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Product of operators and numerical range preserving maps

by

Chi-Kwong Li (Williamsburg, VA) and Nung-Sing Sze (Hong Kong)

To Professor Miroslav Fiedler on the occasion of his 80th birthday

Abstract. Let V be the C∗-algebra B(H) of bounded linear operators acting on the
Hilbert space H, or the Jordan algebra S(H) of self-adjoint operators in B(H). For a fixed
sequence (i1, . . . , im) with i1, . . . , im ∈ {1, . . . , k}, define a product of A1, . . . , Ak ∈ V by
A1 ∗ · · · ∗Ak = Ai1 · · ·Aim

. This includes the usual product A1 ∗ · · · ∗Ak = A1 · · ·Ak and
the Jordan triple product A ∗ B = ABA as special cases. Denote the numerical range of
A ∈ V by W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}. If there is a unitary operator U and a
scalar µ satisfying µm = 1 such that φ : V → V has the form

A 7→ µU
∗
AU or A 7→ µU

∗
A

t
U,

then φ is surjective and satisfies

W (A1 ∗ · · · ∗ Ak) = W (φ(A1) ∗ · · · ∗ φ(Ak)) for all A1, . . . , Ak ∈ V.

It is shown that the converse is true under the assumption that one of the terms in
(i1, . . . , im) is different from all other terms. In the finite-dimensional case, the converse
can be proved without the surjectivity assumption on φ. An example is given to show that
the assumption on (i1, . . . , im) is necessary.

1. Introduction. Let H be a Hilbert space having dimension at least 2.
Denote by B(H) the C∗-algebra of bounded linear operators acting on H,
and S(H) the Jordan algebra of self-adjoint operators in B(H). If H has
dimension n < ∞, then B(H) is identified with the algebra Mn of n × n
complex matrices and S(H) is identified with the set Sn of n × n complex
Hermitian matrices. Define the numerical range of A ∈ B(H) by

W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}.
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Let U ∈ B(H) be a unitary operator, and define a mapping φ on B(H) or
S(H) by

A 7→ U∗AU or A 7→ U∗AtU,

where At is the transpose of A with respect to a fixed orthonormal basis.
(We will always use this interpretation of At in our discussion.) Then φ is a
bijective linear map preserving the numerical range, i.e., W (φ(A)) = W (A)
for all A.

There has been considerable interest in studying the converse of the
above statement. Pellegrini [8] obtained an interesting result on numerical
range preserving maps on a general C∗-algebra, which implies that a sur-
jective linear map φ : B(H) → B(H) preserving the numerical range must
be of the above form. Furthermore, by the result in [7], the same conclusion
also holds for linear maps φ acting on S(H). In [6], the author showed that
additive preservers of the numerical range of matrices must be linear and
have the standard form A 7→ U∗AU or A 7→ U∗AtU . In [2], it was shown
that a multiplicative map φ : Mn → Mn satisfies W (φ(A)) = W (A) for all
A ∈ Mn if and only if φ has the form A 7→ U∗AU for some unitary matrix
U ∈ Mn. In [5], the authors replaced the condition that “φ is multiplicative
and preserves the numerical range” on the surjective map φ : B(H) → B(H)
by the condition that “W (AB) = W (φ(A)φ(B)) for all A, B”, and showed
that such a map has the form A 7→ ±U∗AU for some unitary operator
U ∈ B(H). They also showed that a surjective map φ : B(H) → B(H) sat-
isfies W (ABA) = W (φ(A)φ(B)φ(A)) for all A, B ∈ B(H) if and only if φ has
the form A 7→ µU∗AU or A 7→ µU∗AtU for some unitary operator U ∈ B(H)
and µ ∈ C with µ3 = 1. Similar results for mappings on S(H) were also ob-
tained. Recently, Gau and Li [3] obtained a similar result for surjective maps
φ : V → V, where V = B(H) or S(H), preserving the numerical range of
the Jordan product, i.e., W (AB + BA) = W (φ(A)φ(B) + φ(B)φ(A)) for all
A, B ∈ V. Specifically, they showed that such a map must be of the form
A 7→ ±U∗AU or A 7→ ±U∗AtU for some unitary operator U ∈ B(H). More-
over, the surjectivity assumption can be removed in the finite-dimensional
case.

It is interesting that all the results mentioned in the preceding paragraph
illustrate that under some mild assumptions, a numerical range preserving
map φ is a C∗-isomorphism on B(H) or a Jordan isomorphism on S(H) up
to a scalar multiple. Following this line of study, we consider a product of
matrices involving k matrices with k ≥ 2 which includes the usual product
A1 ∗ · · · ∗ Ak = A1 · · ·Ak, and the Jordan triple product A ∗ B = ABA. We
prove the following result.

