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On the power boundedness of certain
Volterra operator pencils

by

Dashdondog Tsedenbayar (Warszawa and Ulan-Bator)

Abstract. Let V be the classical Volterra operator on L2(0, 1), and let z be a complex
number. We prove that I − zV is power bounded if and only if Re z ≥ 0 and Im z = 0,
while I − zV 2 is power bounded if and only if z = 0. The first result yields

‖(I − V )n − (I − V )n+1‖ = O(n−1/2) as n→∞,
an improvement of [Py]. We also study some other related operator pencils.

1. Preliminaries. We say that an operator A is power-bounded if
supn≥0 ‖An‖ <∞. We denote by V the classical Volterra operator

(V f)(x) =
x�

0

f(s) ds, 0 < x < 1, on Lp(0, 1), 1 ≤ p ≤ ∞.

We recall the well-known formula

(V nf)(x) =
x�

0

(x− s)n−1

(n− 1)!
f(s) ds for n ∈ N.

A generalization of this formula is the definition of the Riemann–Liouville
integral operator of any fractional order α > 0,

(Jαf)(x) =
1

Γ (α)

x�

0

(x− s)α−1f(s) ds

(Γ is the Euler gamma function) on Lp(0, 1), 1 ≤ p ≤ ∞. In particular,
V = J1.

Recall that the Ritt condition for the resolvent R(λ,A) = (A− λI)−1 of
a bounded linear operator A on a Banach space is

‖R(λ,A)‖ ≤ const
|λ− 1| , |λ| > 1,

2000 Mathematics Subject Classification: Primary 47A10.
Key words and phrases: Volterra operator, power-bounded operator, resolvent.

[59]



60 D. Tsedenbayar

which is equivalent to a geometric condition much stronger than the power
boundedness of A [NaZe], [Ne2]. If the operator A is merely power-bounded,
then the weaker Kreiss condition

‖R(λ,A)‖ ≤ const
|λ| − 1

, |λ| > 1,

holds, but not conversely in general.

2. Introduction. In 1997, Allan [Al] recorded the observation made by
T. V. Pedersen that I − V is similar to (I + V )−1, namely

(1) S−1(I − V )S = (I + V )−1

where (Sf)(t) = etf(t), f ∈ Lp(0, 1), 1 ≤ p ≤ ∞. By [Ha, Problem 150], we
know that ‖(I + V )−1‖ = 1 on L2(0, 1). Hence I − V is a power-bounded
operator on L2(0, 1).

In 1987, Pytlik [Py], basing on an upper estimate for the Fejér expression
for Laguerre polynomials (see [Sz, p. 198]), proved

(2) ‖(I − V )n − (I − V )n+1‖ = O(n−1/4)

as n → +∞ on L2(0, 1). The same argument gives the same result also on
L1(0, 1), in which case it is sharp [ToZe]. By this method, one is unable
to distinguish the delicate properties of the Lp-norms. We shall show, by
an algebraic argument, the power boundedness of I − tV for t > 0, on
L2(0, 1), which will improve Pytlik’s estimate to O(n−1/2). Our method,
however, does not apply to L1(0, 1), because I − V is not power-bounded
there (see [Hi, p. 247]), and (2) actually cannot be improved on L1(0, 1) as
mentioned above [ToZe]. We also study some other related operator pencils.
The details of some calculations as well as alternative proofs of some cases
are given in [Ts].

3. The results

Proposition 1. Let A and B be two commuting power-bounded oper-
ators on a Banach space, and 0 ≤ t ≤ 1. Then the convex combination
tA+ (1− t)B is a power-bounded operator.

Proof. By the binomial formula,

‖(tA+ (1− t)B)n‖ ≤
n∑

k=0

(
n

k

)
tk‖Ak‖(1− t)n−k‖Bn−k‖

≤ const
n∑

k=0

(
n

k

)
tk(1− t)n−k = const(t+ (1− t))n = const.
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Theorem 1. The operator I − zV is power-bounded on L2(0, 1) if and
only if Re z ≥ 0 and Im z = 0.

