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Weighted Bergman kernel: asymptotic behavior,

applications and comparison results

by

Bo-Yong Chen (Shanghai)

Abstract. Inspired by the work of Englǐs, we study the asymptotic behavior of the
weighted Bergman kernel together with an application to the Lu Qi-Keng conjecture.
Some comparison results between the weighted and the classical Bergman kernel are also
obtained.

1. Introduction. Let D be a domain in C
n, and ̺ a measurable non-

negative function on D. Let L2(D, ̺) denote all square-integrable functions
associated to the measure ̺dV , where dV is the Lebesgue measure. Further-
more, H2(D, ̺) := L2(D, ̺)∩O(D). Following Z. Pasternak-Winiarski [25],
the weight function ̺ is called admissible if H2(D, ̺) is a closed subspace
of L2(D, ̺) and for any z ∈ D the evaluation functional τz : H2(D, ̺)→ C

defined by τz(f) = f(z) is a bounded linear functional on H2(D, ̺). Ac-
cording to the Riesz representation theorem there is a reproducing kernel
K̺(z, w) := KD,̺(z, w), which is called the Bergman kernel with weight ̺.
When ̺ ≡ 1, it is just the (classical) Bergman kernel KD. A sufficient condi-
tion for a weight to be an admissible weight was given in [25]: if the function
̺−a is locally integrable with respect to the Lebesgue measure for some
a > 0, then ̺ is an admissible weight. In particular, ̺ is admissible provided
that 1/̺ ∈ L∞loc(D).
In [11], Englǐs proved that if φ, ψ > 0, 1/ψ ∈ L∞loc(D), − log φ is a convex

function and 1 ∈ H2(D,φkψ) for some k, then
lim
k→∞

Kφkψ(z, z)
1/k = 1/φ(z).(1)

This asymptotic formula plays an important role in the theory of Berezin
quantization: one always takes − log φ to be the potential of some Kähler
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metric ds2 =
∑

j,k gjkdzjdzk and ψ = det(gjk) (cf. [11] for details). It was
naturally asked by Englǐs whether (1) still holds if one replaces the hypoth-
esis of convexity by plurisubharmonicity. We will first give a partial answer
to this question.
Given domain D in C

n, we denote by PSH(D) the set of all psh func-
tions on D. Following Klimek [18], the pluricomplex Green function with a
logarithmic pole at w ∈ D is defined as follows:

gD(z, w) := sup{u(z)}
where the supremum is taken over all negative functions in PSH(D) satis-
fying u(z) ≤ log |z − w|+O(1) near w.
Theorem 1.1. Let D be a pseudoconvex domain in C

n such that

gD(z, w) ∼ log |z − w|
near w for any w ∈ D. Let φ, ψ > 0 be so that − log φ is psh and 1/ψ ∈
L∞loc(D). Suppose that there is a number k0 > 0 such that the function
−k0 logφ − logψ is bounded from below by a psh function λ ∈ L∞loc(D).
Then (1) holds.

The hypothesis on D holds for all bounded domains, hyperconvex do-
mains, domains carrying a bounded strictly psh function in C

n, and hyper-
bolic domains in the plane (see Section 2). We verify (1) for bounded pseu-
doconvex domains with the Kähler–Einstein metric or the Bergman metric.
Englǐs [11] also found a simple but interesting fact: if the asymptotic

equality (1) holds and φ satisfies a certain condition (1/φ cannot be extended
to a sesqui-holomorphic function on D×D), then Kφkψ(z, w) has a zero for
all sufficiently large k. On the other hand, Ligocka [20] showed that the
Bergman kernel of a certain Hartogs domain can be expressed as the sum
of a series of weighted Bergman kernels defined on another domain of lower
dimension. These facts enable one to find zeros of the Bergman kernel for
various Hartogs domains. We set

Dm,ϕ := {(z, t) ∈ D × C
m : |t|2 < ϕ(z)}

where D is a domain in C
n and ϕ is a positive function on D. It is well

known that Dm,ϕ is pseudoconvex iff D is pseudoconvex and − logϕ is psh.
Theorem 1.2. Let D be as in Theorem 1.1.

(i) Suppose that φ > 0, − log φ ∈ PSH(D) and 1/φ ∈ L∞loc(D) fails to
have a sesqui-holomorphic extension near a point z0 ∈ D. Then for any
neighborhood U of z0, KDm,φ((z, 0), (w, 0)) has a zero in U × U for all suf-
ficiently large m.
(ii) Suppose that {φk}∞k=1 is a sequence of positive functions on D such

that − log φk are psh, 1/φk ∈ L∞loc(D) and φ
1/k
k converge pointwise to a
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positive lower semicontinuous function φ so that 1/φm fails to have a sesqui-
holomorphic extension near a point z0 ∈ D for some m. Then for any
neighborhood U of z0, KDm,φk

((z, 0), (w, 0)) has a zero in U × U for all
sufficiently large k.