Theorem 1.1. Let (F,V) = (C, B(H)) or (R, S(H)). Fix a positive in-

teger k and a finite sequence (i1, . . . , im) such that {i1, . . . , im} = {1, . . . , k}
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and there is an ir not equal to is for all other s. For A1, . . . , Ak ∈ V, let

A1 ∗ · · · ∗ Ak = Ai1 · · ·Aim .

A surjective map φ : V → V satisfies

(1.1) W (φ(A1) ∗ · · · ∗ φ(Ak)) = W (A1 ∗ · · · ∗Ak) for all A1, . . . , Ak ∈ V

if and only if there exist a unitary operator U ∈ B(H) and a scalar µ ∈ F

with µm = 1 such that one of the following conditions holds:

(a) φ has the form A 7→ µU∗AU .

(b) r = (m + 1)/2, (i1, . . . , im) = (im, . . . , i1), and φ has the form A 7→
µU∗AtU .

(c) V = S2, (ir+1, . . . , im, i1, . . . , ir−1) = (ir−1, . . . , i1, im, . . . , ir+1) and

φ has the form A 7→ µU∗AtU .

Here At denotes the transpose of A with respect to a certain orthonormal

basis of H. Furthermore, if the dimension of H is finite, then the surjectivity

assumption on φ can be removed.

Note that the assumption that there is ir /∈ {i1, . . . , ir−1, ir+1, . . . , im}
is necessary. For example, if A ∗ B = ABBA, then mappings φ satisfying
W (φ(A)∗φ(B)) = W (A∗B) may not have nice structure. For instance, φ can
send all involutions, i.e., those operators X ∈ B(H) such that X2 = IH , to
a fixed involution, and φ(X) = X for other X.

For the usual product A1 ∗ · · · ∗ Ak = A1 · · ·Ak and the Jordan triple
product A∗B = ABA, Hou and Di [5] have also obtained the result for B(H)
in Theorem 1.1 with the surjectivity assumption. Our result is stronger when
H is finite-dimensional.

It turns out that Theorem 1.1 can be deduced from the following special
case.

Theorem 1.2. Let (F,V) = (C, B(H)) or (R, S(H)). Suppose r, s and

m are nonnegative integers such that m − 1 = r + s > 0. A surjective map

φ : V → V satisfies

W (φ(A)rφ(B)φ(A)s) = W (ArBAs) for all A, B ∈ V(1.2)

if and only if there exist a unitary operator U ∈ B(H) and a scalar µ ∈ F

with µm = 1 such that one of the following conditions holds:

(a) φ has the form A 7→ µU∗AU .

(b) r = s and φ has the form A 7→ µU∗AtU .

(c) V = S2 and φ has the form A 7→ µU∗AtU .

Here At denotes the transpose of A with respect to a certain orthonormal

basis of H. Furthermore, if the dimension of H is finite, then the surjectivity

assumption on φ can be removed.
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We present some auxiliary results in Section 2, and the proofs of the
theorems in Section 3.

2. Auxiliary results. For any x, y ∈ H, denote by xy∗ the rank one
operator (xy∗)z = (z, y)x for all z ∈ H. Then for any operator A ∈ B(H)
with finite rank, A can be written as x1y

∗
1 + · · · + xky

∗
k for some xi, yi ∈ H.

Define the trace of A by

tr(A) = (x1, y1) + · · · + (xk, yk).

If H is finite-dimensional, tr(A) is equivalent to the usual matrix trace, i.e.,
the sum of all diagonal entries of the matrix A. For each positive integer m,
let

Rm = {µxx∗ : µ ∈ F and x ∈ H with (x, x) = 1 = µm}.
Note that R1 is the set of Hermitian rank one idempotents, and for all
m > 1, R1 ⊆ Rm.

Proposition 2.1. Let V = B(H) or S(H) and F = C or R accordingly.

Suppose m is a positive integer with m > 1, and φ : V → V is a map

satisfying

tr(φ(A)m−1φ(B)) = tr(Am−1B) for all A ∈ Rm and B ∈ V.(2.1)

If H is finite-dimensional , then φ is an invertible F-linear map. If H is

infinite-dimensional and φ(Rm) = Rm, then φ is F-linear.

Proof. Suppose H is finite-dimensional. We use an argument similar to
that in the proof of Proposition 1.1 in [1]. Let V = Mn or Sn. For every
X = (xij) ∈ V, let RX be the n2 row vector

RX = (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn),

and CX the n2 column vector

CX = (x11, x21 . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn)t.

