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On linear extension for interpolating sequences
by

ERric AMAR (Bordeaux)

Abstract. Let A be a uniform algebra on X and o a probability measure on X.
We define the Hardy spaces H”(o) and the H”(c) interpolating sequences S in the p-
spectrum M, of 0. We prove, under some structural hypotheses on A and o, that if S is a
“dual bounded” Carleson sequence, then S is H®(o)-interpolating with a linear extension
operator for s < p, provided that either p = co or p < 2.

In the case of the unit ball of C" we find, for instance, that if S is dual bounded in
H*>(B) then S is H” (B)-interpolating with a linear extension operator for any 1 < p < co.
Already in this case this is a new result.

1. Introduction. Let B be the unit ball of C™; in this case we take the
algebra, of holomorphic functions in B continuous on B for A and for o the
normalized Lebesgue measure on 0B and, as usual, we denote by H?(B) the
Hardy space of holomorphic functions in B, i.e. the closure in LP(o) of A if
p < oo and the algebra of bounded holomorphic functions in B if p = oco.

Let S be a sequence of points in B and 1 < p < oo; we say that S is
HP(B)-interpolating, S € I HP for short, if

YA e P(S),3f € HP(B),Va e S,  f(a) = Aa(1 — |a>)"/?;

for p = oo, we set, as usual, (1 — |a|?)™? =1 for all a € B.

It is a well known consequence of Baire’s theorem that if S € THP(B) we
can choose an f interpolating the sequence A € ¢ such that || f|, < C|A|l,
with a constant C' > 0 independent of A.

Let a € B and kq(z) := 1/(1 —@- z)™ be the reproducing kernel for a
(the Cauchy kernel), i.e.

Vfe H'B), f(a)={(fkd) = | F(QFa(¢)do(C).
OB
Let kp o := kqo/||kal|p, the normalized reproducing kernel for a in H?(B).
Because ||k, |,y =~ (1 — |a|>)™/P, with p’ the conjugate exponent for p,
S € IHP(B) is equivalent to
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VAe P 3f € H'(B),Va € S, (f ky.a) = Aa-

Now if S is HP(B)-interpolating, then by interpolating the basic se-
quences of /7 we have

3C > 0,Va € S, o, € H’(B), |oallp < C, (0askp b) = Oap-

Hence the system {04 }acs is dual to {kp 4}acs and bounded in H?(B). This
leads to the definition:

DEFINITION 1.1. We shall say that S is dual bounded (or uniformly min-
imal [15]) in HP(B) if:

3C > 0,Va € S, Jo, € HP(B), |oallp £ C, (0a,kpb) = bap-
Hence if S is HP(B)-interpolating, then it is dual bounded in H?(B).

DEFINITION 1.2. We say that the HP(B)-interpolating sequence S has
the linear extension property (L.E.P.) if there is a bounded linear operator
E : (P—HP(B) such that for every A\ € (P, EX interpolates the sequence A
in HP?(B) on S, i.e.

YA YaeS, EXa)=Nllkaly-
Natural questions are the following:

e If S is dual bounded in HP(B), is S € THP(B)?
o If S € THP(B), does S automatically have the L.E.P.?

This is true in the classical case of the Hardy spaces of the unit disc D:

For p = oo the positive answer to the first question is the famous char-
acterization of H*-interpolating sequences by L. Carleson [8].

The positive answer to the second question was given by P. Beurling [7].

For p € [1, 00| the positive answer to the first question was established
by H. Shapiro and A. Shields [18], who also proved that the interpolating
sequences are the same for all p € [1, o0].

The positive answer to the second question was obtained explicitly by
methods in [2].

For the Bergman classes AP(ID), it is no longer true that the interpolating
sequences are the same for AP(D) and A%(D), g # p. But A. P. Schuster and
K. Seip [17], [16] proved that S dual bounded in AP(D) implies that S is
AP(D)-interpolating with the L.E.P.

The first question is still open, even in the ball B of C", n > 2, for H?(B),
the usual Hardy spaces of the ball and in the polydisc D™ of C", n > 2, for
the usual Hardy spaces.

The second one is known only in the case p = oo, and is positive (see [3]
and the references therein).