A result somewhat weaker than (i) has been obtained by Englǐs [12] under
the assumption that − log φ is convex. Finding zeros of the Bergman kernel
relates to an old conjecture raised by Lu Qi-Keng [21]: if D is a domain, then
KD(z, w) 6= 0 for all z, w ∈ D. A domain with this property is called a Lu Qi-
Keng domain. There are a lot of counterexamples to this conjecture (cf. Boas
[4] for a survey). Theorem 1.2 provides an easy way to find such examples.
Moreover, we can find, for any k ≥ 1, a convex domain in C

n(k) with a Ck

boundary, where n(k) depends on k, such that the zero set of the Bergman
kernel accumulates at some point (z0, z0), where z0 ∈ ∂D (cf. Theorem 5.3).
This gives a partial answer to a question posed by Diederich–Herbort [7]: is
there a bounded convex domain with smooth boundary satisfying the above
property? In that paper, they found a convex domain with C1 boundary
which has the above property. Such domains would provide negative answers
to the question of whether the Bergman kernel, viewed as a mapping from
D ×D to the Riemann sphere C, is continuous. It should be mentioned that
the answer is affirmative for bounded strongly pseudoconvex domains (cf.
[13]).

Another application of the weighted Bergman kernel is to give a sufficient
condition for a domain to be Hilbert–Stein (see Theorem 6.1)

A formula of Ligocka gives a relationship between the classical and
weighted Bergman kernel on domains of different dimensions. However, little
is known about the equal dimensional case. It was shown in [9] that for any
s > −1 there is a constant Cs > 1 such that

C−1s δD(z)
−s ≤ Ks(z, z)

KD(z, z)
≤ CsδD(z)−s

provided that D is a bounded, smooth, strongly pseudoconvex domain. Here
δD(z) is the euclidean boundary distance of z and Ks(z, z) = KδsD

(z, z).We
will give a generalization of this result. A domain is called locally convexi-
fiable if each p ∈ ∂D has a neighborhood U such that D ∩ U is biholomor-
phically equivalent to a bounded convex domain.

Theorem 1.3. If D is a bounded locally convexifiable domain in C
n,

then

C−1s δD(z)
−s ≤ Ks(z, z)

KD(z, z)
≤ CsδD(z)−s, s > −1, z ∈ D.

We also have a slightly weaker version of Theorem 1.3 for a very general
class of pseudoconvex domains.
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Theorem 1.4. Let D be a bounded pseudoconvex domain in C
n. Assume

that there exists a negative psh exhaustion function ̺ such that for some
number 0 < α ≤ 1 and a constant c > 1 the inequality

c−1δD(z)
α ≤ −̺(z) ≤ cδD(z)α

holds on D. Let 0 < t < 1. Then

(2) C−1s,t δD(z)
−s(1−t) ≤ Ks(z, z)

KD(z, z)
≤ Cs,tδD(z)−s(1−t), s > −1, z ∈ D.

Remark. 1. As already shown by Diederich–Fornæss [6], if D is a C2

bounded pseudoconvex domain, then there is a number 0 < α ≤ 1 such
that D has a defining function ̺1 with −(−̺1)α being psh. If D is a smooth
B-regular domain in the sense of Sibony [28], then the exponent α can be
any number in (0, 1) and (2) of Theorem 1.4 holds for any −1 < s < 0.

2. When D is strongly pseudoconvex and − log φ is psh, Diederich et al.
[9] proved that Kφ(z, z)/KD(z, z) ≥ Cφ(z)−1. It remains open whether the
inequality holds for general pseudoconvex domains.

2. Preliminaries. We first collect some properties of the weighted
Bergman kernel:

1) Maximal property [27]:

K̺(z, z) = sup
{
|f(z)|2 : f ∈ H2(D, ̺),

\
D

|f |2̺ dV ≤ 1
}
.

This implies K̺(z, z) is decreasing with respect to the weight.

2) Translation formula [11]: if g : D → D′ is a biholomorphic mapping,
then

K̺(z, z) = Jg(z)K̺◦g−1(g(z), g(w))Jg(w)

where Jg denotes the Jacobian determinant of g.

3) Localization property : if D is a bounded pseudoconvex domain, ̺ is
a positive function so that − log ̺ is psh on D and V ⊂⊂ U are two open
neighborhoods of p0 ∈ ∂D, then

KD,̺(z, z) ≥ C−1KD∩U,̺(z, z)

for all z ∈ D∩V (the proof is the same as in Ohsawa [24], although he only
considered the classical Bergman kernel function).

4) Ligocka’s formula [20]: Let D be a domain in C
n and let ϕ be a

positive measurable function on D such that 1/ϕ ∈ L∞loc(D). Define the
Hartogs domain as

Dm,ϕ := {(z, t) ∈ D × C
m : |t|2 < ϕ(z)}.
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Then

KDm,ϕ((z, t), (w, s)) =

∞∑

j=0

(j +m)!

j!πm
KD,ϕm+j (z, w)〈t, s〉j

where 〈 , 〉 denotes the scalar product in C
n.

To verify the hypothesis that gD(z, w) ∼ log |z − w| near w for any
w ∈ D, it suffices to find a bounded psh function which has this property.
Let us see some examples.

(a) If D is a bounded domain in C
n, then gD(z, w) ≥ log |z−w|− logRD,

where RD is the diameter of D. On the other hand, gD(z, w) ≤ log |z−w|+
O(1) near w. Hence the hypothesis is satisfied.
(b) If D is a hyperbolic planar domain (that is, D carries a bounded

nonconstant subharmonic function or equivalently, D carries a Green func-
tion), then the pluricomplex Green function is the classical (negative) Green
function, hence gD(z, w)− log |z − w| is harmonic near w.
(c) Let D be a pseudoconvex domain carrying a bounded C2 strictly psh

function u. For arbitrary w ∈ D, we take a function χ which is compactly
supported in D and identically equal to 1 in a neighborhood of w. One can
easily find a constant aw such that ψ(z) = χ(z) log |z−w|+ awu(z) is a psh
function on D with a logarithmic pole at w which is bounded above by a
constant depending only on w. Hence the hypothesis is satisfied.

