Regularity of stopping times of diffusion processes in Besov spaces

by

XICHENG ZHANG (Wuhan and Lisboa)

Abstract. We prove that the exit times of diffusion processes from a bounded open set Ω almost surely belong to the Besov space $B_{p,q}^{\alpha}(\Omega)$ provided that $p\alpha < 1$ and $1 \le q < \infty$.

1. Introduction and statement of results. Recently, many authors devoted their efforts to the study of stopping times. In [1], Airault, Malliavin and Ren studied the smoothness of stopping times of diffusion processes in Wiener space. In [8], Pedersen and Peskir computed the expectation of the Azéma–Yor stopping times. In [4], Knight and Maisonneuve gave two characterizations of stopping times via martingales and Markov processes. On the other hand, in [2], [3], Boufoussi and Roynette studied the regularity of Brownian local time L_t^x as a function of $x \in \mathbb{R}$, and they proved that it is almost everywhere in Besov–Orlicz spaces on \mathbb{R} . Motivated by their work, we study the smoothness of stopping times regarded as a function of starting points in Besov spaces. We emphasize that in [1] the authors proved that for an elliptic diffusion process, the exit time from an open set is in the fractional Sobolev spaces D_{α}^p provided that $p\alpha < 1$. In the case of Brownian motion, they also showed that the result is almost optimal. Here we borrow some methods from [1] to prove our main result.

For any $0 < \alpha < 1$, p > 1 and $q \ge 1$, we use $B_{p,q}^{\alpha}$ to denote the usual Besov spaces in \mathbb{R}^d , and the norm in $B_{p,q}^{\alpha}$ is denoted by $\|\cdot\|_{\alpha,p,q}$. We refer to [10, p. 189] for the detailed definition. The Besov spaces over an arbitrary domain Ω are defined as restriction of the corresponding spaces over \mathbb{R}^d to Ω . That is to say,

(1)
$$||f||_{B^{\alpha}_{p,q}(\Omega)} := \inf_{\substack{g|_{\Omega}=f, \ g\in B^{\alpha}_{p,q}(\mathbb{R}^d)}} ||g||_{\alpha,p,q}.$$

When Ω is a bounded C^2 domain, another norm equivalent to (1) is given

²⁰⁰⁰ Mathematics Subject Classification: 60H07, 60G05, 46E35.

Key words and phrases: Besov spaces, stopping times.

by (cf. [10, p. 324])

(2)
$$||f||_{B^{\alpha}_{p,q}(\Omega)}^{*} = ||f||_{L^{p}(\Omega)} + \left(\int_{\mathbb{R}^{d}} \frac{||f(x+h) - f(x)||_{L^{p}(\Omega_{h})}^{q}}{|h|^{d+\alpha q}} dh\right)^{1/q},$$

where $\Omega_h = \Omega \cap \{x \in \mathbb{R}^d : x + h \in \Omega\}$ and $|\cdot|$ is the usual norm in \mathbb{R}^d .

Let (W, H, μ) be the classical Wiener space. W and H respectively stand for the completions of $C_0^{\infty}([0,\infty),\mathbb{R}^d)$ with respect to the norms

$$||w||_W = \sup_{t \ge 0} \frac{|w(t)|}{1+t}$$
 and $||w||_H = \left(\int_0^\infty |w'(t)|^2 dt\right)^{1/2}$,

 μ is the Wiener measure.

In this context, we consider the following diffusion process:

(3)
$$\begin{cases} dX_i(t,x) = \sum_{k=1}^d \sigma_{k,i}(X(t,x))dw_k(t) + b_i(X(t,x))dt, & i = 1, \dots, d, \\ X(0,x) = x \end{cases}$$

where $x \in \mathbb{R}^d$, $\sigma : \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$ and $b : \mathbb{R}^d \to \mathbb{R}^d$ are C_b^2 functions, and $w(\cdot)$ is the standard *d*-dimensional Wiener process. The second order elliptic differential operator A on \mathbb{R}^d associated with this diffusion process is given by

$$A = \frac{1}{2} \sum_{i,j=1}^{d} a_{i,j}(x) \partial_{i,j}^{2} + \sum_{i=1}^{d} b_{i}(x) \partial_{i},$$

where $a = \sigma \sigma^T \in C_{\rm b}^2$.

