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On the (C, α) uniform ergodic theorem

by

Elmouloudi Ed-dari (Lens)

Abstract. We improve a recent result of T. Yoshimoto about the uniform ergodic
theorem with Cesàro means of order α. We give a necessary and sufficient condition for
the (C,α) uniform ergodicity with α > 0.

Introduction. In his classical paper [D], N. Dunford obtained several
theorems about convergence of (fn(T ))n∈N, where T is a bounded linear
operator on a Banach space and (fn)n∈N is a sequence of complex-valued
functions, each of which is holomorphic on some open neighborhood of σ(T ).
Different kinds of convergence (namely, convergence in B(X), strong and
weak convergence) were treated.

In connection with this, E. Hille [H] obtained, as an application of
Abelian and Tauberian theorems, the uniform ergodic theorem as stated
below with a view to relating the (C,α) ergodic theorem for an operator T
and the properties of the resolvent R(·, T ).

Theorem A (Hille [H, Theorem 6]). Let X be a Banach space and T ∈
B(X). A necessary condition for the existence of an operator E ∈ B(X)
such that , for some fixed α > 0,

(1)
∥∥∥∥

1
Aαn

n∑

k=0

Aα−1
n−kT

k −E ∗
∥∥∥∥→ 0 as n→∞

is that

‖(λ− 1)R(λ, T )− E‖ → 0 as λ→ 1+,(2)

‖Tn‖/nα → 0 as n→∞.(3)

Conversely , if (3) is replaced by the power-boundedness of T , then (2) im-
plies (1) for every α > 0. Here, Aαn, n = 0, 1, 2, . . . , are the (C,α) coeffi-
cients of order α.
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In fact we have a particular interest in the case when the operator T is
not necessarily power-bounded. More precisely, the question is whether the
power-boundedness of the operator T is indispensable to deduce (1) from (2).
A partial negative answer to this question was first given by M. Lin [L] and
later by many other authors in the case α = 1.

Recently T. Yoshimoto [Y] obtained an improvement of the above the-
orem by introducing condition (Y): Tn/nω → 0 as n → ∞ where ω =
min(1, α), together with (2): (λ − 1)R(λ, T ) → 0 as λ → 1+, to prove (1).
And consequently, (1) is equivalent to conditions (2) and (3) if 0 < α ≤ 1.

In this paper we shall show that (1) is equivalent to (2) and (3) for every
α > 0 (Theorem 1), and we will give an example showing that condition (Y)
is only a sufficient condition but not necessary when α > 1.

Section 1 presents some preliminaries in order to make this paper as self-
contained as possible. Section 2 is devoted to our main results. In Section 3,
we give an example and corollaries.

Acknowledgements. I am grateful to J. Zemánek for useful biblio-
graphical references and interesting discussions about the topic.

1. Preliminaries. In this section we recall some known results which we
shall use in what follows. B(X) denotes the Banach algebra of all bounded
linear operators from a complex Banach space X into itself. For T ∈ B(X)
we denote the spectrum of T by σ(T ), the resolvent set of T by %(T ) =
C \ σ(T ), and the spectral radius of T by r(T ). It is well known that the
resolvent function R(·, T ) : %(T ) 3 λ 7→ (λI−T )−1 ∈ B(X), where I denotes
the identity operator, is holomorphic on %(T ).

By N and Z+ we denote the sets of all nonnegative and positive integers,
respectively.

For real α > −1 and integer n ≥ 0, let Aαn be the (C,α) coefficient of
order α, which is defined by the generating function

1
(1− t)α+1 =

∞∑

n=0

Aαnt
n, 0 ≤ t < 1.

Explicitly, Aαn = (α+ 1) . . . (α+ n)/n!. We check easily that

Aαn =
n∑

k=0

Aα−1
n−k =

(
α+ n

n

)
=

Γ (α+ n+ 1)
Γ (α+ 1)Γ (n+ 1)

,

which is equivalent to nα/Γ (α+ 1) as n→∞.
The nth Cesàro mean of order α of the powers of T is defined by

Mα
n =

1
Aαn

n∑

k=0

Aα−1
n−kT

k.

