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Regularity of stopping times of
diffusion processes in Besov spaces

by

Xicheng Zhang (Wuhan and Lisboa)

Abstract. We prove that the exit times of diffusion processes from a bounded open
set Ω almost surely belong to the Besov space Bαp,q(Ω) provided that pα<1 and 1≤q<∞.

1. Introduction and statement of results. Recently, many authors
devoted their efforts to the study of stopping times. In [1], Airault, Malliavin
and Ren studied the smoothness of stopping times of diffusion processes
in Wiener space. In [8], Pedersen and Peskir computed the expectation of
the Azéma–Yor stopping times. In [4], Knight and Maisonneuve gave two
characterizations of stopping times via martingales and Markov processes.
On the other hand, in [2], [3], Boufoussi and Roynette studied the regularity
of Brownian local time Lxt as a function of x ∈ R, and they proved that
it is almost everywhere in Besov–Orlicz spaces on R. Motivated by their
work, we study the smoothness of stopping times regarded as a function of
starting points in Besov spaces. We emphasize that in [1] the authors proved
that for an elliptic diffusion process, the exit time from an open set is in the
fractional Sobolev spaces Dp

α provided that pα < 1. In the case of Brownian
motion, they also showed that the result is almost optimal. Here we borrow
some methods from [1] to prove our main result.

For any 0 < α < 1, p > 1 and q ≥ 1, we use Bαp,q to denote the usual
Besov spaces in Rd, and the norm in Bαp,q is denoted by ‖ ·‖α,p,q. We refer to
[10, p. 189] for the detailed definition. The Besov spaces over an arbitrary
domain Ω are defined as restriction of the corresponding spaces over Rd
to Ω. That is to say,

(1) ‖f‖Bαp,q(Ω) := inf
g|Ω=f, g∈Bαp,q(Rd)

‖g‖α,p,q.

When Ω is a bounded C2 domain, another norm equivalent to (1) is given
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by (cf. [10, p. 324])

(2) ‖f‖∗Bαp,q(Ω) = ‖f‖Lp(Ω) +
( �

Rd

‖f(x+ h)− f(x)‖qLp(Ωh)

|h|d+αq dh

)1/q

,

where Ωh = Ω ∩ {x ∈ Rd : x+ h ∈ Ω} and | · | is the usual norm in Rd.
Let (W,H,µ) be the classical Wiener space. W and H respectively stand

for the completions of C∞0 ([0,∞),Rd) with respect to the norms

‖w‖W = sup
t≥0

|w(t)|
1 + t

and ‖w‖H =
(∞�

0

|w′(t)|2 dt
)1/2

,

µ is the Wiener measure.
In this context, we consider the following diffusion process:

(3)





dXi(t, x) =
d∑

k=1

σk,i(X(t, x))dwk(t) + bi(X(t, x))dt, i = 1, . . . , d,

X(0, x) = x

where x ∈ Rd, σ : Rd → Rd × Rd and b : Rd → Rd are C2
b functions, and

w(·) is the standard d-dimensional Wiener process. The second order elliptic
differential operator A on Rd associated with this diffusion process is given
by

A =
1
2

d∑

i,j=1

ai,j(x)∂2
i,j +

d∑

i=1

bi(x)∂i,

where a = σσT ∈ C2
b.

Let Ω be a bounded connected open set in Rd with C2 boundary (or ∂Ω
is a regularly imbedded C2 submanifold of Rd). It is well known that there
is a function (cf. [5, p. 59]) % : Rd → R satisfying:

(i) % is C2;
(ii) {x ∈ Rd : %(x) < 0} = Ω;
(iii) ∇%(x) 6= 0 on ∂Ω = {x ∈ Rd : %(x) = 0}, where ∇ stands for

gradient.

% is called a defining function for Ω. From the definition of %, it is not
hard to find that there exist two strictly positive constants C1 and ε such
that

(4) C1 ≤ |∇%(x)| ∀x ∈ Ωε,
where Ωε := {x : −ε < %(x) < ε} is a bounded set and Ωε is the closure
of Ωε.

