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On positive solutions of nonlinear elliptic equations
involving concave and critical nonlinearities

by

J. Chabrowski (Brisbane) and P. Drábek (Plzen)

Abstract. We study the existence of nonnegative solutions of elliptic equations in-
volving concave and critical Sobolev nonlinearities. Applying various variational principles
we obtain the existence of at least two nonnegative solutions.

1. Introduction. The main purpose of this paper is to investigate the
existence of solutions of the following nonlinear elliptic problem:

(1ε)
{
−∆u+ u = εh(x)uq + u2?−1 in RN ,
u > 0, h ∈ H1(RN ),

where ε > 0 is a parameter, 0 < q < 1 and 2? = 2N/(N − 2), N ≥ 3, is
the critical Sobolev exponent. We assume that h is a nonnegative and 6≡ 0
function in Lr(RN ) ∩ C(RN ), where r = 2?/(2? − q − 1).

It is well known that equation (1ε) with h ≡ 0, that is,

−∆u+ u = u2?−1 in RN ,(1)

does not have a positive solution. This is a consequence of the Pokhozhaev
identity. By contrast, the equation

−∆u = u2?−1 in RN(2)

has a family of positive solutions ε−(N−2)/2U((x− y)/ε), where the function
U , called an instanton, is given by (see [17])

U(x) =
[

N(N − 2)
N(N − 2) + |x|2

](N−2)/2

.

We also have
�
RN |∇U |2 dx =

�
RN U

2? dx = SN/2. The constant S is the best
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Sobolev constant given by

S = inf
{ �

RN
|∇u|2 dx : u ∈ D1,2(RN ),

�

RN
|u|2? dx = 1

}
,

where D1,2(RN ) denotes the Sobolev space obtained as the completion of
the space C1

0(RN ) with respect to the norm

‖u‖2D1,2 =
�

RN
|∇u|2 dx.

However, the equation

−∆u+ a(x)u = u2?−1 in RN(3)

with nonnegative and nonconstant coefficient a(x) may have a positive so-
lution. In fact, Benci–Cerami [6] proved the existence of a positive solution
of (3) provided ‖a‖N/2 ≤ S(2N/2 − 1). This result has been extended in [9],
where the multiplicity of solutions was expressed in terms of the category of
the set a−1(0). Further results, under some integrability assumptions on the
coefficient a(x), can be found in [1], [13] and [14]. In Section 3 we show that
problem (1ε), which is a small concave perturbation of (1), admits a posi-
tive solution. This solution is obtained as a local minimizer of a variational
functional for (1ε). In Section 4, we consider an equation of the form

(1ε,s) −∆u+ εsu = εh(x)uq + u2?−1 in RN ,
where s > 1. Theorem 4.1 of Section 4 gives the existence of two positive
solutions: the first is a mountain-pass type solution and the second is ob-
tained through local minimization of the variational functional for (1ε,s). In
Section 5 we establish the existence of infinitely many solutions of equations
(1ε) and (1ε,s) for ε > 0 small. The results of Section 3 show that at least
one of the solutions of the equation in (1ε) is positive. By Theorem 4.1 of
Section 4 at least two solutions of (1ε,s) are positive under an additional
assumption that s < 2/(1− q). In Section 6, we extend the local minimiza-
tion to some nonlinear problems involving the p-Laplacian. Theorems 7.1
and 8.1 of Sections 7 and 8, respectively, complement the results obtained
in [16]. In the case of the p-Laplacian the exponent q satisfies the inequality
q < p and the corresponding nonlinearity is not necessarily concave.

Throughout our paper we use standard notation and terminology. In a
given Banach space X, we denote by “⇀” weak convergence and by “→”
strong convergence. For u ∈ R, we let u+ = max(0, u) and u− = max(0,−u).

Let F ∈ C1(X,R). A sequence {um} is said to be a Palais–Smale
sequence for F at level c ((PS)c sequence for short) if F (um) → c and
F ′(um) → 0 in X∗ as m → ∞. We say that F satisfies the Palais–Smale
condition at level c ((PS)c condition for short) if any (PS)c sequence is
relatively compact in X. By H1(RN ) we denote the usual Sobolev space
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equipped with the norm

‖u‖2 =
�

RN
(|∇u|2 + u2) dx.

2. Palais–Smale condition. For u ∈ H1(RN ) we define the energy
functional associated with (1ε):

Jε(u) =
1
2

�

RN
(|∇u|2 + u2) dx− ε

q + 1

�

RN
h(x)|u|q+1 dx− 1

2?

�

RN
|u|2? dx.

An elementary analysis of the real-valued function

a 7→ a2?

N
− ε
(

1
q + 1

− 1
2

)
‖h‖raq+1, a ≥ 0,

shows that it has a global minimum greater than or equal to −C∗εr with
some C∗ = C∗(N, q, ‖h‖r) > 0. Thus we have

a2?

