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Linear maps preserving elements annihilated
by the polynomial XY — Y X'

by

JIANLIAN Cul (Beijing) and JINCHUAN Hou (Taiyuan and Linfen)

Abstract. Let H and K be complex complete indefinite inner product spaces, and
B(H,K) (B(H) if K = H) the set of all bounded linear operators from H into K. For
every T € B(H, K), denote by T the indefinite conjugate of T'. Suppose that & : B(H) —
B(K) is a bijective linear map. We prove that & satisfies $(A)P(B) = &(B)P(A)' for all
A,B € B(H) with AB = BA" if and only if there exist a nonzero real number ¢ and
a generalized indefinite unitary operator U € B(H, K) such that &(A) = cUAU' for all
A€ B(H).

1. Introduction and main results. Roughly speaking, linear pre-
server problems concern characterizing linear maps between operator al-
gebras that leave certain properties of elements invariant. Over the past
decades a lot of work has been done on linear preserver problems on matrix
algebras. Recently, interest in similar questions on operator algebras over
infinite-dimensional spaces has also been growing.

Here, we would like to mention a kind of linear preserver problems con-
cerning zeros of polynomials in several elements. Particularly, the most ex-
tensive study was done for commutativity preserving linear maps, that is,
linear maps preserving zeros of the polynomial p(X,Y) = XY — Y X (see
[3], [6]-[7] and the reference therein). As to some other polynomials, for
example, for p(X,Y) = XY, the reader is referred to [12]-[13], [22] and
[26], for p(X,Y) = XY + Y X, to [19], [34], and for any polynomial p(X)
in one element, to papers [2], [18], [20] and [30], and so on. Linear maps
preserving zeros of x-polynomials have also been studied by many authors.
For instance, the studies of linear maps preserving normal elements ([8] and
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[23]), preserving unitary elements ([28] and [29]) and preserving the orthog-
onality of operators ([1] and [27]) belong to this type of topics. Indeed, these
maps preserve the zeros of the *-polynomial p(X, X*) = X*X — X X*, of the
commutative *-polynomial p(X, X*) = X*X — I, and of the *-polynomial
p(X,Y™*) = XY™, respectively. It seems that the problem of characterizing
linear maps preserving zeros of x-polynomials in several variables is much
more difficult.

As a kind of new product in a *-ring, the operation XY — Y X* was
discussed in [6]. This product XY — Y X* is found to play a more and more
important role in some research topics. For example, it is closely related
to Jordan x-derivations. Let A be a *-ring and X € A be fixed. Define an
additivemap 6 : A — Aby §(A) = AX—XA*forall A € A. Then it is easily
checked that §(A?) = A§(A) + §(A)A* for all A € A, that is, § is a Jordan
x-derivation. For more results concerning Jordan x-derivations, the reader is
referred to [9]. Recently, M. A. Chebotar et al. [10] have characterized the
bijective linear maps preserving the zeros of the *-polynomial p(X, X*,Y) =
XY —YX* on M, (F), where F is a field with an involution % and n > 20.
They proved that any such map ¢ is of the form ¢(x) = Auzu™! for all
x € M, (F), where X is a nonzero symmetric scalar and u is a normal matrix
such that uu* is a nonzero scalar.

As indefinite inner product spaces are useful both for the discussion of
physical problems and for some mathematical questions (see the introduc-
tion in [4]), motivated by the work of Molnér [26], some preserver problems
were studied and solved for operator algebras on such spaces (see, for ex-
ample, [14]-[15], [24], [26] and the references therein). In particular, it is
an interesting question to characterize linear maps preserving zeros of the
s-polynomial p(X, X*Y) = XY — Y X* in indefinite inner product space
setting.

Denote by F the real field R or the complex field C. Recall that an
indefinite inner product space means a linear space H over F equipped with

a nondegenerate sesquilinear Hermite functional [-,-]. Let (H, [-,-]) be such
a space. If there are subspaces Hy and H_ such that

(1.1) H=H,oH._,

and both (H4,[-,:]) and (H_,—[,-]) are Hilbert spacs, then H is called a

complete indefinite inner product space. The decomposition (1.1) is called a
reqular decomposition of H (see [33]). In the following we always assume that
the indefinite inner product spaces considered are complete. If H = H, ®H_
is a regular decomposition, then any x,y € H can be uniquely represented
as e = x4 +2o_ and y = y4 + y—, where x4, y1 € Hy. Define an inner
product on H by

<‘T7y> = [$+,y+] - [x—vy—]'
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Then it is obvious that (H, (-,-)) is a Hilbert space. We call (-, -) the inner
product induced by the reqular decomposition H = H, & H_.