For α = 1 we find
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M1
n =

1
n+ 1

n∑

k=0

T k,

the usual Cesàro mean.
For T ∈ B(X), we denote the kernel and range of T by N(T ) and R(T ),

respectively. We begin with the closed range theorem:

Theorem 1.1 (see [T.L, 4.5.10]). Let X, Y be Banach spaces and T a
bounded linear operator from X into Y . If there exists a closed subspace
Z of Y such that R(T ) ∩ Z = {0} and R(T ) ⊕ Z is closed , then R(T ) is
closed.

By a projection of a Banach space X, we mean an element P of B(X)
satisfying P 2 = P . We recall that if P is a projection of X, then R(P ) is
a closed subspace of X and in addition X = R(P ) ⊕ N(P ). Conversely,
for every direct-sum decomposition X = Y ⊕ Z where Y and Z are closed
subspaces of X there exists a unique projection P of X such that R(P ) = Y
and N(P ) = Z; we call P the projection of X onto Y along Z.

We denote by α(T ) and δ(T ) the ascent and descent of T , respectively,
defined by

α(T ) = inf{n ∈ N | N(Tn) = N(Tn+1)},
δ(T ) = inf{n ∈ N | R(Tn) = R(Tn+1)}.

Then α(T ) and δ(T ) belong to N ∪ {∞}. We recall that if α(T ) < ∞ (re-
spectively, δ(T ) < ∞), then N(Tn) = N(Tα(T )) for every n ≥ α(T ) (re-
spectively, R(Tn) = R(T δ(T )) for every n ≥ δ(T )). It is well known that
finiteness of the ascent and descent of a bounded linear operator on a Ba-
nach space X is equivalent to a certain decomposition of X, as the following
result shows:

Theorem 1.2 (see [T.L, 5, 6.2, 6.3 and 6.4]). Let X be a Banach space
and let T ∈ B(X). If both α(T ) and δ(T ) are finite, then α(T ) = δ(T ) and
X = R(T p)⊕N(T p) where p denotes the common value of α(T ) and δ(T ).
Conversely , if the above decomposition holds for some integer p ≥ 1, then
α(T ) = δ(T ) ≤ p.

We conclude this section with an interesting result which shows a con-
nection between the decomposition of a Banach space X and the uniform
Abel summability of T ∈ B(X).

Lemma 1.3 ([H.P, Theorem 18.8.1]). Let X be a Banach space and
T ∈ B(X). If there exists a sequence (λn) ⊂ %(T ) such that

λn → 1 as n→∞,(1)

‖(λn − 1)R(λn, T )− E‖ → 0 as n→∞,(2)
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where E is a bounded linear operator from X into itself , then X = R(I−T )
⊕N(I − T ) and E is the projection of X onto N(I − T ) along R(I − T ).

2. Main results

Theorem 1. Let T be a bounded linear operator on a Banach space X.
There exists an operator E ∈ B(X) such that , for some fixed α > 0,

(1) ‖Mα
n − E‖ → 0 as n→∞

if and only if

‖(λ− 1)R(λ, T )− E‖ → 0 as λ→ 1+,(2)

‖Tn‖/nα → 0 as n→∞.(3)

We begin with some auxiliary results.

Definition 2.1. Let X be a Banach space and T ∈ B(X). For α > 0
and integer l ≥ 1, we shall say that T satisfies condition δ(l, α) if
‖(I − T )lMα

n (T )‖ → 0 as n→∞.

Lemma 2.2. Let T be a bounded linear operator on a Banach space X.
If there exists an E ∈ B(X) such that , for some fixed α > 0,

(1) ‖Mα
n − E‖ → 0 as n→∞,

then

‖(λ− 1)R(λ, T )− E‖ → 0 as λ→ 1+,(2)

σ(T ) ⊂ D(0, 1),(3)

T satisfies condition δ(l, α) for some integer l ≥ 1.(4)

Conversely , if (2)–(4) are satisfied , then (1) holds.

Proof. Assume that (1) holds. By Theorem A, (2) and (3) are satisfied
((3) of Theorem A implies (3) of the present lemma).

To prove (4), we choose a sequence (λn) with |λn| > 1 and λn → 1 as
n → ∞. Using Lemma 1.3 we obtain the decomposition X = R(I − T ) ⊕
N(I−T ), and E is the projection of X onto N(I−T ) along R(I−T ). Then
(I − T )lMα

n → (I − T )lE = 0 for every integer l ≥ 1. Hence (4) is satisfied.
Conversely, assume that (2)–(4) hold. Then X = R(I − T ) ⊕ N(I − T )

and from Theorems 1.1 and 1.2, R(I − T )n = R(I − T ) is closed for every
n ≥ 1, so there exists a k > 0 such that for every y ∈ R(I − T )l there is an
x ∈ X such that (I − T )lx = y and ‖x‖ ≤ k‖y‖.

