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On the power boundedness of certain
Volterra operator pencils

by

DASHDONDOG TSEDENBAYAR (Warszawa and Ulan-Bator)

Abstract. Let V be the classical Volterra operator on L2(0, 1), and let z be a complex
number. We prove that I — zV is power bounded if and only if Rez > 0 and Imz = 0,
while I — 2V2 is power bounded if and only if z = 0. The first result yields

I =V)" = (I =V)" =00 asn— oo,

an improvement of [Py]. We also study some other related operator pencils.

1. Preliminaries. We say that an operator A is power-bounded if
sup,,>q ||A"|| < oc. We denote by V' the classical Volterra operator

x

(V@) ={f(s)ds, 0<ax<1, onIP(0,1), 1<p< oo,

0
We recall the well-known formula
n ‘ (.17 - S)n_l

A generalization of this formula is the definition of the Riemann—Liouville
integral operator of any fractional order o > 0,

() (@) = (x—5)*7 f(s)ds

I (a)

OL’ﬁH

(I" is the Euler gamma function) on LP(0,1), 1 < p < oo. In particular,
V=JL
Recall that the Ritt condition for the resolvent R(\, A) = (A — AI)~! of
a bounded linear operator A on a Banach space is
const

A—1]

[R(X, A < Al > 1,
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which is equivalent to a geometric condition much stronger than the power
boundedness of A [NaZe], [Ne2]. If the operator A is merely power-bounded,
then the weaker Kreiss condition

const

R(MNA)| <
1RO A < 577

Al > 1,
holds, but not conversely in general.

2. Introduction. In 1997, Allan [Al] recorded the observation made by
T. V. Pedersen that I — V is similar to (I + V)™, namely

(1) SIr-wvs=1+v)!

where (Sf)(t) =e'f(t), f € LP(0,1), 1 < p < co. By [Ha, Problem 150], we
know that [|(I + V)~ = 1 on L?(0,1). Hence I — V is a power-bounded
operator on L?(0,1).

In 1987, Pytlik [Py], basing on an upper estimate for the Fejér expression
for Laguerre polynomials (see [Sz, p. 198]), proved

(2) I = V)" = (I = V)™ = O(n~ ')

as n — +o0o on L%(0,1). The same argument gives the same result also on
L'(0,1), in which case it is sharp [ToZe]. By this method, one is unable
to distinguish the delicate properties of the LP-norms. We shall show, by
an algebraic argument, the power boundedness of I — tV for ¢ > 0, on
L?(0,1), which will improve Pytlik’s estimate to O(n~'/2). Our method,
however, does not apply to L'(0,1), because I — V is not power-bounded
there (see [Hi, p. 247]), and (2) actually cannot be improved on L'(0,1) as
mentioned above [ToZe]. We also study some other related operator pencils.
The details of some calculations as well as alternative proofs of some cases
are given in [Ts].

3. The results

PROPOSITION 1. Let A and B be two commuting power-bounded oper-
ators on a Banach space, and 0 < t < 1. Then the convex combination
tA+ (1 —t)B is a power-bounded operator.

Proof. By the binomial formula,

ltA+(1—0)B ||<Z()t’“||A’“|| B

< const Z ( )tk (1—=t)""% = const(t + (1 —t))" = const. m
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THEOREM 1. The operator I — zV is power-bounded on L?(0,1) if and
only if Rez > 0 and Imz = 0.

Proof. (If) It follows from Proposition 1 and the power boundedness of
I -V (explained above) that I —tV = (1 —¢)I +t(I — V') is power-bounded
for 0 <t <1 on L?(0,1).

Let m be a natural number. Note the following extension of formula (1):

(3) STHI-—mV)S =T —(m—-1)V)I+V)!

where (Sf)(t) = elf(t), f € LP(0,1). We shall verify it by induction. If
m = 1, we have (1). Suppose that (3) holds for some m. Then

S™HI - (m+1)V)S
=I1-StmVv)s-s-tvs

(I—(m-DV)T+V) L+ +V)1 =
I—(m-DVIT+V) L+ +V) - +V)I+V)!
(I—( T +V) L+ (I -T+V)I+V)?

=T -mV)I+V)!

= m —

m—1

This proves (3) and yields the power boundedness of I —mV for all m € N.

Then the convex combination (1 — t)(I — mV) +t(I — (m + 1)V) =
I — (m+t)V is power-bounded for 0 < ¢ <1 and m € N.