A linear operator T from an indefinite inner product space H into an
indefinite inner product space K is said to be bounded if T is bounded
with respect to the inner products of H and K induced by some regular
decompositions. The boundedness of T does not depend on the choice of the
regular decompositions. We denote by B(H,K) (B(H) if K = H) the set
of all bounded linear operators from H into K. For any T' € B(H, K), the
indefinite conjugate of T with respect to the indefinite inner product [, -]
is an operator TT € B(K, H) defined by the equation [Tx,y] = [z, TTy] for
all x € H and y € K (similarly, for a bounded conjugate-linear operator
T : H — K, its indefinite conjugate operator T : K — H is defined by
[Tx,y] = [Tty,«] for all x € H and y € K). For a linear operator T, if both
TTT and TTT are the identity (resp. a nonzero real scalar multiple of the
identity), we say that T"is an indefinite unitary operator (resp. a generalized
indefinite unitary operator); in the case that T is conjugate linear, we say
that T is an indefinite anti-unitary operator (resp. a generalized indefinite
anti-unitary operator).

Now we are in a position to state the main result of this paper.

THEOREM 1. Let H and K be complex complete indefinite inner product
spaces. Let & : B(H) — B(K) be a bijective linear map. Then ® satisfies the
condition that ®(A)®(B) = ®(B)D(A)T for all A, B € B(H) with AB = BAT
if and only if there exist a nonzero real number ¢ and a generalized indefinite
unitary operator U € B(H, K) such that $(A) = cUAU" for all A € B(H).

Assume that H is a Hilbert space with the inner product (-,-) and J €
B(H) is an invertible self-adjoint operator (i.e., J* = J). Then (H, [, ] ;) is
a complete indefinite inner product space with the indefinite inner product
[,]l; = (J(-),-) induced by J. It is clear that, with respect to [-,-]s, the
indefinite conjugate T'f of an operator T' € B(H) is of the form TT = J=1T*.J,
where T™ stands for the usual conjugate of T relative to the inner product
(-,-). If K is another Hilbert space and L € B(K) is an invertible self-adjoint
operator, then, with respect to the indefinite inner products [, -] s and [, |1,
we have ST = J=1S*L for every S € B(H, K). Thus, in terms of definite
inner products, Theorem 1 may be restated as follows.

THEOREM 1'. Let H and K be complex Hilbert spaces. Let J € B(H)
and L € B(K) be given invertible self-adjoint operators. Suppose that @ :
B(H) — B(K) is a linear bijective map. Then ®(A)®(B) = &(B)L~'®(A)*L
for all A,B € B(H) with AB = BJYA*J if and only if there exist a
nonzero real number ¢ and an invertible operator U € B(H, K) satisfying
JYWU*LU = al on H, UJ-'U*L = al on K for some nonzero real number
a, such that ®(A) = cUAU! for all A € B(H).
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In particular, when both J and L are the identity, we have

COROLLARY 2. Let H and K be complex Hilbert spaces. Suppose that
¢ : B(H) — B(K) is a linear bijective map. Then ®(A)P(B) = (B)P(A)*
for all A;B € B(H) with AB = BA* if and only if there exist a nonzero
scalar ¢ € R and a unitary operator U € B(H, K) such that ®(A) = cUAU*
forall A€ B(H).

We should mention here that, by a different approach, Theorem 1’ was
obtained in [11] under the additional assumptions that dimH > 3, K = H
and @ is weakly continuous.

2. Proof of the main result. The proof of Theorem 1 is based on the
following result which was proved in [5].

LEMMA 2.1. Let A and B be centrally closed prime algebras over a field
F of characteristic different from 2 and 3. Let @ : A — B be a bijective linear
map satisfying P(A?)D(A) = (A)P(A?) for all A € A. If neither A nor B
satisfies Sy, the standard polynomial identity of degree 4, then

P(A) = co(A) +¢(4)

for all A € A, where ¢ € F is nonzero, ¢ is an isomorphism or an anti-
isomorphism of A onto B, and q is a linear map from A into the center

of B.
We also need the following simple lemmas.

LEMMA 2.2. Let H be a complex complete indefinite inner product space
with dim H > 3. For any rank-one operator B € B(H), there exists a nonzero
rank-one operator A € B(H) such that AB = BAT =0, BA= ATB =0 and
A — AT is of rank one.