Then we deduce from (2.1) that for all A ∈ Rm and B ∈ V,

(2.2) Rφ(A)m−1Cφ(B) = tr(φ(A)m−1φ(B)) = tr(Am−1B) = RAm−1CB.

Note that we can choose A1, . . . , An2 in Rm such that {Am−1
1 , . . . , Am−1

n2 }
forms a basis for V. Let ∆ and ∆φ be n2 × n2 matrices having rows
R

Am−1

1

, . . . , R
Am−1

n2

and Rφ(A1)m−1 , . . . , Rφ(A
n2)m−1 , respectively. By (2.2),

∆φCφ(B) = ∆CB for all B ∈ V.

Now take a basis {B1, . . . , Bn2} in V and let Ω and Ωφ be the n2 × n2 ma-
trices having columns CB1

, . . . , CB
n2

and Cφ(B1), . . . , Cφ(B
n2), respectively.

Then ∆φΩφ = ∆Ω. Note that both ∆ and Ω are invertible, hence so is ∆φ.
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Therefore, for any B ∈ V,

Cφ(B) = ∆−1
φ ∆CB.

Hence, φ is invertible and F-linear.

Next, suppose H is infinite-dimensional and φ(Rm) = Rm. Take any
X, Y ∈ V. For any x ∈ H with (x, x) = 1, since R1 ⊆ Rm = φ(Rm), there
is A ∈ Rm such that φ(A) = xx∗. Then φ(A)m−1 = xx∗ and

(φ(X + Y )x, x) = tr(xx∗φ(X + Y )) = tr(φ(A)m−1φ(X + Y ))
= tr(Am−1(X + Y )) = tr(Am−1X) + tr(Am−1Y )
= tr(φ(A)m−1φ(X)) + tr(φ(A)m−1φ(Y ))
= (φ(X)x, x) + (φ(Y )x, x).

Since this is true for all unit vectors x ∈ H, it follows that φ(X + Y ) =
φ(X)+φ(Y ). Similarly, we can show that φ(λX) = λφ(X) for all λ ∈ F and
X ∈ V.

It is well known that if A ∈ M2 then W (A) is an elliptical disk with
the eigenvalues of A as foci. Moreover, if A ∈ B(H) is unitarily similar to
A1 ⊕ A2 then W (A) is the convex hull of W (A1) ∪ W (A2). In particular, if
A has rank one, then A is unitarily similar to C ⊕ 0, where C has a matrix
representation

(

a b
0 0

)

; hence W (A) = W (C) is an elliptical disk with 0 as a
focus. These facts are used in the proof of the following lemma, which is an
extension of a result in [5].

Lemma 2.2. Let r and s be two nonnegative integers with r + s > 0. For

any B ∈ B(H), B has rank one if and only if for all A ∈ B(H), W (ArBAs)
is an elliptical disk with zero as one of the foci.

Proof. Let B ∈ B(H). If B is rank one, then so is ArBAs. Therefore
W (ArBAs) is an elliptical disk with 0 as a focus by the discussion before
the lemma.

Conversely, suppose B has rank at least 2. Then there exist x, y ∈ H
such that {Bx, By} is an orthonormal set. Let C = x(Bx)∗ − y(By)∗. Then
BC = Bx(Bx)∗ − By(By)∗ has numerical range [−1, 1]. Suppose r = 0.
Since C has rank two, it has an operator matrix of the form C1 ⊕ 0, where
C1 ∈ Mk with 2 ≤ k ≤ 4, with respect to an orthonormal basis of H. Let D
have operator matrix diag(1, . . . , k)⊕0 with respect to the same basis. Then
C + νD has operator matrix (C1 + νD1) ⊕ 0, where D1 = diag(1, . . . , k).
Except for finitely many ν ∈ R, C1 + νD1 has distinct eigenvalues so that
there is Aν satisfying As

ν = C + νD, and W (BAs
ν) = W (BC + νBD). By

[4, Problem 220], the mapping ν 7→ Closure(W (BC + νBD)) is continuous.
Since W (BC) = [−1, 1], there is a sufficiently small ν > 0 such that W (BAs

ν)
is not an elliptical disk with 0 as a focus. If s = 0, we can fix an orthonormal
basis of H, and apply the above argument to Bt to show that there exists
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A such that W (ArB) = W (Bt(At)r) is not an elliptical disk with 0 as a
focus.