Nevertheless in the case of the unit ball of C", B. Berndtsson [5] proved
that if the product of the Gleason distances of the points of S is bounded
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below away from 0, then S is H*°(B)-interpolating. He also proved that this
condition is not necessary for n > 1, in contrast to the case of n = 1.

B. Berndtsson, S-Y. A. Chang and K.-C. Lin [6] proved the same theorem
in the polydisc of C™.

In this paper we shall prove that S dual bounded in HP(B) implies that
for all s < p, S € TH*(B) with the L.E.P., provided that 1 < p < 2 or
p = oo. In particular:

THEOREM 1.3. If S C B is dual bounded in HP(B), then it is H*(B)-
interpolating for any 1 < s < p, provided that either p € |1,2] or p = oo.
Moreover, in these cases, S has the linear extension property.

In [3] a generalization of the interpolating Blaschke products to the ball
is studied via 9 methods, and a condition is given on a sequence S of points
in B to ensure that S is HP(B)-interpolating for all p € [1, co[. This condition
implies that S is dual bounded in H*°(B), hence the result here is stronger
than the one in [3].

I want to thank the referee for all his suggestions and his very pertinent
questions.

The methods we use being purely functional-analytic, our results extend
to the setting of uniform algebras.
The paper is organized this way:

e Section 2: we recall facts related to uniform algebras and reproducing
kernels.

e Section 3: we define and study Carleson and weak Carleson sequences.

e Section 4: we state the structural hypotheses we shall need.

e Section 5: we define the HP-interpolating sequences and the dual bound-
edness in this abstract context.

e Section 6: we state our main results. The reader may go directly to
this section to get an idea of the results and to have some comments
about them.

e Section 7: we apply the main results in the special cases of the ball
and of the polydisc.

2. Uniform algebras and reproducing kernels. Let A be a uni-
form algebra on the compact space X, i.e. A is a subalgebra of C(X), the
continuous functions on X, which separates the points of X and contains 1.

Let o be a probability measure on X. For 1 < p < oo we define as usual
the Hardy space HP(o) as the closure of A in LP(0); H* (o) will be the
weak-* closure of A in L*(0).

Let M be the Gelfand spectrum of A, i.e. the non-zero multiplicative
elements of A’, the dual space of A. We denote an element of A and its
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Gelfand transform using the same notation:
Vae Mc A, Vfed, fla):=f(a)=alf)
We shall use the following notions, already introduced in [4].

DEFINITION 2.1. Let M be the spectrum of A and a € M. We call
k, € HP(0) a p-reproducing kernel for the point a if

VieA,  fa) =\ f(Qka(¢) do(C).

X

We define the p-spectrum of o as the subset M, of those elements of M
that have a p’-reproducing kernel, with p’ the conjugate exponent for p,
1/p+1/p =1.

The reproducing kernel for a € M, if it exists, is unique. Indeed, suppose
there are two, say k, € HP(0) and [, € H9(o). Then

VfeA, 0=f(a)-fla)=\f(a—1s)ds, so k=l o-ae.,
X

because, by definition, A is dense in H" (o) with r := min(p, ¢). Hence it is
correct to denote it by k, without reference to the HP(o) where it belongs.

Let a € M,. Then k, € H? (¢); if p < ¢ then ¢ < p/, hence k, € HY (o)
because o is a probability measure, so a € M,. Thus p < ¢ = M, C M,.

To simplify the notation we shall write (f, g) := { fgdo, whenever this
is meaningful.

3. Carleson sequences. We denote by kg, := kq /| kallq the normalized
reproducing kernel in H4(o).

DEFINITION 3.1. Let 1 < g < co. We say that a sequence S C M is a
g- Carleson sequence if

30, >0, Vet |3 ki
acsS

‘ < Dq“#”q-

Let 2 < ¢ < co. We say that the sequence S C My is a weakly g-Carleson
sequence if

EID‘] >07 VMEEqa HZLUJCLFV{:Q,LL
acs

2l < Dy|lu?.
|, < Dalll

We call the second condition “weakly” Carleson because:

LEMMA 3.2. If 2 < q < o0 and S is q-Carleson then it is weakly q-
Carleson.
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Proof. With every sequence S we associate a sequence {g,}qes of inde-
pendent random variables with the same law P(e, = 1) = P(g, = —1) =
1/2. We shall denote by E the associated expectation.