3. An extension theorem of Ohsawa and applications. Recently,
Ohsawa [24] obtained a general L2-extension theorem from which one can
deduce all the earlier extension theorems. However, to state this theorem
completely is quite laborious. Here we present a special case which is suf-
ficient to prove our theorems. Let D be a domain in C

n and let D′ be the
intersection of D and a complex linear subspace of dimension k. We denote
by #(D′) the space of all Ψ ∈ PSH(D) satisfying the following conditions:
(i) D′ ⊂ Ψ−1(−∞);
(ii) for any p ∈ D′, there is a neighborhood U of p in D such that

sup
U\D′
|Ψ(z)− 2(n− k) log d(z,D′)| <∞

where d(z,D′) denotes the Euclidean distance from z to D′.

For each Ψ ∈ #(D′), one can define a positive measure dV [Ψ ] on D′ as
the minimum element of the partially ordered set of positive measures dµ
satisfying \

D′

f dµ ≥ lim sup
t→∞

2(n− k)
σ2n−2k−1

\
D

fe−ΨχR(Ψ,t) dV

for any nonnegative continuous function f which is compactly supported
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in D. Here σm denotes the volume of the unit sphere in R
m+1, and χR(Ψ,t)

denotes the characteristic function of the set

R(Ψ, t) = {x ∈ D : −t− 1 < Ψ < −t} .

Proposition 3.1 (see [24]). Let D be a pseudoconvex domain in C
n and

let D′ be as above. Let Ψ ∈ #(D′). Then for any holomorphic function f on
D′ satisfying

T
D′ |f |2 dV [Ψ ] <∞, there exists a holomorphic function F on

D such that F |D′ = f and\
D

|F |2e−Ψ dV ≤ 28π
\
D′

|f |2 dV [Ψ ].

We define

log c1D(z) := lim inf
ζ→z

2n(gD(ζ, z)− log |ζ − z|),

log c2D(z) := lim sup
ζ→z

2n(gD(ζ, z)− log |ζ − z|),

cD(z) :=
c1D(z)

1 + log(c2D(z)/c
1
D(z))

.

If gD(ζ, z) ∼ log |ζ − z| near z, then cD(z) > 0.

Theorem 3.2. Let D be a pseudoconvex domain as in Theorem 1.1. Sup-
pose that 1/φ ∈ L∞loc(D) and − log φ ∈ PSH(D). Then

Kφ(z, z) ≥ 2−8π−1
cD(z)

φ(z)
.

In particular, KD(z, z) > 0.

Proof. We first reduce to the case when φ is continuous. The technique
is standard. Let Dj , j = 1, 2, . . . , be a sequence of bounded pseudoconvex
domains so that Dj ⊂ Dj+1, D =

⋃∞
j=1Dj.We choose a sequence of smooth

functions φj defined on Dj such that − log φj is psh and − logφj ↓ − logφ
as j →∞. Let z ∈ D be an arbitrary point. Since

‖KDj ,φj (·, z)/KDj ,φj (z, z)
1/2‖Dj ,φj = 1,

there is a subsequence KDjk ,φjk
(·, z)/KDjk ,φjk

(z, z)1/2 which converges

weakly to a holomorphic function f on D with ‖f‖D,φ = 1. For any holo-
morphic function g on D with ‖g‖D,φ = 1, we have

|g(z)|
‖g‖Djk ,φjk

≤ KDjk ,φjk
(z, z)1/2.
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Letting k →∞, we obtain |g(z)|/‖g‖D,φ ≤ f(z), which implies that f(z) =
KD,φ(z, z)

1/2. If we prove that

KDjk ,φjk
(z, z) ≥ 2−8π−1 cD(z)

φjk(z)
,

then the desired estimate is obtained by letting k →∞.
For any fixed z ∈ D we set D′ = {z} and Ψ(ζ) = 2ngD(ζ, z)− logφ(ζ).

Since gD(ζ, z) ∼ log |ζ − z| near z, we can take a real δ > 0 such that
inf |ζ−z|=δ gD(ζ, z) > −Cδ where Cδ is a positive constant. Set

uz(ζ) =

{
gD(ζ, z) if |ζ − z| ≤ δ,
max{gD(ζ, z),−Cδ} if |ζ − z| > δ.

We see that gD(·, z) ∈ L∞loc(D\{z}) since gD(ζ, z) ≥ uz(ζ). Hence Ψ ∈ #(D′)
and furthermore,

2n

σ2n−1

\
D

e−ΨχR(Ψ,t) dV ≤
(
φ(z)

c1D(z)
+ o(t)

)
2n

σ2n−1

\
Mt

|ζ − z|−2n dV,

since Ψ−1(−t− 1,−t) is contained in

Mt := {ζ ∈ D : −t− 1− log c2D(z) + logφ(z)− o(t) < 2n log |ζ − z|
< −t− log c1D(z) + log φ(z) + o(t)}.

Here we use o(t) to denote any positive function which converges to zero as
t→∞. Note that

2n

σ2n−1

\
Mt

|ζ − z|−2n dV = 1 + log c
2
D(z)

c1D(z)
+ o(t).

Hence \
D′

dV [Ψ ] ≤ φ(z)

cD(z)
.

Applying Proposition 3.1 to the constant function f ≡ 1 on D′, we obtain
a holomorphic function F on D so that F (z) = 1 and\

D

|F |2e−Ψ dV ≤ 28π φ(z)

cD(z)
.