Now, suppose that rs > 0. Let H0 be the subspace of H spanned by
{x, y, Bx, By}, which has dimension p ∈ {2, 3, 4}. Suppose B0 ∈ Mp is the
compression of B on H0. Then B0 = PU for some positive semidefinite
P ∈ Sp with rank at least 2, and a unitary matrix U ∈ Mp. Let V ∈ Mp

be a unitary matrix such that V ∗UV is in diagonal form. Then V ∗PV is
positive semidefinite with rank at least 2. Note that the 2×2 principal minors
of V ∗PV are nonnegative, and their sum is the 2-elementary symmetric
function of the eigenvalues of V ∗PV , which is positive. So, at least one 2×2
principal minor of V ∗PV is nonzero. Since V ∗B0V is the product of V ∗PV
and the diagonal unitary matrix V ∗UV , the 2×2 principal minors of V ∗B0V
are unit multiples of those of V ∗PV . It follows that at least one 2×2 principal
minor of V ∗B0V is nonzero. Hence, there exists a two-dimensional subspace
H1 of H0 such that the compression B1 of B on H1 is invertible. Suppose
{u, v} is an orthonormal basis of H1 such that B1 = auu∗ + buv∗ + cvv∗.
Then det(B1) = ac 6= 0. Let A = αuu∗ + βvv∗ so that αr+sa = 1 and
βr+sc = −1. Then ArBAs = uu∗ − vv∗ + αrβsbuv∗ and W (ArBAs) is an
elliptical disk with foci 1,−1.

Note that the analog of the above result for V = S(H) does not hold
if H has dimension at least 3. For example, if A ∗ B = ABA and B =
uu∗ + vv∗ for some orthonormal set {u, v} in H, then W (ABA) is always a
line segment with 0 as an end point. To prove our main theorems, we need
a characterization of elements in Rm when V = S(H).

Lemma 2.3. Let r, s and m be nonnegative integers such that m − 1 =
r + s > 0. Suppose X ∈ S(H) is such that W (Xm) = [0, 1]. Then X ∈ Rm

if and only if the following holds:

(†) For any Y ∈ S(H) satisfying W (Y m) = [0, 1] = W (XrY Xs), we have

{Z ∈ S(H) : W (Zm) = [0, 1], Y rZY s = 0H}
⊆ {Z ∈ S(H) : W (Zm) = [0, 1], XrZXs = 0H}.

Proof. Since W (Xm) = [0, 1], X has an eigenvalue µ satisfying µm = 1
with a unit eigenvector u. Assume that X 6= µuu∗. Then X = [µ] ⊕ X2

on H = span{u} ⊕ {u}⊥, where X2 is nonzero. Let Y = [µ] ⊕ 0{u}⊥. Then

W (Y m) = [0, 1] = W (XrY Xs). Note that the operator Z = [0] ⊕ I{u}⊥

satisfies W (Zm) = [0, 1] and Y rZY s = 0H but XrZXs = [0]⊕Xm−1
2 6= 0H .

Conversely, suppose X = µuu∗ on H = span{u} ⊕ {u}⊥. For any Y ∈
S(H) satisfying W (Y m) = [0, 1] = W (XrY Xs), we have Y = [µ] ⊕ Y1 and
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W (Y m
1 ) ⊆ [0, 1]. Suppose

Z =

(

α z∗1
z1 Z2

)

on span{u} ⊕ {u}⊥ satisfying W (Zm) = [0, 1] and Y rZY s = 0H . If rs > 0
then α = 0; if rs = 0 then α = 0 and z1 = 0. In both cases, we see that
XrZXs = 0H .

3. Proofs of the main theorems

3.1. Proof of Theorem 1.2. We need the following lemma.

Lemma 3.1. Let V = Mn or Sn, and let φ : V → V be a map satisfying

(1.2). Then

φ(Rm) ⊆ Rm.(3.1)

Proof. Each matrix A ∈ Rm can be written as µU∗E11U for some uni-
tary matrix U and µ ∈ F with µm = 1. It suffices to prove that φ(E11) ∈ Rm.
For the other cases, we may replace the map φ by the map A 7→ φ(µU∗AU).

We first consider the case when V = Sn. For i = 1, . . . , n, let Fi = φ(Eii).
Since Er

iiEjjE
s
ii = 0n for all i 6= j, we have

W (F r
i FjF

s
i ) = W (Er

iiEjjE
s
ii) = W (0n) = {0}.

It follows that F r
i FjF

s
i = 0n for all i 6= j.