In the following, a < b means that there exists a constant C, independent
of a and b, such that a < Cb; a ~ b means that a < b and b < a.

Let S be a g-Carleson sequence. For the associated {e,}4,c5 we have

HZ ,U'agakq,a

a€sS

q
< q
S [ l[d

because |g,4] = 1. Taking expectation on both sides leads to

q q
[ [ sacakaal' |||, = B[ pacataal | ] <
acs acs a4

Now using Khinchin’s inequalities for the left expression,

q q/2
[ ][22 sasakaal ][], = | balaal?]
acs acs a/

we get

|3 Pl < B[S ook
aes a/2 acs

and the lemma. =

q
] g

Now if S is weakly ¢g-Carleson, is S weakly p-Carleson for other p? Notice
that any sequence S is weakly 2-Carleson:

wet, | Y valkzal?|, < 3 valllkzall < v,
a€esS a€sS

because ||k2.4/|2 = || |k2,0*[l1 = 1. Hence if S is weakly g-Carleson with ¢ > 2
we can try to use interpolation of linear operators.

By a theorem of E. Stein and G. Weiss [19] we know that if a linear
operator U is bounded from ¢4(v,) to L4(c) and from ¢*(v1) to L*(o) then
U is bounded from ¢P(v,) to LP(c) with 1 < p < ¢ provided that the weight
satisfies the condition

1 1-6 6 1—0 0
(%) » = +6 = Vaes, ypla)= 71 (a)P¢ )vq(a)p /a,
Here the weighted ¢7 space (9(v,) is defined by

6030 = {2 1Al = D Pal™(0) < oo .

a€sS
The hypothesis means that

VA€l (vg), UM Lae) < MgllMleaqy)
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and
VA€l (vg),  IUMILi(o) < Mi|[ Al

and the conclusion is, provided that (x) is true:
Vpe[l,q], IMp >0, VA € P(vq),  [UALee) < Mpl|Allen(y,)-
In order to use this result, we need
LEMMA 3.3. Let¢q>1and 1/p=(1—-0)/1+4+0/q with0 <0 < 1. Then
kallzp < I1Kally ™" 1kall5-

(vq)

Proof. Let
1 1-6 6 1
= - = — — th = —_— d = =
P 1 +q s+r W TT1og MY Ty

Hoélder’s inequality gives, for f € L*(o), g € L"(0),

(V170 d0) " < (Vis17da) " ({10 do) "

X X

Setting f = |ko|?1~? and g := |k|*? we get

1/p 1/s 1/r
ko do) " < (| ko292 do ka|®"do)
(1) < (G2 (1 )
hence replacing s, r gives

) 1/p ) 1-0 ) 9/q
()S(|k:a|pda) g()&{|ka| do—) (}g(\kachzg) .

For p € [1, ¢] define

T:(P(wp) — LP(0), TA:=>_ alkal®,
a€esS

. -2
with wp(a) := [|kallg,”-
To say that T is bounded is the same as saying that the sequence S is

weakly p-Carleson.

LEMMA 3.4. If S is weakly s-Carleson with s > 2, then it is weakly
r-Carleson for any 2 <r < s.

Proof. Let q := s/2. We know that 7" is bounded for p = 1 and for p = gq.
Applying the Stein-Weiss result to U := T with v = w1, 74 = wy, we get,
for any 1 <p <gq,

1Tl Lo (o) < Mpl|Aller ()
with the weight -, defined as:
1 1-6

0
if p 1 + q then  p(a) := y1(a)P' "D yy(a)??/? for a € S.
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Replacing w1, wy by their values, this means

—2p(1—0 —2p0
(@) = [[Eally ka5

Hence
M, >0, TN < M) = My 3 AaPp(a).
aes
But Lemma 3.3 gives ||kqll2p < HkaHé_erang, which precisely says that
Yp(a) < wp(a) for all a € S, hence

ITAIZ < M, 3 APey(a)
acsS
and 7" is indeed bounded from [”(wy) to LP(o), which proves the lemma with
r=2p. =

We also notice that any sequence .S is 1-Carleson:

pel, |3 makral, < 3 lual lkrally < llalh,
a€eS a€S

and the same proof as above also gives

LEMMA 3.5. If S is g-Carleson with ¢ > 1, then S is p-Carleson for any
I<p<gq.

