps.
Set %p,a := %akp,a for a ∈ S. Then ‖%p,a‖p ≤ ‖%a‖∞‖kp,a‖p = ‖%a‖∞ ≤ C

by hypothesis.
By Khinchin’s inequalities we have

E
[∣∣∣∑
a∈S

λaεa%p,a

∣∣∣p] ' (∑
a∈S
|λa|2|%p,a|2

)p/2
,

but this time we use the fact that |%p,a| ≤ ‖%∞,a‖ |ka,p| ≤ C|ka,p|, hence

E
[∣∣∣∑
a∈S

λaεa%p,a

∣∣∣p] . Cp
(∑
a∈S
|λa|2|ka,p|2

)p/2
.

Since S is weakly p-Carleson, we get∥∥∥∑
a∈S
|λa|2|ka,p|2

∥∥∥p/2
p/2
≤ D‖λ‖pp,

hence

E
[∥∥∥∑

a∈S
λaεa%p,a

∥∥∥p
p

]
.

�

X

(∑
a∈S
|λa|2|ka,p|2

)
dσ . ‖λ‖p`p ,

and Lemma 6.3 shows that S isHs(σ)-interpolating with the L.E.P. provided
that S is weakly q-Carleson if q > 2. But because p > 2s we have q =
sp/(p− s) ≤ p, hence if q > 2, then because q ≤ p, S weakly p-Carleson
implies S weakly q-Carleson by Lemma 3.4, and the theorem is proved.

7. Application to the polydisc and to the ball. In [4] it is proved
that the structural hypotheses hold in the polydisc. In that case the Carleson
sequences are characterized geometrically and they are the same for all p ∈
]1,∞[ (see [9], [10]), i.e. if S is a p-Carleson sequence for some p > 1, then
it is r-Carleson for any r ∈ [1,∞]. So in that case we just say that S is a
Carleson sequence if it is p-Carleson for some p > 1.

Moreover, still in that case, p-Carleson is the same as weakly p-Carleson,
so it is enough to say “Carleson sequence” in the theorem:

Theorem 7.1. Let S ⊂ Dn be a Carleson sequence that is dual bounded
in Hp(Dn) with either p =∞ or p ≤ 2. Then S is Hs(Dn)-interpolating for
any 1 ≤ s < p with the L.E.P.
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Still in [4] it is proved that the structural hypotheses hold in the ball.
Again the Carleson measures, hence the Carleson sequences, are character-
ized geometrically and they are the same for all p ∈ ]1,∞[ (see [12]); also,
S Carleson is the same as S weakly Carleson.

Moreover, an easy corollary [4] of a theorem of P. Thomas [20] gives that
S dual bounded in Hp(B) implies S Carleson, hence:

Theorem 7.2. Let S ⊂ B be dual bounded in Hp(B) with either p =∞
or p ≤ 2. Then S is Hs(B)-interpolating for any 1 ≤ s < p with the L.E.P.

We have for free the same result for the Bergman classes of the ball by the
“subordination lemma” [1]: to a function f(z) defined for z = (z1, . . . , zn) ∈
Bn ⊂ Cn associate the function f̃(z, w) := f(z) defined for (z, w) = (z1, . . . ,
zn, w) ∈ Bn+1 ⊂ Cn+1. Then f ∈ Ap(Bn) ⇔ f̃ ∈ Hp(Bn+1) with the same
norm. Moreover, if F ∈ Hp(Bn+1) then f(z) := F (z, 0) ∈ Ap(Bn) with
‖f‖Ap(Bn) ≤ ‖F‖Hp(Bn+1).

Suppose that S ⊂ Bn is dual bounded in Ap(Bn). This means that

∃{%a}a∈S , ∀a ∈ S, ‖%a‖Ap(Bn) ≤ C and %a(b) = δab(1− |a|2)−(n+1)/p,

because the normalized reproducing kernel for Ap(Bn) is

ba(z) :=
(1− |a|2)(n+1)/p′

(1− a · z)n+1
.

Embed S in Bn+1 as S̃ := {(a, 0) : a ∈ S}, as in [1]. Then the sequence
{%̃a}a∈S is precisely a bounded dual sequence for S̃ ⊂ Bn+1 in Hp(Bn+1),
hence we can apply the previous theorem: if p =∞ or p ≤ 2 and s < p, then
S̃ is Hs(Bn+1)-interpolating with the L.E.P. If T is the operator realizing
the extension,

λ ∈ `s → Tλ ∈ Hs(Bn+1),
(Tλ)(a, 0) = λa‖k(a,0)‖Hs′ (Bn+1), ‖Tλ‖Hs(Bn+1) ≤ CI‖λ‖s,

then the operator (Uλ)(z) := (Tλ)(z, 0) is a bounded linear operator from
`s to As(Bn) realizing the extension because ‖k(a,0)‖Hs′ (Bn+1) = ‖ba‖As′ (Bn),
where k is the kernel for Hs(Bn+1) and b is the kernel for As(Bn). Hence we
proved

Corollary 7.3. Let S ⊂ B be dual bounded in Ap(B) with either p =∞
or p ≤ 2. Then S is As(B)-interpolating for any 1 ≤ s < p with the L.E.P.

We also get the same result for the Bergman spaces with weight of
the form (1 − |z|2)k, k ∈ N, just by the same method, but considering
Hp(Bn+k+1) instead of Hp(Bn+1).
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