We claim that FiFj = FjFi = 0n for all i 6= j. If the claim holds, then
there are α1, . . . , αn ∈ R and a unitary matrix V such that Fi = αiV

∗EiiV .
Furthermore, as W (Fm

i ) = W (Em
ii ) = [0, 1], αm

i = 1. Therefore, φ(E11) =
F1 = α1V

∗E11V ∈ Rm and the result follows.
When m is odd, as W (φ(In)m) = W (Im

n ) = {1}, we have φ(In) = In.
Then for any i = 1, . . . , n,

W (Fi) = W (φ(In)rφ(Eii)φ(In)s) = W (Ir
nEiiI

s
n) = W (Eii) = [0, 1].

Thus, Fi is positive semidefinite. Now for any i 6= j, as F r
i FjF

s
i = 0n, we

deduce that FiFj = FjFi = 0n.
When m is even, since W (φ(In)m) = {1}, the eigenvalues of φ(In) can be

either 1 or −1 only. Write φ(In) = V ∗(Ip ⊕−Iq)V for some unitary matrix
V and nonnegative integers p and q such that p + q = n. Then for any
i = 1, . . . , n,

W (φ(In)rφ(Eii)φ(In)s) = W (Ir
nEiiI

s
n) = W (Eii) = [0, 1].

Since one of r and s is odd while the other one must be even, either
φ(In)Fi or Fiφ(In) is positive semidefinite. In both cases, we conclude that
Fi = V ∗(Pi ⊕ −Qi)V for some positive semidefinite matrices Pi ∈ Hp and
Qi ∈ Hq. Since F r

i FjF
s
i = 0n, we have P r

i PjP
s
i = 0p and Qr

i QjQ
s
i = 0q for
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all i 6= j. Then we conclude that PiPj = PjPi = 0p and QiQj = QjQi = 0q

and hence FiFj = FjFi = 0n.

So, our claim is proved and the lemma follows if V = Sn.

Next, we turn to the case when V = Mn. We divide the proof into a
sequence of assertions.

Assertion 1. Let D=diag(0, eiθ2, . . . , eiθn) with 0<θ2 < · · ·<θn <π/m.

Then

φ(D) = V ∗([0] ⊕ T )V

for some unitary matrix V ∈ Mn and invertible upper triangular matrix

T ∈ Mn−1.

Proof. Note that Dm has n distinct eigenvalues and W (Dm) is a polygon
with n vertices including zero. Since W (φ(D)m) = W (Dm), it follows that
φ(D)m has n distinct eigenvalues, including one zero eigenvalue. Then so
has φ(D). Therefore, we may write

φ(D) = V ∗

(

0 x∗

0 T

)

V

for some x ∈ C
n−1, a unitary matrix V and an upper triangular matrix

T ∈ Mn−1 such that all eigenvalues of T are nonzero. Then T is invertible.
Since W (φ(D)m) is a polygon with n vertices, φ(D)m is a normal matrix.
Note that an upper triangular matrix is normal if and only if it is diagonal.
Observe that

φ(D)m = V ∗

(

0 x∗Tm−1

0 Tm

)

V.

It follows that x = 0 as T is invertible, i.e., φ(D) = V ∗([0]⊕T )V . The proof
of the assertion is complete.

Assertion 2. The inclusion (3.1) holds if rs = 0.

Proof. Suppose r = 0. Then, as E11D
s = 0n, where D is the matrix

defined in Assertion 1, φ(E11)φ(D)s = 0n. It follows that only the first
column of V ∗φ(E11)V is nonzero, where V is the unitary matrix defined in
Assertion 1. Hence, φ(E11) is a rank one matrix. Note that W (φ(E11)

m) =
W (Em

11) = [0, 1], and since a rank one matrix A ∈ Mn satisfies W (Am) =
[0, 1] if and only if A ∈ Rm, we conclude that φ(E11) ∈ Rm. The proof for
s = 0 is similar. Thus, our assertion is true.

Assertion 3. Suppose rs > 0. For any nonzero

A =

(

a w∗

z 0n−1

)

∈ Mn,
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we have

φ

((

a w∗

z 0n−1

))

= V ∗

(

α x∗

y 0n−1

)

V

for some α ∈ C and x, y ∈ C
n−1, where V is the unitary matrix defined in

Assertion 1. Furthermore, if Am 6= 0n is Hermitian, then x = βy for some

nonzero β ∈ C.

Proof. Let D be the matrix defined in Assertion 1. Since DrADs = 0n,
it follows that φ(D)rφ(A)φ(D)s = 0n. Thus

φ(A) = V ∗

(

α x∗

y 0n−1

)

V

for some α ∈ C and x, y ∈ C
n−1, where V is defined in Assertion 1. If Am 6= 0

is Hermitian, W (φ(A)m) = W (Am) ⊆ R. Hence, φ(A)m is Hermitian as well.
Clearly, if x or y is the zero vector, say x = 0, then α 6= 0 as Am 6= 0n.
Therefore, y must also be zero. Thus the assertion holds.