N
− ε
(

1
q + 1

− 1
2

)
‖h‖raq+1 ≥ −C∗εr(4)

for every a ≥ 0.

Proposition 2.1. The functional Jε satisfies the (PS)c condition for

c <
SN/2

N
− εrC∗.(5)

Proof. If {um} is a (PS)c sequence with c satisfying (5), then {um} is
bounded in H1(RN ). Indeed, there exists an integer m0 such that

c+ 1 + o(‖um‖) ≥ Jε(um)− 1
2
〈J ′ε(um), um〉

=
q − 1

2(q + 1)
ε

�

RN
h|un|q+1 dx+

1
N

�

RN
|um|2

?
dx

for all m ≥ m0. By the Hölder and Sobolev inequalities, we deduce�

RN
|um|2

?
dx ≤ C1 + C2‖um‖q+1 + o(‖um‖)

for some constants C1, C2 > 0 and all m ≥ m0. On the other hand,
1
2

�

RN
(|∇um|2 + u2

m) dx = Jε(um) +
ε

q + 1

�

RN
h|um|q+1 dx+

1
2?

�

RN
|um|2

?
dx

≤ c+ 1 +
ε

q + 1

�

RN
h|um|q+1 dx+

1
2?

�

RN
|um|2

?
dx

for m ≥ m0. Combining the last two estimates we easily derive the bound-
edness of {um} in H1(RN ). Therefore, we may assume that um ⇀ u in
H1(RN ), um → u in Lp(Ω) for each 1 ≤ p < 2? and each bounded domain
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Ω ⊂ RN . Also, we assume that um ≥ 0 on RN . Otherwise we replace Jε by
a functional

J+
ε (u) =

1
2

�

RN
(|∇u|2 + u2) dx− ε

q + 1

�

RN
h(u+)q+1

dx− 1
2?

�

RN
(u+)2?

dx

and observe that every bounded (PS)c sequence {un} for J+
ε has the property

that u−n → 0 in H1(RN ). We set

µ∞ = lim
R→∞

lim sup
m→∞

�

|x|≥R
(|∇um|2 + u2

m) dx,

ν∞ = lim
R→∞

lim sup
m→∞

�

|x|≥R
|um|2

?
dx.

Then by the concentration-compactness principle (see [15] and [8]) we have

|∇um|2 + u2
m ⇀ dµ = |∇u|2 + u2 +

∑

j∈J
µjδxj + µ∞δ∞,

|um|2
?
⇀ dν = |u|2? +

∑

j∈J
νjδxj + ν∞δ∞,

where J is at most a countable set, and νj , µj > 0 are constants satisfying

Sν
(N−2)/N
j ≤ µj(6)

for j ∈ J ∪ {∞}. Using a family of test functions concentrating at xj and a
family of test functions concentrating at ∞, we check as in [2] and [8] that

νj = µj(7)

for all j ∈ J ∪ {∞}. We now observe that if νj 6= 0 for some j ∈ J ∪ {∞},
then by (6) and (7) we have

νj ≥ SN/2.(8)

We show that νj = 0 for every j ∈ J ∪ {∞}. Arguing by contradiction,
assume that νj > 0 for some j ∈ J ∪ {∞}. Then we have

Jε(um)− 1
2
〈J ′ε(um), um〉 =

1
N

�

RN
|um|2

?
dx+

(q − 1)ε
2(q + 1)

�

RN
h(x)|um|q+1 dx.

Letting m→∞ and using (8) we deduce that

c = lim
m→∞

(
Jε(um)− 1

2
〈J ′ε(um), um〉

)
(9)

≥ 1
N

�

RN
|u|2? dx+

SN/2

N
+

(q − 1)ε
2(q + 1)

�

RN
h(x)|u|q+1.
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If u ≡ 0, we deduce from (9) that c ≥ SN/2/N , which is impossible. If u 6≡ 0,
we then derive from (9) and (4) that

c ≥ SN/2

N
− C∗εr,

which is impossible. Since νj = 0 for every j ∈ J ∪{∞}, we see that um → u
in L2?(RN ). To show that um → u in H1(RN ) we write

o(1) = 〈J ′ε(un)− J ′ε(um), un − um〉
=

�

RN
(|∇(un − um)|2 + (un − um)2) dx

− ε
�

RN
h(|un|q−1un − |um|q−1um)(un − um) dx

−
�

RN
(|un|2

?−2un − |um|2
?−2um)(un − um) dx.

Since un → u in L2?(RN ), it is easy to check that the last two integrals
converge to 0 as n,m → ∞. Hence {un} satisfies the Cauchy condition in
H1(RN ) and the convergence of {un} in H1(RN ) follows.

3. Local minimum. We are now in a position to establish the existence
of a local minimum for Jε.

Theorem 3.1. There exists an ε0 > 0 such that for each 0 < ε ≤ ε0
problem (1ε) has a solution uε which is a local minimum of Jε.