It follows that

Kφ(z, z) ≥
|F (z)|2T

D |F |2φdV
≥ 1T

D |F |2e−Ψ dV
≥ 2−8π−1 cD(z)

φ(z)

because gD(ζ, z) < 0 on D.
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An immediate consequence is the following

Corollary 3.3. Let D,φ be as in Theorem 3.2 and Dm,φ be the Hartogs

domain defined as in Section 2. Then

KDm,φ((z, t), (z, t)) ≥ Cm
φ(z)cD(z)

(φ(z)− |t|2)m+1

where Cm > 0 is a constant depending only on m.

Proof. Ligocka’s formula and Theorem 3.2 show

KDm,φ((z, t), (z, t)) ≥ 2−8π−1−mcD(z)2n
∞∑

j=0

(j + 1)(j + 2) . . . (j +m)
|t|2j
φm+j

.

By a simple computation, we obtain the desired result.

We also have

Corollary 3.4. Let D ⊂ C
n be a regular domain in the sense of Sibony

[27], that is, there is a negative C2 psh exhaustion function u satisfying
∂∂u ≥ ∂∂|z|2. Then there is a universal constant A > 0 such that

KD(z, z) ≥ A(−u(z))−n.
Remark. Note that the domain is not necessarily bounded.

Proof. Let θ be a smooth nondecreasing function on R
+ such that θ(x) =

x for x ≤ 1/2 and θ(x) = 1 for x ≥ 3/4. Let A1 be an upper bound for
the second derivative of log θ. For any z ∈ D we set λz = 1/|u(z)| and
rz = A1|u(z)| and

Ψz(ζ) = θ(|ζ − z|2/rz) exp(λzu(ζ)), ζ ∈ D.
A simple computation shows that logΨz is a psh function on D (cf. [27]).
Notice that 12 logΨz is a negative psh function with a logarithmic pole at z.
Furthermore,

lim
ζ→z

(
1

2
logΨz(ζ)− log |ζ − z|

)
= (eA1|u(z)|)−1.

The assertion then follows by an argument similar to, but simpler than, the
proof of Theorem 3.2.

4. Asymptotic behavior of the weighted Bergman kernel

function

Proof of Theorem 1.1. We proceed in two steps:

a) Upper limit: The proof is standard. Let z ∈ D and f ∈ H2(D,φkψ).
By the submean value theorem and the Cauchy–Schwarz inequality we
obtain
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|f(z)| ≤ 1

vol(B(z, δ))

\
B(z,δ)

|f | dV

≤ 1

vol(B(z, δ))

( \
B(z,δ)

|f |2φkψ dV
)1/2( \

B(z,δ)

φ−kψ−1 dV
)1/2

≤ 1

vol(B(z, δ))

( \
B(z,δ)

|f |2φkψ dV
)1/2

sup
B(z,δ)

φ−k/2ψ−1/2

where δ > 0 is so small that B(z, δ) ⊂ D. This implies that

Kφkψ(z, z)
1/k ≤ 1

vol(B(z, δ))1/k
sup
B(z,δ)

φ−1ψ−1/k.

The local boundedness of 1/ψ yields

lim sup
k→∞

Kφkψ(z, z)
1/k ≤ sup

B(z,δ)
φ−1.

Letting δ → 0, we have
lim sup
k→∞

Kφkψ(z, z)
1/k ≤ 1/φ(z)(2)

since − logφ is psh (which implies that 1/φ is upper semicontinuous).
b) Suppose that the inequality −k0 logφ − logψ ≥ λ holds for some

number k0 > 0 and some λ ∈ PSH(D). Since the weighted Bergman kernel
function is decreasing with respect to the weight, according to Theorem 3.2
one has, for all k ≥ k0,

Kφkψ(z, z) ≥ Kφk−k0e−λ(z, z) ≥ 2−8π−1cD(z)eλ(z)φ(z)k0−k

because − log φ, λ ∈ PSH(D). We immediately obtain
lim inf
k→∞

Kφkψ(z, z)
1/k ≥ 1/φ(z)

since cD(z) > 0 and λ ∈ L∞loc(D). The proof is complete.
In the theory of the Berezin quantization, one always takes − log φ to

be the potential of some Kähler metric ds2 =
∑

j,k gjkdzjdzk and ψ =
det(gjk). We are interested in two classical metrics: the Kähler–Einstein
metric and the Bergman metric. The Kähler–Einstein metric has “constant
curvature” in the sense that Ricjk = Cgjk for suitable constant C, where

Ricjk = −∂2 logψ/∂zj∂zk is the Ricci tensor of the metric. Mok–Yau [22]
showed that there exists a complete Kähler–Einstein metric on any bounded
pseudoconvex domain in C

n with constant curvature −(n + 1), and it is
unique (up to rescaling). This implies −(n+1) logφ− logψ is pluriharmonic
on D. Hence, by Theorem 1.1, we have

Corollary 4.1. Let D be a bounded pseudoconvex domain in C
n equip-

ped with the Kähler–Einstein metric. Then (1) holds.



120 B. Y. Chen

However, when D is equipped with the Bergman metric, we can only
obtain a weaker result.

Corollary 4.2. Let D be a pseudoconvex domain such that

KD(z, z) ≥ CαδD(z)−α

for some positive constants α,Cα. Then (1) also holds. Here δD(z) denotes
the boundary distance of z.