For x ∈ X, we have x = (I −E)x+Ex and Mα
n x−Ex = Mα

n (I −E)x.
There is an x0 ∈ X such that (I−T )lx0 = (I−E)x and ‖x0‖ ≤ k‖(I−E)x‖
≤ k‖I − E‖ · ‖x‖, thus

‖Mα
n x− Ex‖ = ‖Mα

n (I − T )lx0‖ ≤ ‖(I − T )lMα
n ‖k‖I − E‖ · ‖x‖.
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Since ‖(I − T )lMα
n ‖ → 0 as n → ∞ it follows that ‖Mα

n − E‖ → 0 as
n→∞.

In the following we shall consider the following extended concept.
For any real number α, we define

Aαn =
(α+ 1)(α+ 2) . . . (α+ n)

n!
for n ≥ 1, Aα0 = 1.

Then the equality

Aαn =
n∑

k=0

Aα−1
n−k

remains valid for each real α and all n = 0, 1, 2, . . . (see Lemma 2.3 below).
For α ∈ {−1,−2, . . .}, Aαn = 0 for every integer n ≥ −α.

Let α ∈ R \ {−1,−2, . . .} and put

Mα
n =

1
Aαn

n∑

k=0

Aα−1
n−kT

k for n = 0, 1, 2, . . .

We obtain the following lemma.

Lemma 2.3. (1) Aαn+1 − Aαn = Aα−1
n+1 for any α ∈ R and any integer

n ≥ 0.
(2) α+n+1

n+1 Mα
n+1 −Mα

n = α
n+1M

α−1
n+1 for any α ∈ R \ {0,−1,−2, . . .}.

(3) If α is a positive integer and l = 1, . . . , α, or if α is a real positive
non-integer and l = 1, 2, . . . , then

(T − I)lMα
n =

α(α− 1) . . . (α− l + 1)
(n+ 1)(n+ 2) . . . (n+ l)

Mα−l
n+l − Pnl−1(T − I)

where

Pnl−1(X) =
α

n+1
X l−1 +

α(α− 1)
(n+1)(n+2)

X l−2 + . . .+
α(α− 1) . . . (α− l+1)
(n+1)(n+2) . . . (n+ l)

.

Proof. (1) Let α ∈ R and n ∈ N. Then Aα1 − Aα0 = α = Aα−1
1 , and for

n ≥ 1,

Aαn+1 − Aαn =
(α+ 1) . . . (α+ n+ 1)

(n+ 1)!
− (α+ 1) . . . (α+ n)

n!
= Aα−1

n+1 .

(2) Let α ∈ R \ {0,−1,−2, . . .}. Then

Aαn+1M
α
n+1 − AαnMα

n = Tn+1 +
n∑

k=0

(Aα−1
n+1−k −Aα−1

n−k)T k

= Tn+1 +
n∑

k=0

Aα−2
n+1−kT

k =
n+1∑

k=0

Aα−2
n+1−kT

k.
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Dividing both sides of this equality by Aαn, we obtain the desired result:
α+ n+ 1
n+ 1

Mα
n+1 −Mα

n =
α

n+ 1
Mα−1
n+1 .

(3) Let α be a positive number.
(a) If α is an integer, then

(T − I)Mα
n =

1
Aαn

n∑

k=0

Aα−1
n−kT

k+1 −Mα
n

=
1
Aαn

n+1∑

k=0

Aα−1
n+1−kT

k −Mα
n −

Aα−1
n+1

Aαn
I

=
α+ n+ 1
n+ 1

Mα
n+1 −Mα

n −
α

n+ 1
I =

α

n+ 1
(Mα−1

n+1 − I).

If α = 1 we are done. Next, if α ≥ 2 we apply (T − I)l to Mα
n for l =

1, 2, . . . , α and we use (2) to obtain the desired result.
(b) If α is not an integer, then neither is α−l for each integer l = 1, 2, . . . ,

and Mα−l
n is well defined. In particular α− l is not in {0,−1,−2, . . .}, so we

can apply (T − I)l to Mα
n for any integer l = 1, 2, . . . and use (2) to obtain

the corresponding result.