Now we assume that both x and y are nonzero vectors. By induction, we
have

φ(A)k = V ∗

(

ak+1 akx
∗

aky ak−1yx∗

)

V for all k = 1, 2, . . . ,

where the sequence {ak} satisfies ak+1 = αak +x∗yak−1 with a0 = 0, a1 = 1
and a2 = α.

It is impossible to have both am and am−1 equal to zero, since then
am+1 = 0, and hence φ(A)m = 0n. Then W (Am) = W (φ(A)m) = {0},
which contradicts our assumption that Am 6= 0n. Thus, am or am−1 must
be nonzero. In both cases, as Am is Hermitian, we must have x = βy for
some nonzero β ∈ C. The proof of our assertion is complete.

Assertion 4. The inclusion (3.1) holds if rs > 0.

Proof. For i = 1, . . . , n, let Hi = 1
2(E1i + Ei1). Then Hm

i is Hermitian
and Hm

i 6= 0n. By Assertion 3, we write

φ(Hi) = V ∗

(

αi βiz
∗
i

zi 0n−1

)

V

for some αi, βi ∈ C and zi ∈ C
n−1 with βi 6= 0. Denote by Zi the n × 2

matrix
(

1 0
0 zi

)

and by Ki the 2 × 2 matrix
(

αi βi

1 0

)

. Then

φ(Hi) = V ∗

[(

1 0

0 zi

)(

αi βi

1 0

)(

1 0

0 z∗i

)]

V = V ∗ZiKiZ
∗
i V.
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Observe that for any distinct i < j, Hr
i HjH

s
i = 0n. Setting Rij = Z∗

i Zj , we
have

0n = φ(Hi)
rφ(Hj)φ(Hi)

s(3.2)

= V ∗Zi (KiRii)
r−1 Ki [Rij Kj R∗

ij ] Ki (RiiKi)
s−1 Z∗

i V.

Next we claim that for any 1 ≤ i < j ≤ n,

z∗i zj = αj = 0 and zj 6= 0 whenever zi 6= 0.

To see this, suppose zi 6= 0. Then the n× 2 matrix Zi has rank 2 and hence
the 2×2 matrix Z∗

i Zi is invertible. Also both Ki and Kj are invertible. Then
(3.2) holds only when

(

1 0

0 z∗i zj

)(

αj βj

1 0

)(

1 0

0 z∗j zi

)

= (Z∗
i Zj)Kj(Z

∗
j Zi) = 02.

Thus, βjz
∗
j zi = z∗i zj = αj = 0. Finally, since W (φ(Hj)

m) = W (Hm
j ) 6= {0},

we have zj 6= 0.

Now we must have z1 = 0. Otherwise, αj = z∗1zj = 0 and zj 6= 0 for
all j = 2, . . . , n. We can then further deduce that z∗i zj = 0 for all i 6= j.
Thus, we have n nonzero orthogonal vectors z1, . . . , zn in C

n−1, which is
impossible. Therefore, z1 = 0 and hence α1 6= 0. Finally, as W (φ(H1)

m) =
W (Hm

1 ) = [0, 1], we have αm
1 = 1. So φ(E11) = φ(H1) = α1V

∗E11V ∈ Rm

and the result follows. The proof of our assertion is complete.

Combining the assertions, we get the result for V = Mn.

Proof of Theorem 1.2. First, consider the sufficiency part. If (a) or (b)
holds, then clearly φ satisfies (1.2). Suppose (c) holds. Then for any A, B
∈ S2, there is a unitary V ∈ M2 such that V ∗AV = D is a real diagonal
matrix, and V ∗BV = C is a real symmetric matrix. Thus,

φ(ArBAs) = W (DrCDs) = W (DrCDs)

= W ((Dt)rCt(Dt)s) = W (φ(A)rφ(B)φ(A)s).

Next we turn to the necessity. Suppose V = B(H) or S(H). Assume that
φ : V → V satisfies (1.2), and that φ is surjective if H is infinite-dimensional.
We divide the proof into several steps.