Remark. If D is a bounded pseudoconvex domain in C
n with a Lip-

schitz boundary, then KD(z, z) ≥ CεδD(z)
−2+ε for any ε > 0 (cf. [24]).

Hence the above corollary applies in particular to any bounded pseudocon-
vex domain with Lipschitz boundary.

Proof of Corollary 4.2. Let z ∈ D be fixed and let f ∈ H2(D) with
‖f‖D ≤ 1. Take a number a > 0 so that the polydisc
P (z, aδD(z)) := {ζ ∈ C

n : max{|ζ1 − z1|, . . . , |ζn − zn|} < aδD(z)} ⊂⊂ D.
By Cauchy’s integral formula, we have

∂f

∂zj
(z) =

1

(2πi)n

\
∂P (z,r)

f(ζ1, . . . , ζn)(ζ1 − z1)−1

. . . (ζj − zj)−2 . . . (ζn − zn)−1 dζ1 . . . dζn
for any 1 ≤ j ≤ n, 0 < r ≤ aδD(z). Therefore,∣∣∣∣

∂f

∂zj
(z)

∣∣∣∣ ≤
1

(2π)n

\
∂P (z,r)

|f(ζ1, . . . , ζn)|r−11 . . . r−2j . . . r−1n |dζ1 . . . dζn|.

Integrating on both sides we obtain

∣∣∣∣
∂f

∂zj
(z)

∣∣∣∣
aδD(z)\
a
2
δD(z)

. . .

aδD(z)\
a
2
δD(z)

r21 . . . r
3
j . . . r

2
n dr1 . . . drn

=
\

P (z,aδD(z))\P (z,
a
2
δD(z))

|f | dV

≤
( \
D

|f |2 dV
)1/2
vol(P (z, aδD(z)))

1/2 ≤ C1
δD(z)n

where C1 > 0 depends only on a, n. Let us recall a well known formula for
the Bergman metric:

ds2(z,X) = KD(z, z)
−1 sup{|Xf(z)|2 : f ∈ H2(D), f(z) = 0 and ‖f‖D ≤ 1}

for any z ∈ D, X ∈ C
n. We immediately establish

ψ(z) = det(gjk) ≤ C2KD(z, z)
−nδD(z)

−2n(4n+1)
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where C2 > 0 depends also on a, n only. Hence

− logψ ≥ − logC2 + n logKD + 2n(4n+ 1) log δD

≥ − logC2 +
2n(4n+ 1)

α
logCα − n

(
2(4n+ 1)

α
− 1
)
logKD

becauseKD(z) ≥ CαδD(z)−α. Let k0 = n(2(4n+ 1)/α−1). Since φ = 1/KD,
the function −k0 log φ − logψ is bounded from below by a constant, hence
Theorem 1.1 applies.

5. Zeroes of the Bergman kernel. Following an argument similar to
the proof of Theorem 1.1, but simpler, we obtain

Lemma 5.1. Let D be as in Theorem 1.1 and let {φk}k>0 be a sequence
of positive functions on D such that − log φk are psh, 1/φk ∈ L∞loc(D) and
φ
1/k
k converge pointwise to a lower semicontinuous function φ on D. Then

lim
k→∞

Kφk(z, z)
1/k = 1/φ(z).

The following is a slight improvement of a theorem of Englǐs [11]:

Lemma 5.2. Let D, φk, φ be as above. Suppose that 1/φ cannot be ex-
tended as a sesqui-holomorphic function near some point z0 ∈ D. Then for
any neighborhood U of z0, Kφk(z, w) has a zero in U ×U for all sufficiently
large k.

Proof. Suppose that Kφk(z, w) are zero-free in U ×U for all k. We may
assume that U is simply connected. Then for every k, there is a sesqui-
holomorphic branch of Kφk(z, w)

1/k on U ×U. Since 1/φ is locally bounded,
by (2), Kφk(z, z)

1/k is uniformly bounded on U × U , therefore so is

Kφk(z, w)
1/k because

|Kφk(z, w)|2 ≤ Kφk(z, z)Kφk(w,w).

Hence there would be a subsequence Kφkj
(z, w)1/kj which converges uni-

formly on compact subsets of U×U to a sesqui-holomorphic function L(z, w).
Then L(z, z) = 1/φ(z), which is a contradiction.

Proof of Theorem 1.2. By Ligocka’s formula, one has

KΩm,ϕ((z, 0), (w, 0)) =
m!

πm
Kϕm(z, w).

Let ϕ = φ. Then the assertion of (i) follows immediately from Theorem
1.1 and Lemma 5.2. Similarly for ϕ = φk, the assertion of (ii) follows from
Lemmas 5.1 and 5.2.

Example 1. We take the unit disc ∆ as the base domain and φ(z) =
1− |z|k where k ≥ 1 is not an even integer. It is easy to see that − log φ is
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psh on ∆ and 1/φ is not real-analytic at z = 0 (which implies that it cannot
be extended to a sesqui-holomorphic function). It follows from Theorem 1.2
that there is a positive integer m(k) such that the Bergman kernel of the
convex domain

Ωk := {(z, t) ∈ C
m(k)+1 : |z|k + |t1|2 + . . .+ |tm(k)|2 < 1}

has a zero. Moreover, the domain Ωk has a C
2 boundary and it is very

“close” to the unit ball in C
m(k)+1 as k → 2+; however, KΩk always has a

zero which is also very “close” to the origin. Notice that for any sufficiently
small C∞ pertubation of the unit ball in C

n (the dimension is fixed!), the
Bergman kernel of such a domain is zero-free (cf. [15]). It is natural to ask
whether there exists a Reinhardt domain of type |z1|2α1 + . . .+ |zn|2αn < 1,
where all αj are positive integers, such that the Bergman kernel has a zero.