Proof. Using the Sobolev embedding theorem and the Hölder inequality
we obtain the following estimate from below for the functional Jε:

Jε(u) ≥ 1
2
‖u‖2 − ε

q + 1
‖h‖r‖u‖q+1 − S−2?/2

2?
‖u‖2?

= ‖u‖2
(

1
2
− ε

q + 1
‖h‖r‖u‖q−1 − S−2?/2

2?
‖u‖2?−1

)
.

Let ‖u‖ = % and choose % > 0 so that

1
2
− S−2?/2

2?
%2?−1 > %0 > 0,

where %0 is a constant. It then follows from the last two estimates that there
exist constants ε0 > 0 and c1 > 0 such that

Jε(u) ≥ c1%
2

for all ‖u‖ = % and 0 < ε ≤ ε0. If ϕ > 0, ϕ ∈ H1(RN ), then

Jε(tϕ) =
t2

2

�

RN
(|∇ϕ|2 + ϕ2) dx− tq+1ε

q + 1

�

RN
h(x)ϕq+1 dx− t2

?

2?

�

RN
ϕ2? dx < 0
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for t > 0 sufficiently small. Therefore, we have

M = inf
‖u‖≤%

Jε(u) < 0.

We can also assume that ε0 is chosen so that SN/2/N − εrC∗ ≥ 0 for
0 < ε ≤ ε0. By the Ekeland variational principle [11] there exists a min-
imizing sequence {um} ⊂ B(0, %) such that Jε(um) → M and J ′ε(um) → 0
in H−1(RN ). Since the functional Jε satisfies the (PS)M condition it is clear
from the above construction that the functional Jε achieves a minimum uε
at an interior point of B(0, %). Since Jε(uε) = Jε(|uε|) we may assume that
uε ≥ 0 and by the maximum principle we have uε > 0 on RN . This completes
the proof.

Remark 3.2. It follows from the Hölder and Sobolev inequalities that
‖uε‖ ≤ r(ε) with r(ε)→ 0 as ε→ 0.

Indeed, since uε satisfies (1ε) we deduce from the inequality

Jε(uε)−
1
2
〈J ′ε(uε), uε〉 < 0

that
�

RN
u2?
ε dx ≤ Nε 1− q

2(q + 1)

�

RN
huq+1

ε dx ≤ Nε 1− q
2(q + 1)

‖h‖r
( �

RN
u2?
ε dx

)(q+1)/2?

and hence ( �

RN
u2?
ε dx

)(2?−q−1)/2?

≤ Nε 1− q
2(q + 1)

‖h‖r.

Combining this with the inequality Jε(uε) < 0 we derive our assertion.

Remark 3.3. Theorem 3.1 remains true if h changes sign, that is, h+ 6≡0
and h− 6≡ 0.

This follows from the fact that positivity of h was only used to show
that inf‖u‖≤% Jε(u) < 0 for small % > 0. This also can be shown by choosing

ϕ ∈ H1(RN ), ϕ ≥ 0, 6≡ 0 and with suppϕ ⊂ {x : h(x) > 0}. This obviously
implies that Jε(tϕ) < 0 for small t > 0.

In Proposition 3.4 below, we show that problem (1ε) has no solution for
ε large.

Proposition 3.4. There exists ε∗ > 0 such that problem (1ε) has no
solution for ε ≥ ε∗.

Proof. We follow the argument from [12]. Suppose that problem (1ε) has
a solution uε for every ε > 0. Let εk → ∞ and set uk = uεk . Since h ≥ 0
and 6≡ 0 on RN , we may assume without loss of generality that h(x) > 0 on
B(0, R) for some R > 0. We denote by λ1(R) > 0 the first eigenvalue of the
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problem
−∆u+ u = λu, u ∈W 1,2

0 (B(0, R)).(10)

Given δ > 0 we choose εk sufficiently large so that

εkh(x)uq + u2? ≥ (λ1(R) + δ)u

for all u ≥ 0 and x ∈ B(0, R). Then uk is a supersolution of the problem

−∆u+ u = (λ1(R) + δ)u, u ∈W 1,2
0 (B(0, R)).(11)

If ϕ > 0 is an eigenfunction corresponding to λ1(R), then for each t > 0, tϕ is
a subsolution of (11). We now choose t > 0 sufficiently small so that tϕ ≤ uk
on B(0, R). Hence we can find a solution v of (11) such that tϕ ≤ v ≤ uk on
B(0, R). However, this is impossible for δ > 0 sufficiently small, since the
first eigenvalue of (10) is isolated.

4. Mountain-pass solution. Inspection of the proofs of Proposition
2.1 and Theorem 3.1 shows that the method of local minimization can be
extended to problem (1ε,s). A variational functional for problem (1ε,s) has
the form

Jε,s(u) =
1
2

�

RN
(|∇u|2 + εsu2) dx− ε

q + 1

�

RN
h(x)|u|q+1 dx− 1

2?