Let Ω be a bounded connected open set in \mathbb{R}^d with C^2 boundary (or $\partial \Omega$ is a regularly imbedded C^2 submanifold of \mathbb{R}^d). It is well known that there is a function (cf. [5, p. 59]) $\rho : \mathbb{R}^d \to \mathbb{R}$ satisfying:

(i) ρ is C^2 ;

(ii)
$$\{x \in \mathbb{R}^d : \varrho(x) < 0\} = \Omega$$

(iii) $\nabla \varrho(x) \neq 0$ on $\partial \Omega = \{x \in \mathbb{R}^d : \varrho(x) = 0\}$, where ∇ stands for gradient.

 ρ is called a *defining function* for Ω . From the definition of ρ , it is not hard to find that there exist two strictly positive constants C_1 and ε such that

(4)
$$C_1 \le |\nabla \varrho(x)| \quad \forall x \in \overline{\Omega}_{\varepsilon},$$

where $\Omega_{\varepsilon} := \{x : -\varepsilon < \varrho(x) < \varepsilon\}$ is a bounded set and $\overline{\Omega}_{\varepsilon}$ is the closure of Ω_{ε} .

For $x \in \Omega$, we define the exit time as follows:

(5)
$$\tau_x(w) := \inf\{t \ge 0 : X(t, w, x) \notin \Omega\} = \inf\{t \ge 0 : \varrho(X(t, w, x)) = 0\}.$$

For fixed T > 0, setting

$$\tau_x^T(w) = \min\{\tau_x(w), T\},\$$

we prove the following result:

THEOREM 1. In addition to the conditions $\sigma, b \in C_b^2$, assume also that there exist two positive constants C_2 , C_3 such that

(6)
$$C_2|\xi|^2 \le \xi a \xi^T \le C_3|\xi|^2$$

for all $\xi \in \mathbb{R}^d$. Then for any $p \ge 1$ and $0 < \alpha < 1$, there exists a constant $C = C(T, p, \alpha)$ such that

(7)
$$E|\tau_x^T(w) - \tau_y^T(w)|^p \le C|x - y|^\alpha \quad \forall x, y \in \Omega.$$

Furthermore, in the case of one-dimensional Brownian motion, for x < 1, set $\tau_x(w) = \inf\{t \ge 0 : w_t + x = 1\}$ and $\tau_x^T(w) = \tau_x(w) \wedge T$; then for any a < 1, there exists a constant C = C(T, a, p) such that

(8)
$$E|\tau_x^T(w) - \tau_y^T(w)|^p \ge C|x-y| \quad \forall a < x, y < 1.$$

From this theorem we easily deduce the following results:

COROLLARY 2. For almost all $w \in W$, if $p\alpha < 1$ and $1 \le q < \infty$, then $\tau_x^T(w) \in B_{p,q}^{\alpha}(\Omega)$.

Set $f(x) = E(\tau_x^T)$. Since $|f(x) - f(y)| \le E|\tau_x^T(w) - \tau_y^T(w)| \le C|x - y|^{\alpha}$, we obtain

COROLLARY 3. For $0 < \alpha < 1$ and $1 , we have <math>f \in B^{\alpha}_{p,q}(\Omega)$.

2. Proof of Theorem 1. Henceforth, we make a convention: C denotes a positive constant whose value may change in different occurrences.

First of all, from equation (3), we observe that for m > 1,

$$E|X(s,x) - X(t,y)|^m \le C(|x-y|^m + |s-t|^{m/2})$$

for all $s, t \in [0,T], x, y \in \mathbb{R}^d$ (cf. [9]).

By the Kolmogorov criterion (cf. [9]), if we take $m > (d+3)/(1-\alpha)$, then

(9)
$$\max_{0 \le s \le T} |X(s, w, x)) - X(s, w, y)| \le B(w)|x - y|^{\alpha + 1/n}$$

where $E|B(w)|^m < \infty$.