For x ∈ Ω, we define the exit time as follows:

(5) τx(w) := inf{t ≥ 0 : X(t, w, x) 6∈ Ω} = inf{t ≥ 0 : %(X(t, w, x)) = 0}.
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For fixed T > 0, setting

τTx (w) = min{τx(w), T},
we prove the following result:

Theorem 1. In addition to the conditions σ, b ∈ C2
b, assume also that

there exist two positive constants C2, C3 such that

(6) C2|ξ|2 ≤ ξaξT ≤ C3|ξ|2

for all ξ ∈ Rd. Then for any p ≥ 1 and 0 < α < 1, there exists a constant
C = C(T, p, α) such that

(7) E|τTx (w)− τTy (w)|p ≤ C|x− y|α ∀x, y ∈ Ω.
Furthermore, in the case of one-dimensional Brownian motion, for x < 1,
set τx(w) = inf{t ≥ 0 : wt + x = 1} and τTx (w) = τx(w) ∧ T ; then for any
a < 1, there exists a constant C = C(T, a, p) such that

(8) E|τTx (w)− τTy (w)|p ≥ C|x− y| ∀a < x, y < 1.

From this theorem we easily deduce the following results:

Corollary 2. For almost all w ∈ W , if pα < 1 and 1 ≤ q < ∞, then
τTx (w) ∈ Bαp,q(Ω).

Set f(x) = E(τTx ). Since |f(x)− f(y)| ≤ E|τTx (w)− τTy (w)| ≤ C|x− y|α,
we obtain

Corollary 3. For 0 < α < 1 and 1 < p <∞, we have f ∈ Bαp,q(Ω).

2. Proof of Theorem 1. Henceforth, we make a convention: C denotes
a positive constant whose value may change in different occurrences.

First of all, from equation (3), we observe that for m > 1,

E|X(s, x)−X(t, y)|m ≤ C(|x− y|m + |s− t|m/2)

for all s, t ∈ [0, T ], x, y ∈ Rd (cf. [9]).

By the Kolmogorov criterion (cf. [9]), if we take m > (d+ 3)/(1− α), then

(9) max
0≤s≤T

|X(s, w, x))−X(s, w, y)| ≤ B(w)|x− y|α+1/m,

where E|B(w)|m <∞.
By condition (i), we know that

(10) |∇%(x)| < C4 ∀x ∈ Ωε ∪Ω.
For z ∈ ∂Ω, if we define

ηεz(w) := inf{t : X(t, w, z) 6∈ Ωε} = inf{t : |%(X(t, w, z))| = ε},
then for s < [τTx (w) + ηεX(τTx (w),w,x)(w)] ∧ τTy (w), we have

X(s, w, x) ∈ Ωε ∪Ω, X(s, w, y) ∈ Ω.
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Thus by the mean value theorem and (9), (10), we have

(11) |%(X(s, w, x))− %(X(s, w, y))| ≤ |∇%(η(w))| · |X(s, w, x)−X(s, w, y)|
≤ C4B(w)|x− y|α+1/m.

where η(w) ∈ Ωε ∪Ω.
Now we estimate the µ{|τTx (w) − τTy (w)| > λ} for λ < T . Note that if

τTy (w) > τTx (w) for some w ∈W , then

τTy (w) = τTx (w) + inf{s : %(X(τTx (w) + s, w, y)) = 0}.
Hence

{τTy (w)−τTx (w) > λ} ⊂ { max
0≤s≤λ

%(X(τTx (w)+s, w, y)) < 0, τTx (w) < T −λ}.

On the other hand, setting u(s) = τTx (w)+s∧ηεX(τTx (w),w,x)(w) < τTx (w)+s,
from (11), we find that

max
0≤s≤λ

|%(X(u(s), w, x))− %(X(u(s), w, y))| ≤ C4B(w)|x− y|α+1/m a.s.

Consequently, we have

µ{τTy (w)− τTx (w) > λ}
≤ µ{ max

0≤s≤λ
%(X(τTx (w) + s, w, y)) < 0, τTx (w) < T − λ}

= µ{ max
0≤s≤λ

%(X(τTx (w) + s, w, y)) < 0, τTx (w) < T − λ,

max
0≤s≤λ

%(X(u(s), w, x))− max
0≤s≤λ

%(X(u(s), w, y)) ≤ B(w)|x− y|α+1/m}

≤ µ{ max
0≤s≤λ

%(X(u(s), w, x)) < B(w)|x− y|α+1/m, τTx (w) < T − λ}

≤ µ{ max
0≤s≤λ

%(X(u(s), w, x)) < B(w)|x− y|α+1/m, τTx (w) < T − λ,

B(w) ≤ |x− y|−1/m}+ µ{B(w) ≥ |x− y|−1/m}

≤ µ{ max
0≤s≤λ

%(X(u(s), w, x)) < |x− y|α, τTx (w) < T − λ}

+ µ{B(w) ≥ |x− y|−1/m}
≤ µ{ max

0≤s≤λ
%(X(τx(w) + s ∧ ηεX(τx(w),w,x)(w), w, x)) < |x− y|α}

+ µ{B(w) ≥ |x− y|−1/m}
:= I1 + I2.