Proof. Let H = H_ @ Hy be a regular decomposition of H and Py the
corresponding projections from H onto Hy, and let J = Py — P_. Then
(-,-) =[J(+),] is an inner product on H induced by the regular decomposi-
tion. Write B = u®v with [Ju|| = 1. A rank-one operator A = x ® y satisfies
AB = BA' if and only if

(u, ) @v = (J 1y, v)u® Ja.

Since dim H > 3, there must be dim.J~!([u]*) > 2. Here [u] denotes the
linear span of v and [u]t = H © [u], that is, the orthogonal complement
of [u] in H with respect to the inner product (-,-). Thus there exists a
nonzero y € [u]* such that J~'y L v. Let x = aJ 'y, where « is any
complex number with @ # a. Then it is easily seen that AB = BA" = 0,
BA=A'B=0and A— A = (1 —@/a)A is of rank one. m



Maps preserving zeros of polynomials 187

LEMMA 2.3. Let H be a complex complete indefinite inner product space
and T € B(H). If 0 € 0,(T') (the point spectrum of T'), then there exists a
rank-one operator B such that TB = BT".

Proof. Since 0 € op,(T), there exists a nonzero € H so that Tx = 0.
Let J be as in the proof of Lemma 2.2 and B = 2 ® Jx. Then B is as
claimed. m

Now we are ready to prove our result.

Proof of Theorem 1. We need only check the “only if” part.

Assume that ¢(A)P(B) = ¢(B)P(A)" whenever AB = BAT. It follows
from - A= A-If for all A € B(H) that &(1)®(A) = ¢(A)d(I)'. Since & is
surjective, we have

®(I)B = BO(I)'  for all B € B(H),
and therefore &(I) = &(I)T. Thus the above equality entails that &(I) be-
longs to the center of B(H) which is CI and hence ¢(I) = al for some a € R.
It follows from the injectivity of @ that a # 0. For any {-Hermitian operator
S € B(H) (that is, ST = S), we have &(S)®(I) = &(1)®(S)T, and hence
&(S) = &(S)T. This implies obviously that ®(A") = #(A)T for all A € B(H).
Also, for all {-Hermitian operators S € B(H), we have
(2.1) B(SH)D(S) = B(S)D(S?).
Let S,T € B(H) be arbitrary f-Hermitian. Replacing S in (2.1) by S + T,
and letting [S, 7] denote the commutator ST — T'S, we get

([P(ST +TS), B(S)] + [#(5*), $(T)))

+ ([&(T?), ()] + [#(ST + TS),d(T)]) = 0.
Replacing T" with —T in the above equality, one obtains

~([2(ST +T8), P(S)] + [#(5%), &(T)])

+ ([&(T?), ()] + [#(ST + TS),d(T)]) = 0.
Comparing the above two equalities, we see that for all {-Hermitian opera-
tors T\, S € B(H), we have

(2.2) [B(ST +T5S),d(S)] + [#(S?),H(T)] =0
and
(2.3) [®(T?),®(S)] + [®(ST + TS),d(T)] = 0.

For any A € B(H), let S = (A+ A")/2 and T = (A — A")/2i; then S and
T are t-Hermitian and A = S + ¢T. A straightforward computation shows
that

[2(A%), (A)] = —([2(ST + TS), 8(T)] + [#(T?), $(S)])
+i([@(5%), B(T)] + [B(ST + TS), 8(9))),
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which, together with (2.2) and (2.3), ensures that [®(A?),®(A)] = 0. Thus,
in summary, we have showed that

(2.4) B(A%)B(A) = B(A)B(A),

®(AY) = ®(A)T for all A € B(H), and &(I) = al for some nonzero a € R.

Since the case dim H = 1 is trivial, in the following we will assume that
dim H > 2 and complete the proof by considering the cases dim H > 3 and
dim H = 2 separately.

CaAseE 1: dimH > 3. It is well known that B(H) is a prime algebra,
that is, for A, B € B(H), AB(H)B = 0 implies A = 0 or B = 0. Moreover,
B(H) is centrally closed over the field of complex numbers [25]. By standard
PI theory [21], a prime ring R satisfies Sy if and only if R is commutative
or R embeds in My(F) for some field F. If dim H > 3, then dim K > 3,
so both algebras B(H) and B(K) satisfy the assumptions in Lemma 2.1.
Thus, it follows from (2.4) that & satisfies all assumptions of Lemma 2.1.
Also note that every isomorphism and anti-isomorphism between B(H) and
B(K) is spatial. Hence there exist a nonzero complex number ¢ and a linear
functional f on B(H) such that either

(i) @ has the form
(2.5) D(A) = VAV 4 f(A)T  for every A € B(H),

where V € B(H, K) is an invertible operator; or
(ii) @ has the form

(2.6) B(A) = VATV 4 f(A)T  for every A € B(H),
where V : H — K is a bounded bijective conjugate linear operator.