�

RN
|u|2? dx.

Using the mountain-pass principle [3] and local minimization we show that
problem (1ε,s) has two distinct positive solutions.

Theorem 4.1. Suppose that N ≥ 5 and 1 < s < 2/(1− q). Then there
exists ε > 0 such that for every 0 < ε ≤ ε problem (1ε,s) admits two distinct
positive solutions.

Proof. First, we check that the functional Jε,s has mountain-pass geom-
etry. We set

‖u‖2ε =
�

RN
(|∇u|2 + εsu2) dx

for ε > 0. This is a norm equivalent to ‖ · ‖. First, we notice that if ‖v‖ = %,
then ‖vε‖ε = %εs/2, where vε(x) = εNs/4v(εs/2x). We now consider a sphere
‖u‖ε = %εs/2 in H1(RN ), where % > 0 is fixed. For ‖u‖ε = %εs/2 we have the
following estimate:

Jε,s(u) ≥ εs%2/2− C1ε
1+(q+1)s/2%q+1 − C2ε

s2?/2%2?

= εs(%2/2− C1ε
1+(q−1)s/2%q+1 − C2ε

s(2?−2)/2%2?).

From this and s < 2/(1− q) we deduce that there exists ε1 > 0 such that
to every 0 < ε ≤ ε1 there corresponds %ε > 0 such that Jε,s(u) ≥ %ε for
‖u‖ε = %εs/2. It is clear that Jε,s(tU) < 0 for t > 0 sufficiently large, where
U is the instanton defined in Section 1. We point out here that Jε,s(U) is
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well defined since N ≥ 5. Therefore, we can define the mountain-pass level

cε = inf
γ∈Γ

max
0≤t≤1

Jε,s(u),

where
Γ = {γ ∈ C([0, 1],H1(RN )) : γ(0) = 0, γ(1) < 0}.

We now show that

cε <
SN/2

N
− C∗εr(12)

for ε > 0 sufficiently small. First, we choose t∗ > 0 and ε∗ > 0 small enough
so that

Jε,s(tU) ≤ SN/2

N
− C∗εr(13)

for 0 ≤ t ≤ t∗ and 0 < ε ≤ ε∗. Here ε∗ is chosen so that

SN/2

N
− C∗εr ≥ c0 > 0

for all 0 < ε ≤ ε∗. To estimate Jε,s(tU) for t∗ ≤ t we observe that the
function

t 7→ t2

2

�

RN
(|∇U |2 + εsU2) dx− t2

?

2?

�

RN
U2? dx, t ≥ 0,

achieves its maximum on [0,∞) at a point tε > 0. If ε = 0, then t0 = 1 and
we also have 1 ≤ tε ≤ t1 for 0 ≤ ε ≤ 1. We then have, for t∗ ≤ t,

Jε,s(tU) ≤ t2ε
2

�

RN
(|∇U |2 + εsU2) dx− t2

?

ε

2?

�

RN
U2? dx

− ε(t∗)q+1

q + 1

�

RN
h(x)U q+1 dx.

Since
t2ε
2

�

RN
|∇U |2 dx− t2

?

ε

2?

�

RN
U2? dx ≤ 1

2

�

RN
|∇U |2 dx− 1

2?

�

RN
U2? dx =

SN/2

N
,

we deduce from the previous inequality that

Jε,s(tU) ≤ SN/2

N
+O(εs)− ε(t∗)q+1

q + 1

�

RN
h(x)U q+1 dx(14)

for t∗ ≤ t and 0 < ε ≤ ε∗. Taking ε∗ smaller if necessary, we can assume

O(εs)− ε(t∗)q+1

q + 1

�

RN
h(x)U q+1 dx ≤ −C∗εr(15)

for all 0 < ε ≤ ε∗. Combining (13)–(15) we obtain (12). The argument
used in the proof of Proposition 2.1 shows that the functional Jε,s satisfies
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the (PS)c condition with c satisfying (5). This completes the proof of the
existence of a mountain-pass solution. The above estimate of the functional
Jε,s on the sphere ‖u‖ε = %εs/2 shows that the second solution can be
obtained by local minimization as in Theorem 3.1.

In the next result we examine the behaviour, as ε → 0, of the solutions
from Theorem 4.1.

Proposition 4.2. Suppose that the assumptions of Theorem 4.1 hold.

(i) If {uε}, 0 < ε ≤ ε, are mountain-pass solutions of problem (1ε,s),
then limε→0 ε

−s‖uε‖2 =∞.
(ii) If {uε}, 0 < ε ≤ ε, are solutions of problem (1ε,s) which are local

minimizers, then limε→0 ‖uε‖ = 0.