The Chebyshev inequality yields

I2 ≤ E|B(w)|m · |x− y| ≤ C|x− y|.
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By the strong Markov property, we continue to get

I1 = µ{ max
0≤s≤λ

%(X(s ∧ ηεX(τx(w),w,x)(w), θτx(w)(w),X(τx(w), w, x)))

< |x− y|α}
=

�

∂Ω

µ{ max
0≤s≤λ

%(X(s ∧ ηεz(w), θτx(w)(w), z)) < |x− y|α}

× µ{X(τx(w), w, x) ∈ dz}

where θτx(w)(w)(s) = w(s+ τx(w))− w(τx(w)).
On the other hand, for fixed z ∈ ∂Ω, by the Ito formula ([6] or [7]), there

exists an abstract Brownian motion b(s) = bz(s) such that

%(X(t, z)) =
t�

0

[(∇%)Ta∇%]1/2(X(s, z)) db(s) +
t�

0

A%(X(s, z)) ds.

Set

ξ(t, z) =
t�

0

[(∇%)Ta∇%]1/2(X(s ∧ ηεz, z)) db(s) +
t�

0

A%(X(s ∧ ηεz, z)) ds.

Then for t < ηεz , we have

%(X(t, w, z)) = ξ(t, w, z).

By the Girsanov theorem, ξ(t, z) is a martingale under the new probability
dµ̂ = M dµ where

M = exp
[
−
T�

0

(A%)(X(s ∧ ηεz, z)) db(s)− 1
2

T�

0

(A%(X(s ∧ ηεz, z)))2 ds

]
.

The increasing process of the martingale ξ(t, z) is

β(t, z) =
t�

0

[(∇%)Ta∇%](X(s ∧ ηεz, z)) ds.

From (4), (6) and (10), it is easy to see that

C5t ≤ β(t, z) ≤ C6t.

By a change of clock, we deduce that γt(w) := ξ(β−1
t , z) is a Brownian

motion under µ̂, starting at zero. Hence

µ̂{max
0≤s≤t

γs < h} = 2
h�

0

e−x
2/(2t)

(2πt)1/2
dx ≤ Cht−1/2.
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So we have

µ̂{ max
0≤s≤λ

%(X(s ∧ ηεz(w), w, z)) < |x− y|α} = µ̂{ max
0≤s≤λ

ξ(s, z) < |x− y|α}

≤ µ̂{ max
0≤s≤C5λ

γs < |x− y|α} ≤ C|x− y|αλ−1/2.

Thus, by the Hölder inequality, for any q > 1, we have

µ{ max
0≤s≤λ

%(X(s ∧ ηεz(w), w, z)) < |x− y|α}

≤ C
( �
Mq/(q−1)dµ̂

)(q−1)/q
|x− y|α/qλ−1/(2q).

Since M ∈ ⋂p Lp, we see that for any 0 < λ < T ,

µ{ max
0≤s≤λ

%(X(s ∧ ηεz(w), w, z)) < |x− y|α} ≤ C|x− y|α/qλ−1/(2q).

Lastly, I1 ≤ C|x− y|α/qλ−1/(2q). So

E|τTx (w)− τTy (w)|p =
�

R
pλp−1µ{|τTx (w)− τTy (w)| > λ} dλ

≤ C|x− y|α/q
T�

0

pλp−1λ−1/(2q) dλ ≤ C|x− y|α/q.

In view of the arbitrariness of q > 1, we let q tend to 1, and (7) follows.
Next we look at the second part of the theorem. Assume that x < y and

T/3 < λ < T/2; we obviously have

{τTx (w)− τTy (w) > λ} = {τx(w)− τy(w) > λ} ∩ {τy(w) < T − λ}.
Thanks to the independence of τx(w) − τy(w) and τy(w) (cf. [11, p. 165,
Problem 8.22]), we have

µ{τTx (w)− τTy (w) > λ}
= µ{τx(w)− τy(w) > λ}µ{τy(w) < T − λ}
= µ{ max

0≤s≤λ
w(s+ τy)− w(τy) < y − x}µ{τy(w) < T − λ}

= µ{ max
0≤s≤λ

w(s) < y − x}µ{τy(w) < T − λ}

=
2√
2πλ

y−x�

0

e−r
2/(2λ) dr · 2√

2π(T − λ)

∞�

1−y
e−r

2/(2(T−λ)) dr

≥ C(y − x).

Consequently,
E|τTx (w)− τTy (w)|p ≥ C|x− y|.
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[7] —, Géométrie différentielle stochastique, Presses Univ. Montréal, 1978.
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