Proof. (If ) It follows from Proposition 1 and the power boundedness of
I −V (explained above) that I − tV = (1− t)I+ t(I −V ) is power-bounded
for 0 ≤ t ≤ 1 on L2(0, 1).

Let m be a natural number. Note the following extension of formula (1):

(3) S−1(I −mV )S = (I − (m− 1)V )(I + V )−1

where (Sf)(t) = etf(t), f ∈ Lp(0, 1). We shall verify it by induction. If
m = 1, we have (1). Suppose that (3) holds for some m. Then

S−1(I − (m+ 1)V )S

= I − S−1(mV )S − S−1V S

= (I − (m− 1)V )(I + V )−1 + (I + V )−1 − I
= (I − (m− 1)V )(I + V )−1 + (I + V )−1 − (I + V )(I + V )−1

= (I − (m− 1)V )(I + V )−1 + (I − (I + V ))(I + V )−1

= (I −mV )(I + V )−1.

This proves (3) and yields the power boundedness of I −mV for all m ∈ N.
Then the convex combination (1 − t)(I − mV ) + t(I − (m + 1)V ) =

I − (m+ t)V is power-bounded for 0 ≤ t ≤ 1 and m ∈ N.
(Only if ) We shall show that the operator I − zV does not satisfy the

Kreiss condition on L2(0, 1) for Im z 6= 0. Thus I−zV is not power-bounded
on this space for those z. Indeed, using the well-known formula for the
resolvent of V (see e.g. [Ne1, p. 27]), we obtain

(R(λ, I − zV )f)(x) = − f(x)
λ− 1

+
z

(λ− 1)2

x�

0

e−(x−s)z/(λ−1)f(s) ds, λ 6= 1.

We have

lim sup
n→∞

(|1 + i/n| − 1)‖R(1 + i/n, I − zV )ein·‖ =∞ for Im z < 0,

lim sup
n→∞

(|1− i/n| − 1)‖R(1− i/n, I − zV )ein·‖ =∞ for Im z > 0.

Of course, I − zV is not power-bounded for Re z < 0 and Im z = 0,
because for f ≡ 1, we have lim supn→∞ ‖(I − zV )n1‖ =∞.

Corollary 1. On L2(0, 1), we have

‖(I − V )n − (I − V )n+1‖ = O(n−1/2) as n→∞.
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Proof. Set L = I−µV for µ > 1, which is power-bounded by Theorem 1.
Then Lω = (1−ω)I+ωL = (1−ω)I+ω(I−µV ) = I−ωµV is power-bounded
for 0 < ω < 1 by Proposition 1. Now, Nevanlinna’s theorem [Ne1, Theorem
4.5.3] yields

lim sup
n→∞

n1/2‖Lnω(Lω − I)‖ ≤ const
(

ω

2π(1− ω)

)1/2

.

So, for ω = 1/µ we get the claim.

Remark 1. Corollary 1 does not follow from Nevanlinna’s paper [Ne2, p.
121] because his resolvent assumption (1.35) is not satisfied for any positive
α < 1.

Remark 2. Alternatively, one can also use [FoWe, Lemma 2.1] instead
of [Ne1, Theorem 4.5.3]; observe that the proof in [FoWe, Lemma 2.1] works
also for power-bounded commuting pairs, or use [BoDu, Theorem 4.1].

Remark 3. It would be interesting to know if the above estimate
O(n−1/2) is already sharp, and if it extends, together with Theorem 1,
to Lp(0, 1), 1 < p < ∞. The above proof of Theorem 1 extends to these
spaces as soon as we know that I − V is power-bounded there. Perhaps the
Riesz–Thorin convexity theorem [BeSh, p. 196] could be applied.