By condition (i), we know that

(10)
$$|\nabla \varrho(x)| < C_4 \quad \forall x \in \Omega_{\varepsilon} \cup \Omega.$$

For $z \in \partial \Omega$, if we define

$$\begin{split} \eta_z^{\varepsilon}(w) &:= \inf\{t : X(t, w, z) \notin \Omega_{\varepsilon}\} = \inf\{t : |\varrho(X(t, w, z))| = \varepsilon\},\\ \text{then for } s < [\tau_x^T(w) + \eta_{X(\tau_x^T(w), w, x)}^{\varepsilon}(w)] \wedge \tau_y^T(w), \text{ we have}\\ X(s, w, x) \in \Omega_{\varepsilon} \cup \Omega, \quad X(s, w, y) \in \Omega. \end{split}$$

Thus by the mean value theorem and (9), (10), we have

(11)
$$|\varrho(X(s,w,x)) - \varrho(X(s,w,y))| \le |\nabla \varrho(\eta(w))| \cdot |X(s,w,x) - X(s,w,y)|$$

 $\le C_4 B(w) |x-y|^{\alpha+1/m}.$

where $\eta(w) \in \Omega_{\varepsilon} \cup \Omega$. Now we estimate the $\mu\{|\tau_x^T(w) - \tau_y^T(w)| > \lambda\}$ for $\lambda < T$. Note that if $\tau_y^T(w) > \tau_x^T(w)$ for some $w \in W$, then

$$\tau_y^T(w) = \tau_x^T(w) + \inf\{s : \varrho(X(\tau_x^T(w) + s, w, y)) = 0\}.$$

Hence

$$\{\tau_y^T(w) - \tau_x^T(w) > \lambda\} \subset \{\max_{0 \le s \le \lambda} \varrho(X(\tau_x^T(w) + s, w, y)) < 0, \ \tau_x^T(w) < T - \lambda\}.$$

On the other hand, setting $u(s) = \tau_x^T(w) + s \wedge \eta_{X(\tau_x^T(w), w, x)}^{\varepsilon}(w) < \tau_x^T(w) + s$, from (11), we find that

$$\max_{0 \le s \le \lambda} |\varrho(X(u(s), w, x)) - \varrho(X(u(s), w, y))| \le C_4 B(w) |x - y|^{\alpha + 1/m} \quad \text{a.s.}$$

Consequently, we have

$$\begin{split} & \mu\{\tau_y^T(w) - \tau_x^T(w) > \lambda\} \\ & \leq \mu\{\max_{0 \le s \le \lambda} \varrho(X(\tau_x^T(w) + s, w, y)) < 0, \ \tau_x^T(w) < T - \lambda\} \\ & = \mu\{\max_{0 \le s \le \lambda} \varrho(X(\tau_x^T(w) + s, w, y)) < 0, \ \tau_x^T(w) < T - \lambda, \\ & \max_{0 \le s \le \lambda} \varrho(X(u(s), w, x)) - \max_{0 \le s \le \lambda} \varrho(X(u(s), w, y)) \le B(w) |x - y|^{\alpha + 1/m}\} \\ & \leq \mu\{\max_{0 \le s \le \lambda} \varrho(X(u(s), w, x)) < B(w) |x - y|^{\alpha + 1/m}, \ \tau_x^T(w) < T - \lambda\} \\ & \leq \mu\{\max_{0 \le s \le \lambda} \varrho(X(u(s), w, x)) < B(w) |x - y|^{\alpha + 1/m}, \ \tau_x^T(w) < T - \lambda, \\ & B(w) \le |x - y|^{-1/m}\} + \mu\{B(w) \ge |x - y|^{-1/m}\} \\ & \leq \mu\{\max_{0 \le s \le \lambda} \varrho(X(u(s), w, x)) < |x - y|^{\alpha}, \ \tau_x^T(w) < T - \lambda\} \\ & + \mu\{B(w) \ge |x - y|^{-1/m}\} \\ & \leq \mu\{\max_{0 \le s \le \lambda} \varrho(X(\tau_x(w) + s \land \eta_{X(\tau_x(w), w, x)}^{\varepsilon}(w), w, x)) < |x - y|^{\alpha}\} \\ & + \mu\{B(w) \ge |x - y|^{-1/m}\} \\ & := I_1 + I_2. \end{split}$$