Example 2. Let

φk =
1− |z1|2

1 + (1 + |z1|)2k + (1− |z1|)2k
, k = 1, 2, . . .

Define

Ωk = {(z1, z2) ∈ C
2 : |z2|2 < φk(z1), z1 ∈ ∆}.

We claim that the function

− log φk = −12 log(1− |z1|2) + 12 log((1 + |z1|)2k + (1− |z1|)2k)

is subharmonic on ∆. In fact, if we write

(1 + |z1|)2k + (1− |z1|)2k = 2 +
2k∑

j=1

a2j |z1|2j =: 2 + ϕk(z1)

where a2j > 0, then from the Cauchy–Schwarz inequality we obtain ϕk∂∂ϕk
− ∂ϕk∂ϕk ≥ 0. It follows that log(2 + ϕk) is subharmonic, and hence so
is − log φk. Clearly φ1/kk → (1 + |z1|)−1 as k → ∞. Since 1 + |z1| is not
real-analytic at 0, KΩk(z, w) has a zero for all sufficiently large k. Notice
that the defining function of Ωk can be written as

|z2|2((1 + |z1|)2k + (1− |z1|)2k) + |z1|2 + |z2|2 < 1.

Thus we obtain a bounded, smooth, algebraic, strictly pseudoconvex, com-
plete Reinhardt domain in C

2 for which the Lu Qi-Keng conjecture fails.

Problem. Is the Lu Qi-Keng conjecture valid for convex domains in C
2?

By the classical scaling method, we obtain
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Theorem 5.3. For every positive integer k > 0, there are a positive
integer m(k) and a bounded convex domain Ω in C

m(k) with a Ck boundary
such that the zero set {(z, w) ∈ Ω × Ω : KΩ(z, w) = 0} accumulates at a
point (z0, z0), where z0 ∈ ∂Ω.

Proof. Example 1 shows that for each positive integer k there is another
positive integer m(k) such that the Bergman kernel of the domain

Ωk := {(z, t) ∈ C
m(k)+1 : |z|k+1/2 + |t1|2 + . . .+ |tm(k)|2 < 1}

has a zero ((z∗, t∗), (w∗, s∗)) ∈ Ωk×Ωk. Clearly, Ωk is a convex domain with
Ck boundary. Similarly to [7], we consider the domain

U = {ζ ∈ C
m(k)+1 : Re ζm(k) + |ζ0|k+1/2 + |ζ1|2 + . . .+ |ζm(k)−1|2 < 0}.

Notice that U is mapped by

Φ(ζ) =

(
41/k+1/2ζ0

(ζm(k) − 1)2/k+1/2
,
2ζ1

ζm(k) − 1
, . . . ,

2ζm(k)−1

ζm(k) − 1
,
ζm(k) + 1

ζm(k) − 1

)

biholomorphically onto the domain Ωk, and the scaling map

Sε(ζ) = (ε
1/k+1/2ζ0,

√
ε ζ1, . . . ,

√
ε ζm(k)−1, εζm(k))

is a holomorphic automorphism of U for arbitrary ε > 0. Set Fε = Φ ◦
Sε ◦ Φ−1. Then KΩk vanishes at all the points (Fε(z

∗, t∗), Fε(w
∗, s∗)). Since

Fε(z
∗, t∗), Fε(w

∗, s∗)→ z0 = (0, . . . , 0,−1) ∈ ∂Ωk, the proof is complete.

Remark. Since KΩk(z, z) → ∞ as z → ∂Ωk, the function KΩk :
Ωk ×Ωk → C cannot be continuous.

6. Hilbert–Steinness of certain bounded domains. In 1970, Fis-
cher [14] introduced the concept of Hilbert–Stein complex space in an at-
tempt to prove an old conjecture of Serre (1953) that the holomorphic fiber
bundle with a Stein base and a Stein fiber is Stein. He called a Stein space F
Hilbert–Stein if there exists a Hilbert space H of holomorphic functions on
F which are invariant under the automorphism group AutF of F and sat-
isfy the following conditions: (i) H separates points of F ; (ii) F is H-convex;
(iii) for any map from a complex space Y to AutF such that the associated
map Y × F → F is holomorphic, the induced map Y → AutH is holo-
morphic. It was shown in [14] that condition (iii) is trivially satisfied for all
bounded domains in C

n, and a bounded domain D is Hilbert–Stein if every
automorphism has bounded Jacobian determinant and limz→∂DKD(z, z) =
∞. By Fefferman’s well-known theorem [13], any bounded smooth strongly
pseudoconvex domain is Hilbert–Stein. We prove
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Theorem 6.1. Let D be a bounded domain in C
n. Suppose that there

exists a point w0 ∈ D such that:
(1) For any h ∈ AutD, there exists a positive constant C ′ depending

only on w0 and h such that

|KD(z, h
−1(w0))| ≤ C ′|KD(z, w0)|.

(2) There exists a point w0 ∈ D such that limz→∂DKw0(z, z) =∞, where
Kw0(z, z) denotes the Bergman kernel function associated to the weight func-
tion |KD(z, w0)|2.
Then D is Hilbert–Stein.