4. Structural hypotheses. We shall need some structural hypotheses
on o relative to the reproducing kernels.

DEFINITION 4.1. Let g € ]1, 00[. Then we say that the measure o satisfies
the structural hypothesis SH(q) if, with ¢’ the conjugate of ¢:

(4.1) Ja=0ay>0,YVae MgN My C My, HkaH% > alkallgllkallg-

This goes the opposite way to Holder inequalities. Because a € Mg N
My C Ms, we have kq(a) = § ka(¢)ka(¢) do = ||ka||3 and the condition
above is the same as

kallgllkally < ag'ka(a)-

DEFINITION 4.2. Let p,s € [1,00] and ¢ be such that 1/s = 1/p+ 1/q.
We say that the measure o satisfies the structural hypothesis SH(p, s) if

(4-2) 6= 51741 >0, Va € M, HkaHs’ < ﬁ”kaHp’Hkqu’-

This is meaningful because s < p, s < ¢, and hence M, C M, N M,.

We proved in [4] that SH(q) and SH(p, s) are true for all values of ¢, p
and s in the case of the unit ball of C" with ¢ the Lebesgue mesure on JB
and the algebra A(B) of holomorphic functions in B, continuous in B.

The same is true [4] in the case of the unit polydisc D™ of C", with o the
Lebesgue mesure on T™ and the algebra A(D™) of holomorphic functions in
D™, continuous in D", still for all values of ¢, p and s.
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5. Interpolating sequences

DEFINITION 5.1. We say that S C M, is HP(o)-interpolating for 1 <
p < oo, abbreviated as S € THP (o), if

VYA€ P, 3f € HP(0),Ya €S,  f(a) = Aallkallp-
We say that S C My is H*(0)-interpolating, written S € ITH* (o), if
VAel>®, 3f e H (o), Va € S, f(a) = \,.
REMARK 5.2. If S is HP(o)-interpolating then there is a constant Cfp,
the interpolating constant, such that [4]
VA€ @, 3f € H0), |fllp < Cil\ly  F(a) = Aallkally, Va € S.

DEFINITION 5.3. We say that the HP(co)-interpolating sequence S has
the linear extension property (L.E.P.) if there is a bounded linear operator
E (? — HP(0) such that for every A € P, E\ interpolates the sequence A
in HP(o) on S, i.e.

VAe P YaeS, EXa)=Aalkalp-
Let S C M,, so ky o = ka/| kal, the normalized reproducing ker-

nel, exists for any a € S; consider a dual system {gq}tees C HP(0), ie.
(0as kp p) = 0qp for all a,b € S, when it exists.

DEFINITION 5.4. We say that S C M, is dual bounded in H? (o) if a
dual system {04 }qes C HP(0) exists and is bounded in HP(0), i.e.

3C > 0,Va € S, o, € HP(0),  |[0allp £ C,  (0askp p) = Sap-
We shall need the following facts proved in [4]:

THEOREM 5.5. Letp > 1. If S C M, and S € IH*®(0), and o satisfies
SH(p), then S € IHP(o) with the L.E.P.

THEOREM 5.6. If S C My and S is dual bounded in HP(o) for some
p> 1, then S € TH' (o).

We shall also need to truncate S to its first N elements, written Spy.
Clearly if S € IHP(o) then Sy € IHP(o) with a smaller interpolating
constant. Let IgN = {f € HP(0) : fisy = 0} be the module over A
of functions that are zero on Sy. For A € P with {g,}ses a bounded
dual sequence, the function fy := > Aa0q interpolates A on Sy and
1l e o)z < CrliAp-

We also have the converse for 1 < p < oo, which is all that we need [4]:

a€ESN

LEMMA 5.7. If all truncations Sy of S are in IHP(o) for somep > 1,
with a uniform constant Cy, then S € IHP (o) with the same constant.
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6. Main results. Now we are in a position to state and comment on
our main results.