Lemma 2.4. (a) Let X be a Banach space and T ∈ B(X). For every
α > 0, if ‖Tn‖/nα → 0 as n→∞, then maxnk=0 ‖T k‖/nα → 0 as n→∞.

(b) Let (unm)m,n be a sequence of nonnegative numbers and Sn = un1 +
. . . + unn for n = 1, 2, . . . Then Sn → 0 as n → ∞ if and only if both
S1
n = un1 + . . . + un[n/2] → 0 and S2

n = un[n/2]+1 + . . . + unn → 0 as n → ∞,
where [α] denotes the integer part of α.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The condition is necessary by Theorem A. To prove
that (2) and (3) imply (1), in view of Lemma 2.2 it is sufficient to show that
T satisfies condition δ(l, α) for some integer l ≥ 1.

(a) If α is an integer, then

(T − I)αMα
n =

α!
(n+ 1)(n+ 2) . . . (n+ α)

M0
n+α − Pnα−1(T − I).

It is clear that

Pnα−1(T − I) =
α

n+ 1
(T − I)α−1 +

α(α− 1)
(n+ 1)(n+ 2)

(T − I)α−2 + . . .

+
α!

(n+ 1)(n+ 2) . . . (n+ α)
I → 0

as n → ∞. Thus (T − I)αMα
n → 0 as n → ∞ because M0

n+α = Tn+α and
‖Tn‖/nα → 0 as n→∞.
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(b) If α is not an integer, there exists a unique β ∈ R, 0 < β < 1, such
that α = [α] + β. Now we prove that (T − I)lMα

n → 0 as n → ∞ with
l = [α] + 1. We have

(T − I)[α]+1Mα
n =

α(α− 1) . . . (α− [α])
(n+ 1)(n+ 2) . . . (n+ [α] + 1)

Mβ−1
n+[α]+1 − Pn[α].

It is clear that

Pn[α](T − I) =
α

n+ 1
(T − I)[α] +

α(α− 1)
(n+ 1)(n+ 2)

(T − I)[α]−1 + . . .

+
α(α− 1) . . . (α− [α])

(n+ 1)(n+ 2) . . . (n+ [α] + 1)
I → 0

as n→∞. Thus (T − I)[α]+1Mα
n → 0 as n→∞ if and only if

β

(n− [α] + 1)(n− [α] + 2) . . . n(n+ 1)
Mβ−1
n+1 → 0 as n→∞.

Now, (n − [α] + 1)(n − [α] + 2) . . . n can be expressed as qn,αn[α] with
qn,α → 1 as n→∞. Since

β

n+ 1
Mβ−1
n+1 =

β + n+ 1
n+ 1

Mβ
n+1 −Mβ

n

=
1

Aβn

[
Tn+1 +

n∑

k=0

(Aβ−1
n+1−k − A

β−1
n−k)T k

]

=
1

Aβn

[
Tn+1 +

n∑

k=0

Aβ−2
n+1−kT

k
]

=
1

Aβn
Tn+1 +

1

Aβn

n∑

k=0

β − 1
n+ 1− k A

β−1
n−kT

k.

We have to show that this expression divided by qn,αn[α] converges to zero
as n tends to infinity. The first term ‖T n‖/(qn,αn[α]Aβn) is equivalent to
Γ (β + 1)‖Tn‖/nα → 0 as n→∞. Thus it remains to show that

1
qn,αn[α]

· 1

Aβn

n∑

k=0

β − 1
n+ 1− k A

β−1
n−kT

k → 0 as n→∞.

Put

In1 =
1

qn,αn[α]
· 1

Aβn

[n/2]∑

k=0

β − 1
n+ 1− k A

β−1
n−kT

k,

In2 =
1

qn,αn[α]
· 1

Aβn

n∑

k=[n/2]+1

β − 1
n+ 1− k A

β−1
n−kT

k.
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Then

‖In1 ‖ ≤
2(1− β)
qn,α

· maxnk=0 ‖T k‖
n[α]+1

→ 0 as n→∞.