Since ®(AT) = ¢(A)T for all A € B(H), for any rank-one operator F' € B(H),
it follows from (2.5) that

(f(FNY = f(FNI =e(V Y FTIVT — cVFTYy !

is an operator of rank at most two. With dim H > 3 in mind, this would
imply that f(F') = f(F) for all rank-one operators F' € B(H). It is clear
that the same is true for f in (2.6).

Assume that @ has the form (i), that is, (2.5) holds for all A. We claim
that ¢ € R, V is a generalized indefinite unitary in B(H, K), and f(A) =0
for every A € B(H).

Let J be as in the proof of Lemma 2.2 and L be an invertible self-adjoint
operator determined by some regular decomposition of K. For convenience,
we shall denote the corresponding inner products on H and K by the same
symbol (-,-). Note that z ® Jz is {-Hermitian for every = € H. It follows
that ®(x @ Jz) = ®(x @ Jz)" and f(z ® Jr) = f(r @ Jx) for every x € H.
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Hence
Vre (V) r=eL Y (V) Uz LVz

for every x € H, which implies that LV z is linearly dependent of (V*)~!Jz.
This entails that LV = A(V*)~LJ, or equivalently, VIV = AI, for some
nonzero A € R (see [33]). Now it is clear that ¢ € R and V is a generalized
indefinite unitary operator. So, if we can show that f = 0, then @ has the
form stated in Theorem 1.

To prove f = 0, let ¥(-) = ¢ 'V1P(-)V and g = ¢ ! f. Then ¥(A) =
A+ g(A)I for all A€ B(H) and ¥(A)¥(B) = ¥(B)¥(A)" whenever AB =
BAT. We claim that g(F) = 0 for every F' € F(H), the set of all finite rank
operators in B(H). For any A, B € B(H) with AB = BAT, we have

(A+g(A)(B+g(B)I) = (B + g(B)I)(A" + g(A)]).

Hence

(27)  (9(A) — g(A)B + g(B)(A — AT) = (9(A) — g(A)g(B)I
for all A, B € B(H) satisfying AB = BAT.

Assume that there exists a rank-one operator B such that g(B) # 0.
Then, by (2.7),
(2.8) A=Al =g(B) "M (g(A) - g(A)(9(B)I + B)
for all A € B(H) with AB = BA!. By Lemma 2.2, for the rank-one oper-
ator B, there exists a rank-one operator A with AB = BA' and A — Af
being rank one such that (2.8) holds. But this is impossible since the rank
of g(B)~Y(g(A) — g(A))(g(B)I + B) is always greater than one, a contra-
diction. So we have proved that g(B) = 0 for all rank-one operators B, and
consequently, g(F') =0 for every F' € F(H). Hence

U(F)=F forall FeF(H).

Next we prove that g is the zero functional on B(H). For any A € B(H),
let z € H be a unit vector and ¢ € C be such that & # & Let F =
(A+ &Nz ®a. Then 0 € 0p,(A+ &I — F') and, by Lemma 2.3, there exists a
rank-one operator B such that

(A+ €I —F)B=B(A+¢I—F)l.

Write g(I) = d with d a real number. Note that g(B) = 0 and ¢g(F) = 0.
Replacing A by A+ &I — F in (2.7), we obtain, for the rank-one operator B,

(9(A) +d§ — g(A) —d§)B =0
for all &€ € C with & # €. This implies that d = 0 and g(A) = g(A) for all
A € B(H). Now it is clear that g = 0 since a real-valued linear functional
on a complex vector space is the zero functional.
To complete the proof of Case 1, we have to show that @ can never take
the form (ii). On the contrary, assume that (2.6) holds for all A. Similar
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to the discussion of the case where @ has the form (i), it is easy to check
that ¢ € R and V1V = A for some nonzero A € R. Replacing & by ¥(-) =
¢ 'WV~1®(-)V, we find that ¥ is conjugate linear and preserves the zeros of
the polynomial p(A, AT, B) = AB — BAT. So without loss of generality we
might as well assume that ¢ maps B(H) onto itself and has the form

B(A) = AT + f(A)I for all A e B(H),

where f is a conjugate linear functional.