(Only if) We shall show that the operator I — zV does not satisfy the
Kreiss condition on L?(0,1) for Im z # 0. Thus I — 2V is not power-bounded
on this space for those z. Indeed, using the well-known formula for the
resolvent of V' (see e.g. [Nel, p. 27]), we obtain

(R()\,I—zV)f)(x):—f( ) e @92/ O p(5)ds,  NH#1.

O e B

N _ 1)2
We have
limsup (|1 +i/n| — D||R(1 +i/n, I — 2V)e™ || =00 for Imz < 0,

limsup (|1 —i/n| — D||R(1 —i/n, I — 2V)e™ || =00 for Imz > 0.

Of course, I — zV is not power-bounded for Rez < 0 and Imz = 0,
because for f =1, we have limsup,,_, . [[(I —2V)"1|| = c0. =

COROLLARY 1. On L?(0,1), we have

(I —=V)"—(I— V)”HH = O(n_l/Q) as n — oo.
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Proof. Set L = I —puV for u > 1, which is power-bounded by Theorem 1.
Then L, = (1-w)[+wl = (1-w)[+w(I—pV) = I —wuV is power-bounded
for 0 < w < 1 by Proposition 1. Now, Nevanlinna’s theorem [Nel, Theorem
4.5.3] yields

1/2
lim sup nl/QHLZ(LW - < const(h) .

n—oo

So, for w = 1/u we get the claim. m

REMARK 1. Corollary 1 does not follow from Nevanlinna’s paper [Ne2, p.
121] because his resolvent assumption (1.35) is not satisfied for any positive
a <1

REMARK 2. Alternatively, one can also use [FoWe, Lemma 2.1] instead
of [Nel, Theorem 4.5.3]; observe that the proof in [FoWe, Lemma 2.1] works
also for power-bounded commuting pairs, or use [BoDu, Theorem 4.1].

REMARK 3. It would be interesting to know if the above estimate
O(n~1/2) is already sharp, and if it extends, together with Theorem 1,
to LP(0,1), 1 < p < oo. The above proof of Theorem 1 extends to these
spaces as soon as we know that I —V is power-bounded there. Perhaps the
Riesz—Thorin convexity theorem [BeSh, p. 196] could be applied.

REMARK 4. It has been pointed out by Yuri Tomilov that Corollary 1
also follows from [Sa] and (1), by using [FoWe| as above. However, this ap-
proach does not seem to give Theorem 1. On the other hand, our Theorem 1
yields the corresponding information about the power boundedness of the
Sarason operator pencil.

REMARK 5. Consider the matrix
0 1
A= (0 0) .
Then I — zA, z € C, is power-bounded if and only if z = 0.

THEOREM 2. The operator I — 2V, z € C, is power-bounded on L'(0,1)
if and only if z = 0.
Proof. We consider the following three cases:

Case t < 0. The operator I —tV is not power-bounded on L!(0,1) for
t < 0 since as before, from the binomial formula it is clear that

limsup ||({ — tV)"1|| = oo.
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Caset > 0. As in [Py, p. 292] we can write
(I =tV)"f)(x) = (I = V)" f) (@) = (VI = V)" f) (=)

— zn: ") (—1)ktkyR (@:ﬁi ") (—1)kek (x_'s)k F(s)ds
(2 () Jor=e832 () et

k=0

where

W0 =3 ()5, ezt

k=0
are the Laguerre polynomials with parameter 0. By summing these formulas
and using [Sz, p. 102, formula (5.1.13)], we get
x
(I =tV)"™ ' f)(2) = f2) = t | LD (H(x — ) f(5) ds
0
where L%l)(:v) are the Laguerre polynomials with parameter 1.

Using the classical estimates for Laguerre polynomials [Sz, p. 177 and
198] and the formula for the norm of an integral operator on L!(0, 1) given
in [ToZe, Lemma 4.5], we deduce as in [ToZe, Example 4.6] that

limsup||(I —tV)"|| = oc.
n—oo

Case z € C\ R. We show that the operator I — zV does not satisfy the
Kreiss condition on L!(0,1) for Im 2 # 0. Thus I — 2V is not power-bounded
on L(0,1) for those 2. Indeed, on L!(0, 1), we have

limsup (|1 +i/n| — D)||RQA +i/n, I —2V)e™ || =00 for Imz <0,

n—oo

limsup (|1 —i/n| — 1)||RQ —i/n, I —2V)e™ || =00 for Imz > 0. m

REMARK 6. By duality, the same characterization holds on L*(0,1).