Proof. Since D is bounded, KD(z, w0) is not identically zero. Hence

|KD(z, w0)|−1/2 is locally integrable, which implies that |KD(z, w0)|2 is an
admissible weight. We set

H =
{
f ∈ O(D) :

\
D

|f(z)|2|KD(z, w0)|2 dVz <∞
}
.

Since
T
D |KD(z, w0)|2 dVz = KD(w0, w0), we conclude that H contains all

bounded holomorphic functions. Hence (i) is satisfied because bounded holo-
morphic functions separate points of D. Let h ∈ AutD. For any f ∈ H, one
has\
D

|f(h(z))|2|KD(z, w0)|2 dVz =
\
D

|f(ζ)|2|KD(ζ, h
−1(w0))|2|Jh(w0)|−2 dVζ

≤ C ′′
\
D

|f(ζ)|2|KD(ζ, w0)|2 dVζ <∞,

where the last inequality follows from condition (1). This implies that H
is invariant under AutD. It suffices to show that D is H-convex. Suppose
that there is a sequence {wk}∞k=1 of points in D such that supk |f(wk)| <∞
for any f ∈ H. It follows immediately that supkKw0(wk, wk) < ∞. This
contradicts condition (2). The proof is complete.

Remark. Condition (2) holds in particular when limz→∂DKD(z, z) =
∞ and |KD(z, w0)| is bounded. This includes for example all bounded pseu-
doconvex domains of finite type and all bounded pseudoconvex complete
Reinhardt domains (cf. [1]). However, condition (1) is rather difficult to
check. Just as with Lu Qi-Keng domains, one can only obtain a few ex-
amples which satisfy the conditions of the theorem. Based on the explicit
expression of the Bergman kernel, it is not difficult to verify these condi-
tions for balls, polydiscs and the Tullen domain {z ∈ C

2 : |z1|2 + |z2|p < 1},
p > 0. However, in these cases all automorphisms have bounded Jacobian
determinants. Hence Theorem 6.1 gives no new results for these cases.
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7. Proofs of Theorems 1.3 and 1.4

1. Quantitative estimates of the pluricomplex Green function. Recently,
it was proved that any bounded pseudoconvex domain is complete with
respect to the Bergman metric if the volume of the sublevel set

A(w,D) := {z ∈ D : gD(z, w) < −1}
tends to zero as w → ∂D (cf. [5], [16]). This implies the Bergman complete-
ness of bounded hyperconvex domains [3], [16]. In this spirit, Diederich–
Herbort gave a quantitative estimate of this sublevel set for certain pseudo-
convex domains.

Proposition 7.1 (see [8]). Let D be as in Theorem 1.4. Then for any
fixed number 0 < t ≪ 1 there is a number 0 < δt ≪ 1 such that for all
w ∈ D with δD(w) < δt,

A(w,D) ⊂ {z ∈ D : δD(w)1+t < δD(z) < δD(w)
1−t}.

In fact, Diederich–Herbort only proved that

A(w,D) ⊂ {z ∈ D : δD(z) < δD(w)
1−t}.

However, the other part is implicit in their paper. By Lemma 2.4 in [9],

there is a constant C̃ = C̃(D) such that for any compact set K ⊂ D,

sup
w∈K
|gD(z, w)| ≤ C̃δD(K)−αδD(z)α log

2 dim(D)

δD(K)

for all z ∈ D with δD(z) ≤ 1
2δD(K). Here δD(K) denotes the distance

between K and ∂D, and α is as in Theorem 1.4. Let now w ∈ D be arbitrary
and take K = {z ∈ D : δD(z) ≥ δD(w)}. One has

A(w,D) ⊂
{
z ∈ D : δD(z) >

1

2
δD(w)

}

∪
{
z ∈ D : δD(z) ≤

1

2
δD(w), C̃δD(w)

−αδD(z)
α log

2 dim(D)

δD(w)
> 1

}
,

from which the assertion follows immediately.

For convex domains, we can obtain a slightly stronger result.

Proposition 7.2. Let D be a bounded convex domain in C
n. Then

A(w,D) ⊂ {z ∈ D : C−1δD(w) < δD(z) < CδD(w)}.

Proof. Let w ∈ D. Take a boundary point w∗ so that |w−w∗| = δD(w).
Since D is convex, there exists a linear function hw∗ such that hw∗(w

∗) = 0
and D ⊂ {z ∈ C

n : Rehw∗(z) < 0}. Set fw∗ = ehw∗ . Since |hw∗ | < 1 on D,
one has
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−gD(z, w) ≤ −g∆(fw∗(z), fw∗(w)) ≤ − log
|fw∗(z)− fw∗(w)|
|1− fw∗(w)fw∗(z)|

≤ 1
2
log

(
1 +
(1− |fw∗(z)|2)(1− |fw∗(w)|2)

|fw∗(z)− fw∗(w)|2
)

≤ (1− |fw∗(z)|
2)(1− |fw∗(w)|2)

2|fw∗(z)− fw∗(w)|2

≤ 2 (1− |fw∗(z)|)(1− |fw∗(w)|)|fw∗(z)− fw∗(w)|2
where ∆ is the unit disc. If 1− |fw∗(z)| ≥ 2(1− |fw∗(w)|), then
|fw∗(z)− fw∗(z)| ≥ 1− |fw∗(z)| − (1− |fw∗(w)|) ≥ 12(1− |fw∗(z)|).

This implies

−gD(z, w) ≤ 8
1− |fw∗(w)|
1− |fw∗(z)|

.