If A, B € B(H) satisfy AB = BAT, then ®(A)®(B) = &(B)®(A). Thus
(29)  (BA—A'B) 4+ f(B)(AT - A) = (f(4) - f(A)(f(B)I + B)

for all A, B € B(H) satisfying AB = BAT. It follows from Lemma 2.2 that
for any rank-one operator B, there exists a rank-one operator A so that
AB = BA" =0, BA= ATB =0 and A" — A is of rank one. So (2.9) implies
that

F(B)(AT = A) = (F(A) = f(A)(f(B)I + BY).
If there exists a rank-one operator B such that f(B) # 0, then the left
side of the above equality is a rank-one operator, while the operator on the
right side is always of rank greater than one, a contradiction. Hence we get
f(F) =0 for all FF € F(H), and consequently

O(F)=F"  forall F e F(H).

However, it is easily seen that there exist A, B € F(H) such that AB = BAT
but ATBY # BYA (for instance, let A = 2 ® y and B = 2 ® = with y €
[z, J7'2]*) contrary to the assumption ¢(A)P(B) = &(B)P(A)!. Therefore,
& cannot take the form (ii), completing the proof of Case 1.

CASE 2: dim H = 2. In this case we must also have dim K = 2. Fix
a regular decomposition H = H_ @& H and denote by Py the projections
from H onto Hy. Let J = Py — P_. Then J> =T on H and (-,-) = [J(-),] is
an inner product on H induced by the regular decomposition. In the same
way, assume that L is an invertible self-adjoint operator in B(K') determined
by some regular decomposition of K; then L? = I on K. We also use the
symbol (-,-) to denote the inner product [L(-), ] on K.

For any A € B(H), define A(A, A") = {B € B(H) | AB = BAT}. Tt
is easily seen that A(A, A") is a linear subspace of B(H). We prove the
following assertion.

ASSERTION. dim A(A, AY) = 1 if and only if 0(A) = {a1,as} with a1
real and as nonreal; dim A(A, A) = 2 if and only if 0(A) CR and A ¢ CI
ora; = az ¢ R; dim A(A, AT) = 4 if and only if A € RI; dim A(A, AT) =3
does not occur. Here o(A) denotes the spectrum of an operator A.
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Note that AB = BA' if and only if ABJ = BJA*. So, to prove our
assertion we need only deal with the case that J = I. It is clear that there
exists B # 0 such that AB = BA* if and only if there exists a complex
number a such that {a,a} C o(A). The set C of all such A is the union of
four disjoint subsets:
Ci =RI,
CQ = {A | U(A) = {a17a2}7 a1 € Ra a2 ¢ R})
C3 ={A|o(4) ={a,a}, a R},
Cy={A]|o(A) CR, A¢RI}.

So,

(2.10) A(A, A*) =+ {O} & AeCiUulyulCsUly.

Obviously, dim A(A, A*) = 4 if and only if A € RI. For A € Cy UCs, let
o(A) = {a1,a2} with az nonreal. Pick unit vectors 1,292 € H such that
x1 € ker(a1l — A) and (x1,22) = 0. An elementary 2 x 2 matrix argument
shows that dim A(A, A*) = 1 if and only if A € Cy, and in this case, there
exists a rank-one projection P such that A(A, A*) = CP. In fact, if A € Co,
then a; is real and A(A, A*) = C(z1 ® 7). If A € C3, then ag = @; and

A(A, AY)

Axa)by — (A b
= {blxl ® 9 + (<9£17 332>a1 é v2,21) 2331 +52$2) ® x1
1—ay

bl,bg S (C}

Hence, for A € C3, we have dim A(A, A*) = 2. It is also easy to check that,
for the case of 0(A) C R and A ¢ CI, we have dim A(A, A*) = 2, and hence
dim A(A, A*) # 3 for each A, finishing the proof of the Assertion.

Now assume that ¢ : B(H) — B(K) is a bijective linear map such that
AB = BA' = &(A)®(B) = ¢(B)®(A)!. Then &(AT) = &(A)T for all A and
¢(I) € RI. Without loss of generality, assume that ¢(I) = I. Note that
(2.11) B(A(A,AT)) C A(D(A),(A)T)
for all A € B(H). Thus, for every A, we have
(2.12) dim(A(A, AT)) < dim(A(S(A), B(A)1)).