Step 1. We show that φ(Rm) = Rm and φ is linear. Suppose H is
finite-dimensional with no surjectivity assumption on φ. By Lemma 3.1,
φ(Rm) ⊆ Rm. Suppose H is infinite-dimensional. For V = S(H), we have
φ(Rm) = Rm by Lemma 2.3 and the surjectivity of φ. For V = B(H), by
Lemma 2.2 and the surjectivity of φ, we see that φ maps the set of rank
one operators onto itself; since a rank one operator A ∈ B(H) satisfies
W (Am) = [0, 1] if and only if A ∈ Rm, we also have φ(Rm) = Rm.
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Now, for any A ∈ Rm and B ∈ V, both ArBAs and φ(A)rφ(B)φ(A)s

have rank at most one. As a result, W (ArBAs) is an elliptical disk with
foci tr(ArBAs) and 0, and W (φ(A)rφ(B)φ(A)s) is an elliptical disk with
foci tr(φ(A)rφ(B)φ(A)s) and 0. Since W (ArBAs) = W (φ(A)rφ(B)φ(A)s),
we conclude that

(3.3) tr(Ar+sB) = tr(ArBAs) = tr(φ(A)rφ(B)φ(A)s) = tr(φ(A)r+sφ(B))

for all A ∈ Rm and B ∈ V. By Proposition 2.1, φ is linear. Moreover, if
H is finite-dimensional, φ is invertible. Indeed, φ−1 also satisfies (1.2), and
hence (3.1) and (3.3). So, φ(Rm) = Rm.

Step 2. We show that φ(IH) = µIH with µm = 1. For any x ∈ H with
(x, x) = 1, there are y ∈ H and µ ∈ F with (y, y) = µm = 1 such that
φ(µyy∗) = xx∗. Then by (3.3),

(φ(IH)x, x) = tr(xx∗φ(IH)) = tr((xx∗)m−1φ(IH)) = tr(φ(µyy∗)m−1φ(IH))
= tr((µyy∗)m−1IH) = µm−1(y, y) = µ−1.

It follows that W (φ(IH)) ⊆ {µ−1 : µm = 1} = {µ : µm = 1}. By the
convexity of numerical range, W (φ(IH)) is a singleton set. Thus, φ(IH) =
µIH for some µm = 1.

Step 3. We show that φ has the asserted form. Using the result in
Step 2, and replacing φ by the map A 7→ µ−1φ(A), we have φ(IH) = IH .
Furthermore,

W (φ(A)) = W (φ(IH)rφ(A)φ(IH)s) = W (Ir
HAIs

H) = W (A) for all A ∈ V.

Since φ is linear, by the results in [7, 8] the map φ has the form

A 7→ U∗AU or A 7→ U∗AtU

for some unitary operator W ∈ B(H).

Step 4. It remains to show that r = s when V 6= S2 and φ has the form
A 7→ U∗AtU . For any A, B ∈ V,

W (AsBAr) = W ((At)rBt(At)s) = W (U∗(At)rBt(At)sU)

= W (φ(A)rφ(B)φ(A)s) = W (ArBAs).

For V = B(H), let {u, v} be an orthonormal set in H, A = uu∗+uv∗+vv∗

and B = vv∗. Then

W (suv∗ + vv∗) = W (AsBAr) = W (ArBAs) = W (ruv∗ + vv∗).

Thus, r = s and the result follows.
Now consider V = S(H), where H has dimension at least 3. Suppose

r 6= s. Without loss of generality, we assume that r > s. Let A, B ∈ S(H)
be such that

Ar−s = D ⊕ 0 and AsBAs = E ⊕ 0,
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where

D = diag(3, 2, 1) and E =







1 1 i

1 0 1

−i 1 0







with respect to a suitable orthonormal basis. Then

W (DE ⊕ 0) = W (ArBAs) = W (AsBAr) = W (ED ⊕ 0)

= W (DE ⊕ 0) = W (DE ⊕ 0).

Therefore, W (DE ⊕ 0) is symmetric about the real axis. But this is impos-
sible as the eigenvalues of DE −ED are 2i, (

√
3 − 1)i/2 and (−

√
3 − 1)i/2.

Hence {Im z : z ∈ W (DE ⊕ 0n−3)} = [(−
√

3 − 1)/2, 2] so that the two
horizontal support lines of W (DE ⊕ 0) are {z : Im z = 2} and {z : Im z =
(−

√
3 − 1)/2}, which is a contradiction. Therefore, we must have r = s.

The proof of our theorem is complete.

3.2. Proof of Theorem 1.1. If (a) holds then φ clearly satisfies (1.1).
Suppose (b) holds. Then for any A1, . . . , Ak ∈ V, we have

W (φ(A1) ∗ · · · ∗ φ(Ak))

= W (φ(Ai1) · · ·φ(Aim)) = W (U∗At
i1
· · ·At

im
U) = W ((Aim · · ·Ai1)

t)

= W (Aim · · ·Ai1) = W (Ai1 · · ·Aim) = W (A1 ∗ · · · ∗ Ak).