THEOREM 6.1. Let 1 < p < 2,1 < s < p and q be such that 1/s =
1/p+1/q. Suppose that S C M N My is dual bounded in HP (o) and weakly
q-Carleson, and o satisfies the structural hypotheses SH(q) and SH(p,s).
Then S is H*(o)-interpolating and has the L.E.P. in H*(o).

The passage from p = 2 to p < 2 in the case of the ball is due to F. Bayart
(oral communication): he uses Khinchin’s inequalities which prove to be very
well fitted to this problem.

Using this time the fact that Khinchin’s inequalities also provide a way
to put absolute values inside sums, we get the other extremity of the range
of p’s:

THEOREM 6.2. Let 1 < s < oo and p > 2s. Suppose that S C Mg N
My is dual bounded in H* (o) and weakly p-Carleson, and o satisfies the
structural hypotheses SH (p,s) and SH(q) for q such that 1/s =1/p+1/q.
Then S is H*(o)-interpolating with the L.E.P.

This theorem is the best possible in this generality. There is no hope to
show that dual boundedness in H* implies H*°-interpolation as L. Carleson
proved for the unit disc:

In [11] and [13] the authors proved that in the spectrum M of the uniform
algebra H>° (D) there are sequences S of points, S C M\D, such that the
product of the Gleason distances is bounded below away from 0, which
implies that S is dual bounded in H*°(D), but S is not H>-interpolating.

The above theorems will be consequences of the next lemma.

As above, to a sequence S of points in M, we associate a sequence
{€a}aes of independent Bernoulli variables.

LEMMA 6.3. Let S C M, be a sequence of points such that a dual system
{0p.a}acs exists in HP (o). Let 1 < s < p and q be such that 1/s =1/p+1/q.
Suppose that

p

A€ (S), B[ Aacatpa | S IAIE,
a€es

p

S is weakly qg-Carleson (if ¢ > 2), and o satisfies SH(q) and SH(p,s). Then
S is H*(o)-interpolating and moreover S has the L.E.P.

REMARK 6.4. If ¢ < 2 we do not assume any Carleson condition on S.
Proof. If p =1 we set

VAEL, T =) Aeora;
a€S
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the sum converges in H' (o) because the functions g1 4 are uniformly bounded
in H'(o). Then T(\) interpolates the sequence ), and clearly the operator
T is linear. Moreover, ||[T'(A)||1 < supgeg ||01,al| [|Alle2, so T is bounded.

If p > 1, we may suppose that 1 < s < p because if S € IH*(o) then by
Theorem 5.6, for S C M; we also have S € TH!(o).

First we truncate the sequence to the first N elements and get estimates
independent of N, i.e. for s € [1,p[ and v € ¢}, we shall build a function
h € H*(o) such that

Vji=0,....N =1, hlaj) = vjllke;lls  and [|h]gs < Cllvlle,,

with the constant C independent of N. The conclusion then follows using
Lemma 5.7.

Since 1/s = 1/p + 1/q, we have g € ]p’,00[. We set v; = Aju; with
wy =l € 61 and Ay = (/I Dlvsl*7 € . Then [lvfls = [AT, -
Let

. HkaHS’ _ ”kaHs/Hkqu
Ca:

a 1kallp kg.a(a) B 1Kallpka(a)
By SH(q) we have k,(a) > a||kal|q||kallq, hence

[1Kalls
a —=
allkallp[[kallg

<

P
(6

by SH(p, s).
Now set h(z) = > ,cg VaCalakq,a- Then

Va € S, h(a) = Va||ka||s/7

because 0,(b) = 0gp||kal|,y- This means that h interpolates v and clearly h
is linear in v. To estimate the H®(o) norm of h, set

fle,z):= Z AaCa€ala(2),  g(g,2) := Zuasakq@(z).

aes acs
Then h(z) = E(f(e, 2)g(e, z)) because E(g;er) = ;5. So we get

h(2)° = [E(f9)I* < (E(|f9]))* < E(fg]"),

hence

Il = (§ I do() " < (B fg) do(2)) .

X X
Using Holder’s inequality, we obtain

(61)  VE(fgl")do(z) = E[{ |fg]" do(2)]
X

X < (E[g |f|pdaDS/p<E[§(|g|qdaDS/q.