Since ®(RI) = RI, using the above assertion, we obtain

(2.13) dim A(A, AT) =2 = dim A(S(A), P(A)T) = 2.

Choose an orthonormal basis {e1,es} of H so that J is diagonal. Set
Eij = e; ® ej and @(E;;) = Ty, 4,5 = 1,2. It is clear that T1q + The = I and
{T}; | i,7 = 1,2} is a basis of B(K). It is easily seen that

A(E127EIQ) ={B =bi1Ey1 + bi2E12+ b12E1rz | b11,b12 € C},
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so, by (2.11), we obtain
buiTh1 + bioTia + bio T, = G(B) € A(Tr2, T1).
Thus,
by TioTy + bioT? + b12T12T1TQ = b11T11T1T2 + b12T12T1T2 + b12(T1Tg)2

for all complex numbers by1, b1o. It follows that

TyoT1y = T T}y,
(2.14) { ) fg
T12 - (Tm) :

We complete the proof of Case 2 by considering four subcases.

SUBCASE 1: Both J and L are linearly independent of the identity. We

choose an orthonormal basis {e1,ea} of H such that J = (é _01) with re-

spect to this basis. By the Assertion and (2.13), we get dim A(TH,TITI) =

dim A(EH,EL) = 2, and therefore, either Ti; € C3 or T11 € C4. Assume
that the former occurs. Then there is a complex number ¢; ¢ R such that
o(T11) = {t1,t1}. Take an orthonormal basis {u1,u2} of K so that 717 has

the matrix representation
1 ti2
Tyt = ( i )
0 t

t1 + (1 — tl)a t12(1 — Oé) )
0 h+(1-t)a/)

Thus there exists a scalar « so that 111 + aTse & C = C1 UCo UC3 Uy, and
hence, by the Assertion and the inequality (2.12), one sees that

1 = dim A(E11+aFEsog, (Ei1+aF)") < dim A(T +aThs, (Th1+aTh2)T) = 0,

For any o ¢ R, we have

T+ aTy = (

a contradiction. So we must have 117 € C4, and

Ty = (tl 12 )
0 o
with respect to the basis {uj,us} of K, where t1,to € R and t192 # 0 if
to = t1. Notice further that if (¢1,t2) # (1,0) or (0,1), then there exists
some « € C with a # @ so that either T' = T11 + a5 or T = o111 + Too
is not in the class C, i.e., A(T,T") = {0}. However, this contradicts the
fact that dim A(T,Tt) > dim A(A, AT) = 1, where A = Ej; + aEy or
A = aFEq1 + Ej respectively. Hence (¢1,t2) = (1,0) or (0,1). Without loss
of generality, we assume that t; = 1 and t3 = 0. Observe also that, with
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respect to this basis,
L_( l \/1—z2ei9>
C\VI— e —1

with [ € Rand |I| < 1. Since T{r1 = Ty, there must be I24+1v1 — 12 €% = 1.
Hence [ # 0 and

1 Vi1-i2 etf 0 V12 L
2.15 Ty = ! . Thy = J >
(2.15) 11 (0 0 > 22 (0 .

Also, fixing the bases {e1,ea} of H and {uj,us} of K, we can view @ as a
linear map from M (C) onto itself.

Write
511 S12
Tio = < )
§21 S22
Then
r T
~Ty1 =Ty = LTj,L = < e >
o1 T22
where

ri1 = 12511 + lﬂezoslg + l\/ﬁ 0501 + (1-— 12)§22,

ror = IV1—2e 5, — %515 + (1—1%e —I/1-12e 599,

rig = V1 — 12"y, + (1 —1?)e*5yy — 1259, — l\/1——2€ 522,
=(1-1?) 811—l\/ﬁ610812—lm 591 + 1%59.

Substituting (2.15) and the above representation of Ti 1o into the equation
T19Th1 = Ty Ty in (2.14), we get so1 = 0 and s1; € R. Since dim A(Tya, Tj,)
= 2, we see that also sgs € R. Assume that either s17 # 0 or ses # 0. Let
A = tF1 + aFy + BE1s, where t € R and o, € C with a # @. Then
o(P(A)) = {t + Bsi1,a + Bsaz}. It is clear that one can choose suitable
scalars t,a, 3 so that @(A) ¢ C. Thus we get a contradiction that 1 =
dim A(A, AT) < dim A(®(A), $(A)T) = 0. So there must be s1; = s92 = 0,
and consequently,

and
(2.16) —Ty, =T}, = <l‘/1_—2€ 512 (1—12) 2?5y, )
. 21 = 17y s, i
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For any «a, 8 € C with @ # «, since A = aFE11 +aFq + fE12 € Cs, it follows
that dim A(A, AT) = 2 and

Bb12 + Bb
A(A, AT = {B = % B+ biaEhg + ba1 Eg

b12,bo1 € (C}.
By (2.11), B(A(A, AT)) € A(@(A), B(A)), so
(aThy +@To2 + BT12) (M
a—a
= <% T1y + bi2T12 + b21T21> (a1 + @D + BTh2)!