Proof. It follows from the proof of Theorem 4.1 that for every % > 0
there exists an ε0 > 0 such that a mountain-pass solution uε satisfies

Jε,s(uε) ≥
εs%2

4
for 0 < ε ≤ ε0.

This implies that

1
2

�

RN
(|∇uε|2 + εsu2

ε) dx ≥
εs%2

4
+

ε

2?

�

RN
huq+1

ε dx+
1
2?

�

RN
u2?
ε dx

=
εs%2

4
+

1
2?

�

RN
(|∇uε|2 + εsu2

ε) dx.

From this we deduce that
1
N

�

RN
(|∇uε|2 + εsu2

ε) dx ≥
εs%2

4

and the result follows.
(ii) Following the argument of Remark 3.2 we see that

Jε,s(uε)−
1
2
〈J ′ε,s(uε), uε〉 < 0

implies that �

RN
u2?
ε dx ≤ N 1− q

2(q + 1)
ε‖h‖r‖uε‖q+1

ε .

We then have
1
2

�

RN
(|∇uε|2 + εsu2

ε) dx = Jε,s(uε) +
ε

q + 1

�

RN
huq+1

ε dx+
1
2?

�

RN
u2?
ε dx

≤ ε

q + 1
‖h‖r‖uε‖q+1

ε +
1
2?

�

RN
u2?
ε dx ≤ εC1‖uε‖q+1

ε
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for some constant C1 > 0 independent of ε. Since

εs/2‖u‖ ≤ ‖u‖ε ≤ ‖u‖
for every u ∈ H1(RN ), we deduce from the last estimate for uε that

‖uε‖ ≤ Cε1/(1−q)−s/2

for some constant C > 0 independent of ε. This estimate completes the
proof of assertion (ii).

Remark 4.3. Theorem 4.1 continues to hold if h changes sign and sat-
isfies

�
RN h(x)U q+1 dx > 0.

This assumption allows one to show that the mountain-pass level cε for
the functional Jε,s satisfies (12).

5. Existence of infinitely many solutions. Since the right-hand side
of the equation in (1ε) involves concave and convex nonlinearities we can
establish the existence of infinitely many solutions. Our approach is based
on the Bartsch–Willem fountain theorem [4].

Let {ek}, k = 1, 2, . . . , be an orthonormal basis for H1(RN ). We set

X(j) = span(e1, . . . , ej), Xk =
⊕

j≥k
X(j), Xk =

⊕

j≤k
X(j)

for each k ∈ N.

Theorem 5.1 (Bartsch–Willem [5]). Let F : H1(RN )→ R be a C1 even
functional satisfying the following conditions:

(A1) There exists an integer k0 such that for every k ≥ k0 there exists
Rk > 0 such that F (u) ≥ 0 for every u ∈ Xk with ‖u‖ = Rk.

(A2) bk = infBk F (u)→ 0 as k →∞, where Bk = {u ∈ Xk : ‖u‖ ≤ Rk}.
(A3) For every k ≥ 1 there exist rk ∈ (0, Rk) and dk < 0 such that

F (u) ≤ dk for every u ∈ Xk with ‖u‖ = rk.

(A4) Every sequence un ∈ Xn with F (un) < 0 and F ′|Xn → 0 as n→∞
has a subsequence which converges to a critical point of F .

Then for each k ≥ k0, F has a critical value ck ∈ [bk, dk].

Theorem 5.2. There exists ε0 > 0 such that for 0 < ε ≤ ε0 the equation
in (1ε) admits infinitely many solutions.

Proof. It suffices to check that the functional Jε satisfies the assumptions
of Theorem 5.1. For each k ∈ N we define

λk = sup
u∈Xk−{0}

(
�
RN h|u|q+1 dx)1/(q+1)

‖u‖ .
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It is clear that {λk} is a decreasing sequence. Since u 7→
�
RN h(x)|u(x)|q+1 dx

is a completely continuous functional on H1(RN ), we can show as in [18]
that λk → 0 as k →∞. We now proceed as in the proof of Theorem 3 in [5].
Let u ∈ H1(RN ). Then we have

Jε(u) ≥ 1
2
‖u‖2 − λq+1

k ε

q + 1
‖u‖q+1 − S−2?/2

2?
‖u‖2? .

If ‖u‖ < R with R > 0 small, then

S−2?/2

2?
‖u‖2? ≤ 1

4
‖u‖2.

We set Rk = (4ελq+1
k /(q + 1))1/(1−q). We see that Rk satisfies

R2
k

4
=

ε

q + 1
λq+1
k Rq+1

k

and moreover Rk → 0 as k → ∞. Therefore we can find k0 ∈ N such that
Rk ≤ R for k ≥ k0. Consequently, if u ∈ Xk, k ≥ k0, satisfies ‖u‖ = Rk, we
then have

Jε(u) ≥ 1
4
‖u‖2 − ελq+1

k

q + 1
‖u‖q+1 = 0.