Remark 4. It has been pointed out by Yuri Tomilov that Corollary 1
also follows from [Sa] and (1), by using [FoWe] as above. However, this ap-
proach does not seem to give Theorem 1. On the other hand, our Theorem 1
yields the corresponding information about the power boundedness of the
Sarason operator pencil.

Remark 5. Consider the matrix

A =
(

0 1
0 0

)
.

Then I − zA, z ∈ C, is power-bounded if and only if z = 0.

Theorem 2. The operator I − zV , z ∈ C, is power-bounded on L1(0, 1)
if and only if z = 0.

Proof. We consider the following three cases:

Case t < 0. The operator I − tV is not power-bounded on L1(0, 1) for
t < 0 since as before, from the binomial formula it is clear that

lim sup
n→∞

‖(I − tV )n1‖ =∞.
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Case t > 0. As in [Py, p. 292] we can write

((I − tV )nf)(x)− ((I − tV )n+1f)(x) = (tV (I − tV )nf)(x)

= t

( n∑

k=0

(
n

k

)
(−1)ktkV k+1f

)
(x) = t

x�

0

n∑

k=0

(
n

k

)
(−1)ktk

(x− s)k
k!

f(s) ds

= t

x�

0

L(0)
n (t(x− s))f(s) ds

where

L(0)
n (x) =

n∑

k=0

(
n

k

)
(−1)k

xk

k!
, n ≥ 1,

are the Laguerre polynomials with parameter 0. By summing these formulas
and using [Sz, p. 102, formula (5.1.13)], we get

((I − tV )n+1f)(x) = f(x)− t
x�

0

L(1)
n (t(x− s))f(s) ds

where L(1)
n (x) are the Laguerre polynomials with parameter 1.

Using the classical estimates for Laguerre polynomials [Sz, p. 177 and
198] and the formula for the norm of an integral operator on L1(0, 1) given
in [ToZe, Lemma 4.5], we deduce as in [ToZe, Example 4.6] that

lim sup
n→∞

‖(I − tV )n‖ =∞.

Case z ∈ C \R. We show that the operator I − zV does not satisfy the
Kreiss condition on L1(0, 1) for Im z 6= 0. Thus I−zV is not power-bounded
on L1(0, 1) for those z. Indeed, on L1(0, 1), we have

lim sup
n→∞

(|1 + i/n| − 1)‖R(1 + i/n, I − zV )ein·‖ =∞ for Im z < 0,

lim sup
n→∞

(|1− i/n| − 1)‖R(1− i/n, I − zV )ein·‖ =∞ for Im z > 0.

Remark 6. By duality, the same characterization holds on L∞(0, 1).

Proposition 2. Let σ(Q) = {0}. If I −Q satisfies the Ritt condition,
then so does I − tQ for t > 0.

Proof. We can write

R(λ, I − tQ) = (I − tQ− λI)−1 =
1
t

(
1− λ
t

I −Q
)−1

=
1
t

[
(I −Q)− I +

1− λ
t

I

]−1

=
1
t

[
I −Q−

(
1− 1− λ

t

)
I

]−1

.
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Whenever |t − 1 + λ| > t, i.e. |λ − (1 − t)| > t, which certainly holds for
Reλ > 1, we have

‖R(λ, I − tQ)‖ ≤ 1
t

const∣∣ t−1+λ
t − 1

∣∣ =
const
|λ− 1| ,

and this yields the Ritt condition by [NaZe, Lemma, p. 146] because σ(Q)
= {0}.

Remark 7. The operator I − Jα satisfies the Ritt condition for 0 <
α < 1 on Lp(0, 1), 1 ≤ p ≤ ∞, by [Ly2, p. 137], hence I − tJα satisfies the
Ritt condition for all t > 0 on Lp(0, 1), 1 ≤ p ≤ ∞, by Proposition 2. Hence
these operators are power-bounded by [Ly1, Theorem 1, p. 154] or [NaZe,
Theorem, p. 147].

This observation does not seem to follow by the method used above in
the case α = 1, because there is no analogy of (1) and (3) for α 6= 1.