T11 + b12T12 + 521T21>

or, equivalently,
< oY @eie(a — @) + fBs12 > ( Wi w2 >
O a w21 w22
_ <w11 w12 >
w21 W22
( @+ VT - B8~V ¥ —a) + (1 - 12)%5158

— 125158 a— VI — 12?553 )
for all «, 3, b12,b21 € C with « # @, where

b b
M I/ 1265 19boy.

1—12 b2 + Bb ‘
\/l— i0 B 1; i Bba1 + s12b12 — (1 — 12)e2?315b;
w21 = l 5121)21,

wog = 1V/1 —1[2 6i0§12b21.

Thus, we obtain

(2.17)

w12 =

l2|812’2 =1
Note that

( l\/ 1-— 2 6 812 (1 — l2) 219812
Ty = —

—l2812 —l\/ 1-— l2 619512 >
V11?2 eie

2 o
B l 1 2l 6219
= 1’5 t
12 1 _VIE b
7



Maps preserving zeros of polynomials 195

is of rank one and T% = 0. For any ¢ € C, let

E—(C 02>
N | —c )

Then E. is a rank-one nilpotent matrix, and it can be easily checked by
(2.17) that
@(Ec) = l2§12E . Vii2

P eif)’
19319 [

which is also rank-one nilpotent. Conversely, for any ¢ € C, we have

2— —1
@((l 812) E(l2§12671\/@ew§12)) = EC'

Note also that £ is a maximal additive subgroup of rank-one nilpotent ma-
trices in M>(C) if and only if £ has one of the following forms:

(i) £L=CEg;
(11) L= CEQI = (CE();
(iii) there is a nonzero number ¢ € C such that £ = CEL.

Therefore the map @ : M3(C) — My(C) preserves rank-one nilpotent matri-
ces in both directions. By [17, Theorem 2.4], there exist a nonzero scalar c,
an invertible matrix V € My(C) and a linear map ¢ : CI — M>(C) such
that

B(A) = VAV + p(tr(A))

for all A € M3(C), where tr(A) denotes the trace of a matrix A. Since
@(I) = I, we see that ¢(I) € CI. So, there is a linear functional f on My (C)
such that

B(A) = VAV 4 f(AI

for all A € My(C).
We claim that f(Af) = f(A) for all A. Since #(AT) = &(A)T for all A,
we see that

fANI
(

c(VHTATVT — VATV L = (f(AT)
c A) — f(AT)). Then it

for every A. Let S = VIV, a =¢/c and h(A) = ¢ (f
follows that

aS 'AS = h(A)T+ A for all A € My(C).

Considering the spectrum one observes that o(A) = {0} implies h(A) = 0.
Regarding h as a linear functional on My(C), the above fact shows that the
three-dimensional linear subspace sly(C) spanned by nilpotent matrices is
contained in the kernel of h. Assume that h # 0; then h(A) # 0 whenever
tr(A) # 0. For any operator Ag such that o(Ap) = {0,1}, we have {0,a} =
{h(Ap), h(Ao) + 1}. As h(Ap) # 0, one sees that a = h(Ag) = —1. Hence
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h(A) = —tr(A) and
STIAS + A =tr(A)I for all A.

In particular, AS = —SA for all A with tr(A4) = 0, but this would imply
that S = 0, a contradiction. Hence, h = 0 and f(A") = f(A) for every A.
Now it is obvious that ¢ is real and VT = aV~! for some real number a.
We claim further that f = 0. Considering ¥(-) = ¢ 1V~1¢(-)V, we may
assume that @ has the form @#(A4) = A + g(A)I for all A, where g = ¢71f.
To show g = 0, let g(E;j) = ay; and @(I) = dI. Then oy; is real for i =1, 2,
age = d—1— ay1, and as; = —aq2. Since g is linear, we need only show
that 11 = @12 = 0 and d = 1. For any «, 3, b12,be1 € C with o # @, let