Suppose (c) holds. Note that X, Y ∈ M2 have the same numerical range if
and only if the two matrices have the same eigenvalues and the same Frobe-
nius norm, equivalently, tr(X) = tr(Y ), det(X) = det(Y ) and tr(XX∗) =
tr(Y Y ∗). One readily checks that these conditions are satisfied for X =
A1 ∗· · ·∗Ak and Y = φ(A1)∗· · ·∗φ(Ak) for any A1, . . . , Ak ∈ S2 if (c) holds.
So, condition (1.1) follows.

Next, we turn to the necessity. Applying Theorem 1.2 with Air = B and
Ais = A for all other s 6= r, we conclude that there exist a unitary operator
U ∈ B(H) and a scalar µ ∈ F with µm = 1 such that one of the following
holds:

(a) A 7→ µU∗AU for all A ∈ V.
(b) r = (m + 1)/2 and φ has the form A 7→ µU∗AtU .
(c) V = S2 and φ has the form A 7→ µU∗AtU .

It remains to prove (ir+1, . . . , im, i1, . . . , ir−1) = (ir−1, . . . , i1, im, . . . , ir+1) if
(b) or (c) holds.

Evidently, the result holds for k = 2 as we must have i1 = · · · = ir−1 =
ir+1 = · · · = im in this case. Now we assume that k ≥ 3. Then we have

W (Ai1 · · ·Aim) = W (φ(Ai1) · · ·φ(Aim)) = W (U∗At
i1
· · ·At

im
U)

= W (At
i1
· · ·At

im
) = W (Aim · · ·Ai1).
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By taking Air = R, where R is a Hermitian rank one idempotent, and
considering the foci of the elliptical disks for the above numerical ranges, we
conclude that

tr(Air+1
· · ·AimAi1 · · ·Air−1

R) = tr(Ai1 · · ·Air−1
RAir+1

· · ·Aim)

= tr(Aim · · ·Air+1
RAir−1

· · ·Ai1)

= tr(Air−1
· · ·Ai1Aim · · ·Air+1

R).

Since R can be an arbitrary Hermitian rank one idempotent, by the fact
that X and Y are equal if tr(XR) = tr(Y R) for all Hermitian rank one
idempotent R, we deduce that

(3.4) Air+1
· · ·AimAi1 · · ·Air−1

= Air−1
· · ·Ai1Aim · · ·Air+1

for all choices of A1, . . . , Ak.
We now use a similar argument to the one in the proof of [1, Theo-

rem 2.1]. We give the details for the sake of completeness. For simplicity, we
rename (ir+1, . . . , im, i1, . . . , ir−1) as (j1, . . . , jm−1) and we have to show that
(j1, . . . , jm−1) = (jm−1, . . . , j1). Suppose (j1, . . . , jm−1) 6= (jm−1, . . . , j1).
Let 1 ≤ p ≤ m/2 be the smallest integer such that jp 6= jm−p. For any
λ > 0, let D = diag(λ, 1) and S be some 2× 2 symmetric matrix with posi-
tive entries. Fix a two-dimensional subspace H1 in H and take Ajp = D⊕IH⊥

1

and Ajt = S ⊕ IH⊥

1
for all other jt 6= jp on H = H1 ⊕ H⊥

1 . Then

Ajp · · ·Ajm−p
= (Dd1Ss1Dd2Ss2 · · ·DdqSsq) ⊕ IH⊥

1

for positive integers di, si. Note that

DdiSsi =

(

λdiei λdifi

gi hi

)

and SsiDdi =

(

λdiei fi

λdigi hi

)

for some positive numbers ei, fi, gi, hi. We check that the (1, 2) entry of
Dd1Ss1 · · ·DdqSsq is a polynomial of degree d1 + · · · + dq in λ, while the
(1, 2) entry of SsqDdq · · ·Ss1Dd1 is a polynomial of degree d2 + · · ·+ dq. So,
there is λ > 0 such that

Ajp · · ·Ajm−p
= (Dd1Ss1 · · ·DdqSsq ) ⊕ IH⊥

1

6= (SsqDdq · · ·Ss1Dd1) ⊕ IH⊥

1
= Ajm−p

· · ·Ajp .

It follows that Aj1 · · ·Ajm−1
6= Ajm−1

· · ·Aj1 , which is a contradiction. Hence,
(j1, . . . , jm−1) = (jm−1, . . . , j1) as asserted.
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