This shows that (A1) holds and since Rk → 0, condition (A2) is also satisfied.
To check (A3) we observe that on the finite-dimensional space Xk all norms
are equivalent. Hence

Jε(u) ≤ 1
2
‖u‖2 − A‖u‖q+1 −B‖u‖2?

for some constants A,B > 0. Since q + 1 < 2, taking rk sufficiently small,
we can satisfy (A3). The Palais–Smale condition (A4) follows from Propo-
sition 2.1. We only need to select ε0 > 0 so that SN/2/N − εrC∗ > 0 for
0 < ε ≤ ε0.

A similar argument can be employed to show the existence of infinitely
many solutions of equation (1ε,s).

Theorem 5.3. Let s > 1. There exists ε > 0 such that equation (1ε,s)
for 0 < ε ≤ ε has infinitely many solutions.

6. The p-Laplacian. In this section we study the problem

(1λ)
{
−∆pu+ up−1 = up

?−1 + λf(x, u) in RN ,
u ≥ 0 on RN ,

where ∆p = −div(|∇u|p−2∇u) is the p-Laplacian of u, p? = Np/(N − p),
N > p, is the critical Sobolev exponent and λ > 0 is a positive parameter.

We assume that the function f : RN × R → R satisfies the following
conditions:
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(f1) f ∈ C(RN × R,R) and f(x, 0) = 0 for x ∈ RN ,

(f2) for every R > 0 there exist θR ∈ [p, p?) and constants aR, bR > 0
such that

|f(x, s)| ≤ aRsθR−1 + bR

for every |x| ≤ R and s ≥ 0,

(f3) there exist constants r1 ∈ (1, p?) and r2 ∈ (p, p?) such that

f(x, s) ≤ b(x)sr1−1 + csr2−1

for every x ∈ RN and s ≥ 0, where b ∈ Lp?/(p?−r1)(RN ) and b(x) ≥ 0
on RN and c > 0 is a constant. Furthermore, we assume that there
exist q ∈ (1, p) and an open set Ω ⊂ RN such that the function
F (x, s) =

� s
0 f(x, t) dt satisfies

F (x, s) ≥ asq

for every x ∈ Ω and s ≥ 0 and some positive constant a > 0.

An example of the nonlinearity f satisfying the above conditions is

f(x, s) = b(x)sq−1 − d(x)sl−1 + Csr2−1,

where C > 0 is a constant, 1 ≤ l < p?, b(x) ≥ 0 on RN and belongs to
Lp

?/(p?−q)(RN )∩C(RN ) and d(x) is a continuous and nonnegative function
on RN . Moreover, it is assumed that b(x) ≥ a0 > 0 on B(0, R) and d(x) = 0
on B(0, R). In this example q = r1 and Ω = B(0, R).

A similar problem
{
−∆pu = up

?−1 + λf(x, u) in RN ,
u ≥ 0 on RN ,

has been studied in [16]. Under some additional assumptions, guaranteeing
the mountain-pass geometry of the variational functional for this problem,
the authors established the existence of a nontrivial solution. First, we estab-
lish the existence of a solution for problem (1λ) through local minimization.
Under assumptions (f1), (f2) and (f3) a variational functional correspond-
ing to (1λ) is not well defined on W 1,p(RN ). Therefore, following the paper
[16] we truncate the nonlinearity f . We also point out here that in [16] the
constant q (see assumption (f3)) satisfies 1 < q < p? and some other restric-
tions. This assumption is replaced here by 1 < q < p, since we construct a
solution through local minimization (see Lemma 6.2 below).

Let ϕ ∈ C1(RN ) be a function such that ϕ(x) = 1 for |x| ≤ 1, ϕ(x) = 0
for |x| ≥ 2 and 0 ≤ ϕ(x) ≤ 1 on RN . We set ϕn(x) = ϕ(x/n) and extend
f by 0 for s ≤ 0, that is, f(x, s) = 0 for x ∈ RN and s ≤ 0. We define a
modified nonlinearity fn(x, s) = ϕn(x)f(x, s). For each n ∈ N we consider
the following problem:



Positive solutions of nonlinear elliptic equations 79

(1λ,n)
{
−∆pu+ up−1 = up

?−1 + λfn(x, u) in RN ,
u ≥ 0 on RN .

Let Fn(x, s) =
� s
0 fn(x, t) dt. We associate with problem (1λ,n) the variational

functional

Iλ,n(u) =
1
p

�

RN
(|∇u|p + |u|p) dx− 1

p?

�

RN

(
u+)p? dx− λ

�

RN
Fn(x, u) dx

for u ∈ W 1,p(RN ), where W 1,p(RN ) is the usual Sobolev space equipped
with the norm

‖u‖p =
�

RN
(|∇u|p + |u|p) dx.