Hence

A(w,D) ⊂ {z ∈ D : 1− |fw∗(z)| ≤ 8(1− |fw∗(w)|)}.
Notice that 1−|fw∗(w)| ≤ λ1δD(w) and 1−|fw∗(z)| ≥ λ2δD(z) because D is
convex. Here λ1, λ2 are two positive constants depending only on D. Hence

A(w,D) ⊂ {z ∈ D : δD(z) < CδD(w)}
where C = 8λ1/λ2. The conclusion follows from the symmetry of gD for
convex domains.

2. Proofs of the theorems. We first prove Theorem 1.4. The main part
of the proof is to show the following two statements:

Lemma 7.3. (i) For any s ≥ 0, one has
Ks(z, z)

KD(z, z)
≥ C−1 inf

A(z,D)
δ−sD .

(ii) For any s > −α, one has
KD(z, z)

Ks(z, z)
≥ C−1 inf

A(z,D)
δsD.

Proof. Set φz = − log(−gD(·, z) + 1) for fixed z ∈ D. Define

ϕz =

{−s log δD + 2ngD(·, z) + φz for case (i),
2ngD(·, z) + φz for case (ii).

Clearly, ϕz is psh on D. Let χ : R → [0, 1] be a cut-off function such that
χ = 1 on (−∞,−2) and χ = 0 on (−1,∞). Set

η =

{
χ(φz/log 2)KD(·, z)/KD(z, z)

1/2 for case (i),

χ(φz/log 2)Ks(·, z)/Ks(z, z)
1/2 for case (ii).
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We will carry out the proof under the assumption that φz, ϕz are C
2; the

general case follows from a standard limiting procedure. Observe that

|∂χ(φz/log 2)|∂∂ϕz ≤ sup |χ
′|/log 2

because ∂∂ϕz ≥ ∂∂φz ≥ ∂φz∂φz. We solve the equation ∂u = ∂η as in
Lemma 4.4.1 of [17] together with the estimate\
D

|u|2e−ϕz dV ≤
\
D

|∂η|2
∂∂ϕz

e−ϕz dV

≤ C





\
A(z,D)

|KD(·, z)/KD(z, z)
1/2|2δsD dV for case (i),\

A(z,D)

|Ks(·, z)/Ks(z, z)
1/2|2 dV for case (ii),

≤ C





sup
A(z,D)

δsD for case (i),

sup
A(z,D)

δ−sD for case (ii).

Set F = η − u. Then F is holomorphic on D and

F (z) =

{
KD(z, z)

1/2 for case (i),

Ks(z, z)
1/2 for case (ii),

because gD(ζ, z) ∼ log |ζ − z| near z. Furthermore, for case (i) one has\
D

|F |2δsD dV ≤ 2
\
D

|η|2δsD dV + 2
\
D

|u|2δsD dV

≤ 2
\
D

|η|2δsD dV + 2
\
D

|u|2e−ϕz dV ≤ C sup
A(z,D)

δsD

because 2ngD( · , z) + φz < 0 on D. Similarly for case (ii) one has\
D

|F |2 dV ≤ C sup
A(z,D)

δ−sD .

The assertion of the lemma follows immediately from the following fact:

Ks(z, z) ≥
|F (z)|2T

D |F |2δsD dV
for case (i),

KD(z, z) ≥
|F (z)|2T
D |F |2 dV

for case (ii).

Lemma 7.4. For any −α < s < 0, one has

Ks(z, z)

KD(z, z)
≥ C−1s inf

A(z,D)
δ−sD .
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Proof. Set ψ = (s/α) log(−̺). It is a psh function which satisfies
−s
α
∂∂ψ ≥ ∂ψ∂ψ.

Let φz, χ be as above. We set

ϕz = 2ngD(·, z) + φz, η = χ(φz/log 2)KD(·, z)/KD(z, z)
1/2.

We will use a generalized Donnelly–Fefferman estimate (cf. [2]):

Proposition 7.5. Let D be a bounded pseudoconvex domain in C
n, let

ϕ, ψ ∈ PSH(D) and assume that
r∂∂ψ ≥ ∂ψ∂ψ

in the distribution sense for suitable 0 < r < 1 (in other words, the function
−e−ψ/r is psh). Then for any ∂-closed (0, 1)-form g in D there is a solution
u to the equation ∂u = g such that\

D

|u|2e−ϕ+ψ dV ≤ Cr
\
D

|g|2
∂∂(ϕ+ψ)

e−ϕ+ψ dV.

Applying this proposition with ϕ = ϕz, r = −s/α, we obtain a solution
to the equation ∂u = ∂η together with the estimate\

D

|u|2eψ−ϕ dV ≤ Cs
\
D

|∂η|2
∂∂(ϕ+ψ)

eψ−ϕ dV

≤ Cs
\

A(z,D)

|KD(·, z)/KD(z, z)
1/2|2δsD dV

≤ Cs sup
A(z,D)

δsD

because eψ ≈ δsD. We set F = η − u. A similar argument to the above
completes the proof of the lemma.

Proof of Theorem 1.4. The statement follows directly from Proposition
7.1 and Lemmas 7.3 and 7.4.

Proof of Theorem 1.3. The localization property of the weighted Berg-
man kernel function reduces the proof to the case when D is convex. Let
PD be the Minkowski functional of D. Then ̺ := PD − 1 is a negative psh
exhaustion function satisfying

C−1δD(z) ≤ −̺(z) ≤ CδD(z).
Then the assertions of Lemmas 7.3 and 7.4 still hold with α replaced by 1.
The proof is complete by Proposition 7.2.
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