PROPOSITION 2. Let o(Q) = {0}. If I — @ satisfies the Ritt condition,
then so does I —tQ fort > 0.

Proof. We can write

-1
R(A,I—tQ):(I—tQ—AI)—lz%(?1_62)

[(I—Q)—H? F

o ()

S| = | =
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Whenever [t — 1+ A\ > t, i.e. [\ — (1 —¢)| > ¢, which certainly holds for
Re A > 1, we have

IR\ T —tQ)|| <

1 const __const
E[ER2 ] 1)

and this yields the Ritt condition by [NaZe, Lemma, p. 146] because o(Q)

= {0}. =

REMARK 7. The operator I — J satisfies the Ritt condition for 0 <
a<1on LP(0,1),1 < p < oo, by [Ly2, p. 137], hence I — tJ* satisfies the
Ritt condition for all ¢ > 0 on LP(0,1),1 < p < oo, by Proposition 2. Hence
these operators are power-bounded by [Lyl, Theorem 1, p. 154] or [NaZe,
Theorem, p. 147].

This observation does not seem to follow by the method used above in
the case a = 1, because there is no analogy of (1) and (3) for a # 1.

We know from Theorem 1 that I —tV is power-bounded on L?(0,1), while
I +tV is not for t > 0 (for t = 1 the latter also follows from the Gelfand
Theorem [Ge]). This leads to the natural question whether the product
(I —tV)(I +tV) =1 —t2V? is power-bounded. The answer is negative.

THEOREM 3. The operator [ —zV?2, z € C, is power-bounded on LP(0, 1),
1 <p < oo, if and only if z = 0.

Proof. We consider the following three cases:

Case t < 0. The operator I — tV? is not power-bounded on LP(0,1),
1 < p < oo, for t < 0 because, as before, from the binomial formula it is
clear that
limsup ||(I —tV?)"1]| = occ.

Case t > 0. The resolvent formula for V2 is
(RONT = V) f)(x)

__f@ 1 0 r—s
a1 (/\_1)3/2§)Slnhmf(s)d3 for A # 1

(see [Hi, p. 260] or [Nel, p. 130]). Therefore the resolvent formula for I —tV?

(RO T — V) f)(z) = %(R(l - % - V2> f) (@)
B () S S Rl Ul
I RO R A P VE

f(s)ds.
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We choose f = 1. Then

o N A S )
(RO T = tVA)1)(2) = —3— + (A_l)g/z(s)smh O 1)1 ds
1/2
:_i_FLcosh (-

A—1 A—-1 ()\—1)1/2'
We note that
C (z — s)t'/?

| sinh
0 (A —1)1/2

ds

()\ —1/]_2)1/2 1 (>\ —1/]_2)1/2 [etl/2x/()‘71)1/2 + eftl/Q{L‘/()\fl)l/Q].
t 2t

Hence, for A, =1+ 1/n, we get
(R(An, I — tVH1)(2) = —2n + ncosh vtz = n(cosh Vntz — 2),
and an easy calculation shows that
lim sup(|A,| — 1)||(R(An, I — tV?)1)(z)|| = oo.

Therefore, R(\, I —tV?) does not satisfy the Kreiss condition for ¢ > 0.

Case z € C\ R. We show that the operator I — zV?2 does not satisfy
the Kreiss condition on LP(0,1), 1 < p < oo, for Imz # 0. Indeed, we can
write z = (a+1i3)? with o, 8 € R, where a # 0. In the resolvent formula for
I—2V2,

x A2 7 x— )22
(RO T = 2V?) f)(x) = _)\f(_)l T (A —1)3/2 Ssinh (()\ _ 1))1/2 f(s)ds
0

we set A\, = 1+ 1/n%. Then
(R(1+1/n?, I — 22V?)e™)(x)

x

= —p2ei™® 4 ng(a +1ip) S sinh[n(z — s)(a + iﬁ)]@ms ds.

We note that "
z o pina en(atif)z
§)s1nh[n(w —s)(a+if)]e"ds = — 2 (@t iB=1)) + (e +i(F—1))
1 pinz o—nlatif)z
“2afatiBTD) | et id 1)
We get

1 .
lim sup EH(R(An,I — 2V?)e™)(z)| = .

n—oo

Therefore, R(\, I — zV?) does not satisfy the Kreiss condition. u
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