The functional Iλ,n is well defined onW 1,p(RN ) and is of class C1. Its Fréchet
derivative is given by

〈I ′λ,n(u), v〉 =
�

RN
(|∇u|p−2∇u∇v + |u|p−2uv) dx−

�

RN
(u+)p

?−1v dx

− λ
�

RN
fn(x, u)v dx for v ∈W 1,p(RN ).

Lemma 6.1. (i) Let r1 ≤ p. Then there exist λ, %, α > 0 such that for
every 0 < λ < λ ,

Iλ,n(u) ≥ α for ‖u‖ = %,(16)

and each n ∈ N.
(ii) If p < r1 < p?, then for each λ > 0 there exist %, α > 0 such that

(16) holds for each n ∈ N.

Proof. (i) It follows from (f3) and the Sobolev inequality that

Iλ,n(u) ≥ 1
p
‖u‖p − 1

p?
‖u‖p?p? −

λ

r1
‖b‖p?/(p?−r1)‖u‖r1p? −

λc

r2
‖u‖r2r2

≥ 1
p
‖u‖p − 1

p?Sp
?/p
‖u‖p? − λ

r1Sr1/p
‖b‖p?/(p?−r1)‖u‖r1 −

λc

r2C
r2
r2
‖u‖r2

= ‖u‖p
(

1
p
− 1
p?Sp?/p

‖u‖p?−p
)
− λ
(‖b‖p?/(p?−r1)

r1Sr1/p
‖u‖r1 +

c

r2C
r2
r2
‖u‖r2

)
,

where Cr2 is the best Sobolev constant for the embedding of W 1,p(RN ) into
Lr2(RN ). First we choose constants %, %1 > 0 so that

1
p
− 1
p?Sp

?/p
%p

?−p > %1.

Then we choose a constant λ > 0 such that the inequality (16) holds for all
0 < λ ≤ λ and some constant α > 0.
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(ii) If p < r1 < p?, then the above estimate takes the form

Iλ,n(u) ≥ ‖u‖p
[

1
p
− 1
p?Sp

?/N
‖u‖p?−p − λ(C1‖u‖r1−p + C2‖u‖r2−p)

]

for some constants C1, C2 > 0 independent of λ and u. From this estimate
we easily deduce assertion (ii).

Lemma 6.2. In both cases (i) and (ii) of Lemma 6.1 there exist constants
0 < %1 < %2 such that

−%2 ≤ inf
‖u‖≤%

Iλ,n(u) ≤ −%1(17)

for all n ∈ N sufficiently large.

Proof. Let w ∈ C1
0(RN ), w ≥ 0, w 6≡ 0, supp w ⊂ Ω and ‖w‖ ≤ %. Then

for t > 0,

Iλ,n(tw) ≤ tp

p

�

RN
(|∇w|p + |w|p) dx− tp

?

p?

�

RN
|w|p? dx− atq

�

RN
|w|q dx,

where n is so large that suppw ⊂ B(0, n). Since q < p we can choose t > 0
small enough so that Iλ,n(tw) < 0 and consequently the upper bound in
(17) holds for n sufficiently large. Finally, the lower bound in (17) follows
from the estimates in the proof of Lemma 6.1.

7. Existence result for (1λ,n). For each n ∈ N we set

cλ,n = inf
‖u‖≤%

Iλ,n(u).

According to Lemma 6.2 we have −%2 ≤ cλ,n ≤ −%1. Therefore we may
assume that up to a subsequence −%2 ≤ cλ = limn→∞ cλ,n ≤ −%1. For each
n ∈ N there exists a sequence {unj } ⊂ B(0, %) such that

Iλ,n(unj )→ cλ,n and I ′λ,n(unj )→ 0 in W−1,p′(RN )

as j → ∞, where p′ = p/(p− 1). Given ε > 0 satisfying cλ + ε < 0 we can
find n0 ∈ N such that cλ,n ∈ (cλ − ε, cλ + ε) for each n ≥ n0. Thus, for each
n ≥ n0 we can select un = unjn satisfying

cλ − ε < Iλ,n(un) < cλ + ε and ‖I ′λ,n(un)‖ ≤ 1/n.

Since {un} is bounded inW 1,p(RN) we may assume that un⇀u inW 1,p(RN).
We are now in a position to formulate the existence result for problem

(1λ,n). We need the following assumption:

(f4) There exist constants p < τ < p? and 1 < µ < p? such that
1
τ
f(x, s)s− F (x, s) ≥ c1(x)sµ

for all x ∈ RN and s ≥ 0, where c1 is a function in Lp
?/(p?−µ)(RN ).
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The nonlinearity f from the example in the paragraph following the as-
sumption (f3) satisfies (f4) with c1(x) = (1/τ − 1/q)b(x), µ = q, provided
l < τ < r2.

Theorem 7.1. (i) If r1 ≤ p, then there exists λ > 0 such that problem
(1λ) has a nontrivial solution for each 0 < λ < λ̄.

(ii) If p < r1 < p?, then problem (1λ) has a nontrivial solution for each
λ > 0.