X
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Let Ay := g\ for a € S. Then HXHp < a~!8||A||, and the first factor
above is controlled by hypothesis:

(6.2) IEH lfIP da} = [HZ)\ Ca€alpa
X

a€sS

TR < 1A
Fubini’s theorem gives, for the second factor in (6.1),
E|{ |9l do] = | Ellgl")do
X X

Khinchin’s inequalities yield

Ellgl] = (3 lnallkya

a€sS

)"

Now, if ¢ > 2, S weakly g-Carleson implies

(6.3) [ Ellgtt do < § (3 luoPlkgal?)”” dor < il
X

X a€S

If ¢ <2 then (3 ,cq \1ta|?|kq.al?)?? < > acs tal¥lkqal?, hence integrating
over X we get

©6.4)  [Ellgdo < § (3 nallkgal?) do < 3 ial? § gal?do = [l
X X a€S acesS X

So putting (6.2) and (6.3) or (6.4) in (6.1) we get the lemma. =

6.1. Proof of Theorem 6.1. We state and prove a more precise version
of Theorem 6.1:

THEOREM 6.5. Let 1 < p <2, 1 < s < p and q be such that 1/s =
1/p+1/q. Suppose that S C MsNMy, {0p.atacs is a norm bounded sequence
in HP(o), S is weakly q-Carleson, and o satisfies the structural hypotheses
SH(q) and SH(p,s). Then S is H*(o)-interpolating with the L.E.P.

Proof. It remains to prove that the hypotheses of the theorem imply
those of Lemma 6.3.
We have to prove that

{HZ NaEalp.a

knowing that {opq}acs is bounded in HP(o), i.e. sup,eg ||0p.allp
Fubini’s theorem,

E [HZ )\agagp,a
a€s

1=

< C. By

} do,

p] = S EHZ )\agagp,a g
P X acsS



262 E. Amar

and by Khinchin’s inequalities,

B[S Mcaenal ] = (3 Mallenal?)””

a€eS a€S

Now p <2, s0 (ZaeS ’)‘a’2|9p7a’2)1/2 < (Zaes |/\a|p‘9p,a|p>1/pv hence

S EHZ )\agan,a p} dU S S (Z |>‘a|p‘gp,a|p> dO’ = Z |)‘a|p||gp,a
X a€sS

X a€eS a€sS
So, finally,

p
P

E [HZ NaEalp.a

a€eS

p
Ssup lop.allblIAD
| S5 llopalFIAE,

and the assertion holds. =

An alternative proof was suggested to me by F. Lust-Piquard. Recall
the definition of the type of a Banach space ([14, p. 162]) for the reader’s
convenience:

DEFINITION 6.6. The Banach space X is of type p, 1 < p < 2, if there
is a constant C > 1 such that

Vn eN, Vry,...,z, € X, (E(Hiqay”i))l/g < C(i Ha;ng(>1/p.
P =1

Now since any subspace of LP(o) is of type p for 1 < p <2 ([14, Th. I11.9,
p. 169]), for instance HP (o), we get
p) 1/p
p )

(B[S recata[]) " < (T WaPllne
a€s aes

hence

(S e
a€sS

On the other hand, because p < 2, we have

El[Srenanel[]) ™ < (][5 2o
a€s a€s

1/2 1/p
[) " <Csuplionalls( 3 hal?) " =Csupligpallo M
acs acsS

2
P a€sS

D"

Finally,

DIME S TG

E[HZ NoEabpal|

| < c?sup oy
wes p a€sS

and again the conclusion follows.
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6.2. Proof of Theorem 6.2. Again we state a more precise version of
Theorem 6.2:

THEOREM 6.7. Let 1 < s < oo and p > 2s. Suppose that S C Ms;N My,
{0a}aes is a norm bounded sequence in H*®(o), S is weakly p-Carleson,
and o satisfies the structural hypotheses SH(p, s) and SH(q) for q such that
1/s=1/p+1/q. Then S is H*(o)-interpolating with the L.E.P.

Proof. The idea is still to use Lemma 6.3, but in two steps.

Set gp.a = Oakpa for a € S. Then | gpally < l0allocllFpally = 2allcc < €
by hypothesis.