We know from Theorem 1 that I−tV is power-bounded on L2(0, 1), while
I + tV is not for t > 0 (for t = 1 the latter also follows from the Gelfand
Theorem [Ge]). This leads to the natural question whether the product
(I − tV )(I + tV ) = I − t2V 2 is power-bounded. The answer is negative.

Theorem 3. The operator I−zV 2, z ∈ C, is power-bounded on Lp(0, 1),
1 ≤ p ≤ ∞, if and only if z = 0.

Proof. We consider the following three cases:

Case t < 0. The operator I − tV 2 is not power-bounded on Lp(0, 1),
1 ≤ p ≤ ∞, for t < 0 because, as before, from the binomial formula it is
clear that

lim sup
n→∞

‖(I − tV 2)n1‖ =∞.

Case t > 0. The resolvent formula for V 2 is

(R(λ, I − V 2)f)(x)

= − f(x)
λ− 1

+
1

(λ− 1)3/2

x�

0

sinh
x− s

(λ− 1)1/2
f(s) ds for λ 6= 1

(see [Hi, p. 260] or [Ne1, p. 130]). Therefore the resolvent formula for I−tV 2

is

(R(λ, I − tV 2)f)(x) =
1
t

(
R

(
1− 1− λ

t
, I − V 2

)
f

)
(x)

= − f(x)
λ− 1

+
t1/2

(λ− 1)3/2

x�

0

sinh
(x− s)t1/2
(λ− 1)1/2

f(s) ds.
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We choose f ≡ 1. Then

(R(λ, I − tV 2)1)(x) = − 1
λ− 1

+
t1/2

(λ− 1)3/2

x�

0

sinh
(x− s)t1/2
(λ− 1)1/2

ds

= − 2
λ− 1

+
1

λ− 1
cosh

t1/2x

(λ− 1)1/2
.

We note that
x�

0

sinh
(x− s)t1/2
(λ− 1)1/2

ds

= −(λ− 1)1/2

t1/2
+

1
2

(λ− 1)1/2

t1/2
[et

1/2x/(λ−1)1/2
+ e−t

1/2x/(λ−1)1/2
].

Hence, for λn = 1 + 1/n, we get

(R(λn, I − tV 2)1)(x) = −2n+ n cosh
√
ntx = n(cosh

√
ntx− 2),

and an easy calculation shows that

lim sup
n→∞

(|λn| − 1)‖(R(λn, I − tV 2)1)(x)‖ =∞.

Therefore, R(λ, I − tV 2) does not satisfy the Kreiss condition for t > 0.

Case z ∈ C \ R. We show that the operator I − zV 2 does not satisfy
the Kreiss condition on Lp(0, 1), 1 ≤ p ≤ ∞, for Im z 6= 0. Indeed, we can
write z = (α+ iβ)2 with α, β ∈ R, where α 6= 0. In the resolvent formula for
I − zV 2,

(R(λ, I − zV 2)f)(x) = − f(x)
λ− 1

+
z1/2

(λ− 1)3/2

x�

0

sinh
(x− s)z1/2

(λ− 1)1/2
f(s) ds

we set λn = 1 + 1/n2. Then

(R(1 + 1/n2, I − z2V 2)ein·)(x)

= −n2einx + n3(α+ iβ)
x�

0

sinh[n(x− s)(α+ iβ)]eins ds.

We note that
x�

0

sinh[n(x− s)(α+ iβ)]einsds = − 1
2

einx

n(α+ i(β − 1))
+

en(α+iβ)x

2n(α+ i(β − 1))

− 1
2

einx

n(α+ i(β + 1))
+

e−n(α+iβ)x

2n(α+ i(β + 1))
.

We get

lim sup
n→∞

1
n2 ‖(R(λn, I − zV 2)ein·)(x)‖ =∞.

Therefore, R(λ, I − zV 2) does not satisfy the Kreiss condition.
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