The Chebyshev inequality yields

$$I_2 \le E|B(w)|^m \cdot |x-y| \le C|x-y|.$$

By the strong Markov property, we continue to get

$$\begin{split} I_1 &= \mu \{ \max_{0 \le s \le \lambda} \varrho(X(s \land \eta_{X(\tau_x(w), w, x)}^{\varepsilon}(w), \theta_{\tau_x(w)}(w), X(\tau_x(w), w, x))) \\ &\quad < |x - y|^{\alpha} \} \\ &= \int_{\partial \Omega} \mu \{ \max_{0 \le s \le \lambda} \varrho(X(s \land \eta_z^{\varepsilon}(w), \theta_{\tau_x(w)}(w), z)) < |x - y|^{\alpha} \} \\ &\quad \times \mu \{ X(\tau_x(w), w, x) \in dz \} \end{split}$$

where $\theta_{\tau_x(w)}(w)(s) = w(s + \tau_x(w)) - w(\tau_x(w)).$

On the other hand, for fixed $z \in \partial \Omega$, by the Ito formula ([6] or [7]), there exists an abstract Brownian motion $b(s) = b^z(s)$ such that

$$\varrho(X(t,z)) = \int_0^t [(\nabla \varrho)^T a \nabla \varrho]^{1/2} (X(s,z)) \, db(s) + \int_0^t A \varrho(X(s,z)) \, ds.$$

 Set

$$\xi(t,z) = \int_{0}^{t} \left[(\nabla \varrho)^{T} a \nabla \varrho \right]^{1/2} (X(s \wedge \eta_{z}^{\varepsilon}, z)) \, db(s) + \int_{0}^{t} A \varrho(X(s \wedge \eta_{z}^{\varepsilon}, z)) \, ds.$$

Then for $t < \eta_z^{\varepsilon}$, we have

$$\varrho(X(t,w,z)) = \xi(t,w,z).$$

By the Girsanov theorem, $\xi(t, z)$ is a martingale under the new probability $d\hat{\mu} = M \, d\mu$ where

$$M = \exp\bigg[-\int_0^T (A\varrho)(X(s \wedge \eta_z^\varepsilon, z)) \, db(s) - \frac{1}{2} \int_0^T (A\varrho(X(s \wedge \eta_z^\varepsilon, z)))^2 \, ds\bigg].$$

The increasing process of the martingale $\xi(t, z)$ is

$$\beta(t,z) = \int_{0}^{t} [(\nabla \varrho)^{T} a \nabla \varrho] (X(s \wedge \eta_{z}^{\varepsilon}, z)) \, ds.$$

From (4), (6) and (10), it is easy to see that

$$C_5 t \le \beta(t, z) \le C_6 t.$$

By a change of clock, we deduce that $\gamma_t(w) := \xi(\beta_t^{-1}, z)$ is a Brownian motion under $\hat{\mu}$, starting at zero. Hence

$$\widehat{\mu}\{\max_{0 \le s \le t} \gamma_s < h\} = 2 \int_0^h \frac{e^{-x^2/(2t)}}{(2\pi t)^{1/2}} \, dx \le Cht^{-1/2}.$$

So we have

$$\begin{aligned} \widehat{\mu}\{\max_{0\leq s\leq\lambda}\varrho(X(s\wedge\eta_z^{\varepsilon}(w),w,z)) < |x-y|^{\alpha}\} &= \widehat{\mu}\{\max_{0\leq s\leq\lambda}\xi(s,z) < |x-y|^{\alpha}\}\\ &\leq \widehat{\mu}\{\max_{0\leq s\leq C_5\lambda}\gamma_s < |x-y|^{\alpha}\} \leq C|x-y|^{\alpha}\lambda^{-1/2}. \end{aligned}$$

Thus, by the Hölder inequality, for any q > 1, we have

$$\begin{split} \mu\{\max_{0\leq s\leq\lambda}\varrho(X(s\wedge\eta_z^\varepsilon(w),w,z)) < |x-y|^{\alpha}\}\\ &\leq C\Big(\int M^{q/(q-1)}d\widehat{\mu}\Big)^{(q-1)/q}|x-y|^{\alpha/q}\lambda^{-1/(2q)}. \end{split}$$

Since $M \in \bigcap_p L^p$, we see that for any $0 < \lambda < T$,

$$\mu\{\max_{0\leq s\leq\lambda}\varrho(X(s\wedge\eta_z^\varepsilon(w),w,z))<|x-y|^\alpha\}\leq C|x-y|^{\alpha/q}\lambda^{-1/(2q)}.$$