By Khinchin’s inequalities we have

P p/2
EHZ /\agan,a ] = (Z |)‘a|2‘gp7a|2> s
aes acs
but this time we use the fact that |0pa| < [|0co,all |Kap| < Clkapl, hence

p 9 9\ P/2
E[)aezsxaeagp,a ]scp(aezsw apl?)”

Since S is weakly p-Carleson, we get

p/2
|32 DalPikasl?| ) < DIAIE,
acs p/2

hence

B[S Mazatpa| ] £ § (3 Dallkasl?) dor < INIE,

aes P2 x Caes
and Lemma 6.3 shows that S is H*(o)-interpolating with the L.E.P. provided
that S is weakly g-Carleson if ¢ > 2. But because p > 2s we have ¢ =
sp/(p —s) < p, hence if ¢ > 2, then because ¢ < p, S weakly p-Carleson
implies S weakly ¢g-Carleson by Lemma 3.4, and the theorem is proved. m

7. Application to the polydisc and to the ball. In [4] it is proved
that the structural hypotheses hold in the polydisc. In that case the Carleson
sequences are characterized geometrically and they are the same for all p €
11, 00] (see [9], [10]), i.e. if S is a p-Carleson sequence for some p > 1, then
it is r-Carleson for any r € [1,00]. So in that case we just say that S is a
Carleson sequence if it is p-Carleson for some p > 1.

Moreover, still in that case, p-Carleson is the same as weakly p-Carleson,
so it is enough to say “Carleson sequence” in the theorem:

THEOREM 7.1. Let S C D" be a Carleson sequence that is dual bounded
in HP(D™) with either p = 0o or p < 2. Then S is H*(D")-interpolating for
any 1 < s < p with the L.E.P.
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Still in [4] it is proved that the structural hypotheses hold in the ball.
Again the Carleson measures, hence the Carleson sequences, are character-
ized geometrically and they are the same for all p € |1, 00[ (see [12]); also,
S Carleson is the same as S weakly Carleson.

Moreover, an easy corollary [4] of a theorem of P. Thomas [20] gives that
S dual bounded in HP(B) implies S Carleson, hence:

THEOREM 7.2. Let S C B be dual bounded in HP(B) with either p = co
or p < 2. Then S is H*(B)-interpolating for any 1 < s < p with the L.E.P.

We have for free the same result for the Bergman classes of the ball by the
“subordination lemma” [1]: to a function f(z) defined for z = (z1,...,2,) €
B, C C" associate the function f(z,w) := f(z) defined for (z,w) = (z1, ...,
Zn,w) € Byyy C C"ML. Then f € AP(B,) < f € HP(B,,,) with the same
norm. Moreover, if ' € HP(B,,4+1) then f(z) := F(z,0) € AP(B,) with
£l ap @,y < I F (e B0

Suppose that S C B,, is dual bounded in AP(B,,). This means that

Hoataes, Ya €S, oallarm,) < C and g4(b) = dap(1 — |a|2)_(”+1)/1’,
because the normalized reproducing kernel for AP(B,,) is
(1~ af2) 40/

b2 = gy

Embed S in B,;1 as S := {(a,0) : a € S}, as in [1]. Then the sequence
{0a}aes is precisely a bounded dual sequence for S c B,t1 in HP(B,41),
hence we can apply the previous theorem: if p = oo or p < 2 and s < p, then
S is H®(B,+1)-interpolating with the L.E.P. If T" is the operator realizing
the extension,

Aeli -The H*(Bp41),
(TA)(@,0) = Aallbiaoy e,y ITM  (Bosn) < CrllA,

then the operator (UM)(z) := (T'A\)(2,0) is a bounded linear operator from
(% to A*(B,) realizing the extension because ||k(,0)ll g+ (s, ,,) = [1ball 4+ ,,)>
where k is the kernel for H*(B,1) and b is the kernel for A*(B,,). Hence we
proved

COROLLARY 7.3. Let S C B be dual bounded in AP(B) with either p = oo
or p < 2. Then S is A*(B)-interpolating for any 1 < s < p with the L.E.P.

We also get the same result for the Bergman spaces with weight of
the form (1 — |2|?)*, k& € N, just by the same method, but considering
HP(B,,1x+1) instead of HP(B,,41).
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