Moreover,

In2 =
1

qn,αn[α]
· 1

Aβn

n∑

k=[n/2]+1

β − 1
n+ 1− k A

β−1
n−kT

k

=
1

qn,αn[α]
· 1

Aβn

n−[n/2]−1∑

k=0

β − 1
k + 1

Aβ−1
k Tn−k,

and so

‖In2 ‖ ≤
1− β
qn,α

· maxnk=0 ‖T k‖
n[α]Aβn

∞∑

k=0

Aβ−1
k

k + 1
.

The series
∑∞
k=0 A

β−1
k /(k + 1) converges. Indeed, let uk = Aβ−1

k /(k + 1).
Since

uk =
β(β + 1) . . . (β − 1 + k)

(k + 1)k!
=

Γ (β + k)
Γ (k + 2)Γ (β)

,

uk is equivalent to 1/(Γ (β)k2−β) as k → ∞. The series
∑∞
k=1 1/k2−β con-

verges and it follows that ‖In2 ‖ → 0 as n→∞. This completes the proof of
Theorem 1.

If we look carefully at the above proof, we see that for fixed α > 0,

‖Tn‖/nα → 0
(I)

=⇒
{
σ(T ) ⊂ D(0, 1),

T satisfies condition δ(l, α) for some l ≥ 1.

So, we summarize what we have proved as follows:

Theorem 2. Let T be a bounded linear operator in a Banach space X.
There exists an operator E ∈ B(X) such that , for fixed α > 0,

(1) ‖Mα
n − E‖ → 0 as n→∞

if and only if

(2)
(a) ‖(λ− 1)R(λ, T )− E‖ → 0 as λ→ 1+,

(b) ‖Tn‖/nα → 0 as n→∞,

if and only if

(3)
(a) ‖(λ− 1)R(λ, T )− E‖ → 0 as λ→ 1+,

(b) ‖(T − I)lMα
n ‖ → 0 as n→∞ for some l ≥ 1.

Note that if T satisfies condition δ(l, α) for some l ≥ 1 then σ(T ) ⊂
D(0, 1) and we will prove later that the converse of the implication (I) is
not true in general, so (3)(b) in Theorem 2 is weaker than (2)(b).
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3. Corollaries and an example

Corollary 3.1. Let α > 0 and T ∈ B(X). If there exists an operator
E ∈ B(X) such that ‖Mα

n − E‖ → 0 as n → ∞ then for every β ≥ α,
‖Mβ

n − E‖ → 0 as n → ∞. Equivalently , if T is (C,α) uniformly ergodic
for some α > 0, then it is also uniformly ergodic for every β ≥ α.

Corollary 3.2. Let α > 0, and let T ∈ B(X) satisfy ‖Tn‖/nα → 0
as n→∞ and supn ‖

∑n
k=0 A

α−1
n−kT

kx‖ <∞ for every x ∈ R(I − T ). Then
R(I − T ) is closed , and there exists an operator E ∈ B(X) such that Mα

n

converges to E in the uniform operator topology as n→∞.

Now we shall give an example showing that condition (Y) is only suffi-
cient but not necessary.

Example. Let A be the bounded linear operator on the complex Banach
space X = C[0, 1] defined by Ax(t) = tx(t) for all t ∈ [0, 1]. It is not hard to
check that σ(A) = [0, 1] and ‖An‖ = 1 for n = 0, 1, 2, . . . Thus ‖An‖/n→ 0
as n → ∞ and 1 is not a pole of R(·, A). Consequently, R(I − A)k is not
closed for every k = 1, 2, . . . (see [M.Z, Theorem 1]). This is equivalent to
saying that M1

n(A) does not converge. Now we consider the bounded linear
operator B defined on the Banach space Y = X × X by B =

[
A
I

0
I

]
. We

check that σ(B) = [0, 1],

Bn =
[

An 0
An−1 + An−2 + . . .+ I I

]
for n = 1, 2, . . .

and R(I − B) is closed. Then, by the same reason as above, Bn/n cannot
converge to zero as n goes to infinity. But it is clear that Bn/n2 → 0 as
n→∞ since ‖An‖ = 1 for all n ∈ N.

Let now T be the bounded linear operator on the Banach space Y × C
defined by T =

[−B
0

0
I

]
. Since σ(−B) = [−1, 0], we have σ(T ) = [−1, 0]∪{1},

and

Tn =
[

(−1)nBn 0
0 I

]
for n = 1, 2, . . .

It is clear that Tn/n2 converges to zero as n tends to infinity but T n/n does
not. Moreover R(I − T ) = R

([
I+B

0
0
0

])
= Y ×{0} and N(I −T ) = {0}×C.