Lastly, $I_1 \leq C |x - y|^{\alpha/q} \lambda^{-1/(2q)}$. So

$$\begin{split} E|\tau_x^T(w) - \tau_y^T(w)|^p &= \int_{\mathbb{R}} p\lambda^{p-1} \mu\{|\tau_x^T(w) - \tau_y^T(w)| > \lambda\} \, d\lambda \\ &\leq C|x-y|^{\alpha/q} \int_0^T p\lambda^{p-1} \lambda^{-1/(2q)} \, d\lambda \le C|x-y|^{\alpha/q}. \end{split}$$

In view of the arbitrariness of q > 1, we let q tend to 1, and (7) follows.

Next we look at the second part of the theorem. Assume that x < y and $T/3 < \lambda < T/2$; we obviously have

$$\{\tau_x^T(w) - \tau_y^T(w) > \lambda\} = \{\tau_x(w) - \tau_y(w) > \lambda\} \cap \{\tau_y(w) < T - \lambda\}.$$

Thanks to the independence of $\tau_x(w) - \tau_y(w)$ and $\tau_y(w)$ (cf. [11, p. 165, Problem 8.22]), we have

$$\begin{split} \mu\{\tau_x^T(w) - \tau_y^T(w) > \lambda\} \\ &= \mu\{\tau_x(w) - \tau_y(w) > \lambda\}\mu\{\tau_y(w) < T - \lambda\} \\ &= \mu\{\max_{0 \le s \le \lambda} w(s + \tau_y) - w(\tau_y) < y - x\}\mu\{\tau_y(w) < T - \lambda\} \\ &= \mu\{\max_{0 \le s \le \lambda} w(s) < y - x\}\mu\{\tau_y(w) < T - \lambda\} \\ &= \frac{2}{\sqrt{2\pi\lambda}} \int_0^{y-x} e^{-r^2/(2\lambda)} dr \cdot \frac{2}{\sqrt{2\pi(T - \lambda)}} \int_{1-y}^\infty e^{-r^2/(2(T - \lambda))} dr \\ &\ge C(y - x). \end{split}$$

Consequently,

$$E|\tau_x^T(w) - \tau_y^T(w)|^p \ge C|x - y|. \blacksquare$$

Acknowledgements. I would like to express my hearty thanks to Professor Jiagang Ren for his valuable suggestions. I would also like to express my deep thanks to the referee for his/her useful advice.

References

- H. Airault, P. Malliavin and J. Ren, Smoothness of stopping times of diffusion processes, J. Math. Pures Appl. 78 (1999), 1069–1091.
- B. Boufoussi, Régularité du temps local brownien dans les espaces de Besov-Orlicz, Studia Math. 118 (1996), 145–156.
- B. Boufoussi et B. Roynette, Le temps local brownien appartient p.s. à l'espace de Besov B^{1/2}_{p,∞}, C. R. Acad. Sci. Paris. Sér. I Math. 312 (1993), 843–848.
- [4] F. B. Knight and B. Maisonneuve, A characterization of stopping times, Ann. Probab. 22 (1994), 1600–1606.
- [5] S. G. Krantz, Function Theory of Several Complex Variables, Pure Appl. Math., Wiley, 1982.
- [6] P. Malliavin, Asymptotic of the Green's function of a Riemannian manifold and Ito's stochastic integral, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 381–383.
- [7] —, Géométrie différentielle stochastique, Presses Univ. Montréal, 1978.
- [8] J. L. Pedersen and G. Peškir, Computing the expectation of the Azéma-Yor stopping times, Ann. Inst. Henri Poincaré Probab. Statist. 34 (1998), 265–276.
- [9] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991.
- [10] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978.
- [11] A. D. Wentzell, A Course in the Theory of Stochastic Process, translated from the Russian by S. Chomet, McGraw-Hill, 1981.

Department of MathematicsGrupo de Fisica-MatematicaHuazhong University of Science and TechnologyUniversidade de LisboaWuhan, Hubei 430074, P.R. ChinaAv. Prof. Gama Pinto, 2E-mail: xczhang@hust.edu.cn1649-003 Lisboa, PortugalE-mail: xczhang@cii.fc.ul.pt

Received January 3, 2001 Revised version December 13, 2001 (4664)