_ Bbia + Bboy
a—«

o —

A=aFy +aEky+ pBE2, B E11 + biaE12 + ba1 By

Then AB = BA!. Hence (g(A) — g(A))B + g(B)(A — AT) = (9(A) —
g(A))g(B)I. It follows that

(2.18) (g(A) —g(A)b12 +g(B)B=0
for all «, 3, b12,bo1 € C. Notice that
Bb1y + b _
g(B) = M ai1 + bipara — ba1a.

a—a
Let b12 = 0; from (2.18) one gets

62
9(B)3 = (a o Q11— ﬂalz)bm =0

for all «, 3,b9; € C. Thus we must have a1; = a12 = 0. So g(B) = 0 and
by (2.18) again we get (g(A) — g(A))b12 = 0 for all o, be; € C with a # @.
Since g(A) —g(A) = (d —1)(@— «), it follows that (1 —d)(a — a)bia = 0 for
all scalars «a, by; € C with a # @, and consequently, d = 1. Therefore, g =0
and @ has the form stated in Theorem 1 as desired, completing the proof of
Subcase 1.

REMARK. To show that the map @ has the structure stated in Theo-
rem 1 in this subcase, we mention another approach by using a result in the
geometry of 2 x 2 matrices [32]. We give a sketch of proof as follows. By
(2.17), we can get det A = 0 < det @(A) = 0. Thus @ preserves rank-one
matrices in both directions. Note that ®(I) = I and $(AT) = &(A)T for every
A. Hence, by a result in the geometry of 2 x 2 matrices [32], either there exist
a real scalar ¢ and a generalized indefinite unitary operator U : H — K such
that ¢(A) = cUAUT for all A; or there exist a real scalar ¢ and a generalized
indefinite anti-unitary operator U : H — K such that #(A) = cUATUT for
all A. The last form cannot occur because there are operators A, B such that
AB = BA" but ATBT # BTA (to see this, for example, take A = e; ® e,
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B = e; ® e, where e; and es are unit vectors such that Je; = e; and
Jeg = —eg with J as in the proof of Subcase 1). Therefore, @ has the form
stated in Theorem 1.

SUBCASE 2: Both J and L are linearly dependent of the identity. In this
case, the assumption becomes AB = BA* = ®(A)P(B) = ¢(B)P(A)* and
we may assume that J = I and L = I. It is easily checked that there exist a
real number ¢ and a unitary operator U : H — K such that #(A) = cUAU*
for all A, and @ has the form stated in Theorem 1.

SUBCASE 3: J € RI and L € RI. We shall show that this subcase does
not occur, that is, the assumption AB = BAT = &(A)®(B) = &(B)P(A)*
for all A cannot be satisfied for any bijective linear map @. Without loss
of generality we may assume that J = (é 0 ) Taking the same symbols as
in the proof of Subcase 1, it is easily checked that T1; = @(F1;) = ((1) 8)
and T22 = @(EQQ) =] - T11. By (2.14), we have T12T11 = T11T1*2 and
T2, = (T7,)?. Tt follows from a similar argument to the proof of Subcase 1
that 79 = (0 S12) and Ty = T75. Moreover,

0 0
B2 + ﬂbm
T —
with A = aFq1 + @Fy + ﬂElg implies that
Bbi2 + Bba

a_

B = E11 + b12Eg + ba1 Eg € A(A, A

Ti1 + bioTi2 + b1 T € A(P(A), P(A)")

for all «, 8, b12, b1 € C with a # @&. However, this will lead to a contradiction
|512|2 = —1.

SUBCASE 4: J € RI and L ¢ RI. This cannot occur either. To see
this, without loss of generality, we assume that J = [I. Taking the same
symbols as in Subcase 1, we see that (2.15) is still true. A similar argument
to Subcase 1 shows that T = (00 “12) and TlT2 has the form (2.16). Now, for
any o, 3 € C with « @ and 8 # 0, let A = aF11 +aFEs + (E13. Since, for
all byo, bo; € C with by # 0, we have

Bbia — ﬂbzl
a —

E11 4+ bi2E12 + ba1 By € A(A, AY),

it follows that
Bbia — ﬁbm

- Ty + biaTig + b Tor € A(D(A), B(A)T).
However, by takmg ba1 = 0, this would lead to [2|s12|? = —1, a contradiction.
Thus, in the case dim H = 2, we have also proved that the map & has

the form stated in Theorem 1. Now the proof of Theorem 1 is complete. =
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