Thus R(I−T )⊕N(I−T ) = Y ×C, hence 1 is a pole of R(·, T ) of order one
(see [B, Theorem 1.2 or Theorem 1.3]), and therefore ‖(λ− 1)R(λ, T )−E‖
→ 0 as λ → 1+ where E is the projection operator of X onto N(I − T )
along R(I−T ). Since Tn/n2 → 0 as n→∞ it follows from Theorem 1 that
‖M2

n(T )− E‖ → 0 as n→∞.

The following remark gives more information about the uniform (C,α)
ergodicity of the bounded linear operator T in the above example.
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Remark. We can check that for any α > 1, ‖T n‖/nα converges to zero
as n tends to infinity, and for any 0 < α ≤ 1, ‖T n‖/nα does not converge.
Since 1 is a pole of order one of the resolvent R(λ, T ), Theorem 1 ensures
that there exists an E ∈ B(X) such that ‖Mα

n −E‖ → 0 as n→∞ for any
α > 1, but Mα

n cannot converge in B(X) for any 0 < α ≤ 1.

Now we shall prove that condition (3)(b) in Theorem 2 does not imply
(2)(b). We consider the operator B =

[
A
I

0
I

]
used in the above example; we

will check that if α > 1, then ‖Bn‖/nα → 0 as n → ∞, and if 0 < α ≤ 1,
then ‖Bn‖/nα does not converge to zero. Take 0<α< 1; from what we have
just seen ‖Bn‖/nα cannot converge to zero; however, B satisfies condition
δ(l, α) for l = 2. Indeed,

(B − I)2Mα
n (B) =

α(α− 1)
(n+ 1)(n+ 2)

Mα−2
n+2 − Pn1 (B − I).

Since Pn1 (B − I)→ 0 as n→∞, it suffices to prove that

1
(n− 1)n

Mα−2
n =

1
(n− 1)n

· 1
Aα−2
n

n∑

k=0

Aα−3
n−kB

k → 0 as n→∞.

Clearly

Aα−3
n−k =

(α− 2)(α− 1) . . . (α− 3 + n− k)
(n− k)!

< 0 only if k = n− 1.

So we have
n∑

k=0

∣∣∣∣
Aα−3
n−k

Aα−2
n

∣∣∣∣ =
1

|Aα−2
n |

{ ∑

k 6=n−1

Aα−3
n−k + |Aα−3

1 |
}

=
∣∣∣∣
Aα−2
n

|Aα−2
n |

{
1

Aα−2
n

∑

k 6=n−1

Aα−3
n−k +

|Aα−3
1 |

Aα−2
n

}∣∣∣∣ = 1 + 2
|Aα−3

1 |
|Aα−2
n | .

Given ε > 0, since ‖Bn‖/n2 → 0 as n → ∞, there exists N so large that
‖Bn‖ ≤ εn2 for all n > N . Then

‖Mα−2
n (B)‖ ≤ 1

|Aα−2
n |

N∑

k=0

|Aα−3
n−k| · ‖Bk‖+ εn2 1

|Aα−2
n |

n∑

k=N+1

|Aα−3
n−k|

≤ (
N

max
k=0
‖Bk‖)(N + 1)

N
max
k=0

|Aα−3
n−k|

|Aα−2
n | + εn2

(
1 + 2

|Aα−3
1 |

|Aα−2
n |

)
.

For each k = 0, 1, . . . , N , we have |Aα−3
n−k/A

α−3
n | → 0 as n→∞, which yields

sup
n

max
0≤k≤N

|Aα−3
n−k|

|Aα−2
n | = C1 <∞.
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It follows that for every n > N ,

1
(n− 1)n

‖Mα−2
n (B)‖ ≤

N
max
k=0
‖Bk‖ · (N + 1)C1

(n− 1)n
+ε

n2

(n− 1)n

(
1+2

|Aα−3
1 |

Aα−2
n

)
.

Obviously

sup
n

n2

(n− 1)n

(
1 + 2

|Aα−3
1 |

Aα−2
n

)
= C2 <∞.

Thus

1
(n− 1)n

‖Mα−2
n (B)‖ ≤

N
max
k=0
‖Bk‖ · (N + 1)C1

(n− 1)n
+ εC2.
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