Proof. It is sufficient to show that the weak limit of the sequence {un}
is not identically equal to 0. The proof of this fact is similar to that of
Theorem 1.1 in [16]. Therefore we only sketch it in some details.

Step 1. Applying P. L. Lions’ concentration-compactness principle [15]
we may assume that up to a subsequence

un → u in Lsloc(RN ), 1 ≤ s < p?, un(x)→ u(x) a.e. on RN ,
|un|p

?
⇀ ν = |u|p? +

∑

i

νiδxi + ν∞δ∞,

|∇u|p ⇀ µ and
∑

i

ν
p/p?

i <∞,

where

ν∞ = lim
R→∞

lim sup
n→∞

�

|x|≥R
|un|p

?
dx.

Step 2. In each bounded subset of RN there are only a finite number of
the points xj . To establish this claim we use a family of smooth functions
concentrating at xj and assumption (f2) and show as in [16] that µ({xi}) ≤
aRν({xi}) = aRνi. On the other hand we always have µ({xi}) ≥ Sν

p/p?

i .

Therefore νi ≥ (S/aR)N/p. Since
∑

i ν
p/p?

i < ∞, we see that there are at
most a finite number of xj in B(0, r) for every r > 0 and the claim easily
follows.

Step 3. Using Step 2 one can show that un → u in Lp
?
(K) for each

compact set K ⊂ RN − ⋃{xi}. Indeed, as an immediate consequence of
Step 2 we obtain

�
K |un|p

?
dx →

�
K |u|p

?
dx as n → ∞. By the uniform

convexity of the space Lp
?
(K) we find that un → u in Lp

?
(K). From this,

using the fact that
�
RN |∇u|p dx and

�
RN |u|p dx are convex functionals, we

deduce that ∇un → ∇u in (Lp(K))N for each compact set K ⊂ RN−⋃{xi}.
This implies that ∇un → ∇u a.e. on RN . Applying Vitali’s convergence
theorem we show as in [16] that u is a solution of (1λ) in the distributional
sense. For details we refer to pages 9–10 of [16]. It remains to show that
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u 6≡ 0. Arguing indirectly assume that u ≡ 0. Thus, up to a subsequence

lim
n→∞

�

RN
(|∇un|p + |un|p) dx = l > 0,

since otherwise Iλ,n(un)→ 0, which is impossible. By (f4) we have

0 > lim
n→∞

[
Iλ,n(un)− 1

τ
〈I ′λ,n(un), un〉

]

≥ lim
n→∞

[(
1
p
− 1
τ

) �

RN
(|∇un|p + |un|p) dx+

(
1
τ
− 1
p?

) �

RN
(u+
n )p

?
dx

+
�

RN
c1(x)|un|µ dx

]

≥
(

1
p
− 1
τ

)
l,

which gives a contradiction.

8. Remark on the existence of a mountain-pass solution for
problem (1λ). In the final section of this paper we indicate how to con-
struct a mountain-pass solution for problem (1λ). This requires an additional
assumption on the nonlinearity f :

(f5) There exists an open set Ω1 ⊂ RN such that

F (x, s) ≥ bsq1

for every x ∈ Ω1, s ≥ 0 and some constants b > 0 and 1 < q1 < p?.
Moreover, p < q1 if p2 ≤ N , and q1 > p? − p/(p− 1) if p2 > N .

This extra assumption in our model nonlinearity

f(x) = b(x)sq−1 − d(x)sl−1 + Csr2−1

is satisfied provided d(x) = 0 for x ∈ B(0, R) with q1 = r2 and r2 satisfying
the conditions for q1 from (f5).

We recall that the best Sobolev constant S in W 1,p(RN ) is defined by

S = inf
u∈D1,p(RN )−{0}

�
RN |∇u|p dx( �
RN |u|p

? dx
)p/p? .(18)

It is well known [10] that the infimum in (18) is achieved by a family of
functions

Wε(x) =
cNε

(N−p)/p2

(ε+ |x|p/(p−1))(N−p)/p , ε > 0,
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for x ∈ RN , where

cN =
{
N

[
N − p
p− 1

]p−1}(N−p)/p2

.

We also have
�
RN |∇Wε|p dx =

�
RN W

p?
ε dx = SN/p.

Theorem 8.1. Suppose that assumptions (f1), . . . , (f5) hold. Then in
both cases (i) and (ii) of Theorem 7.1 problem (1λ) admits a mountain-pass
solution. (This means that in both cases (i) and (ii) problem (1λ) has at least
two distinct solutions.)

Proof. We follow the ideas from [16] (see the proof of Theorem 1.1 there).

Step I. We use the estimate from the proof of Lemma 6.2 to obtain

Iλ,n(tw) ≤ tp

p

�

RN
(|∇w|p + |w|p) dx− tp

?

p?

�

RN
|w|p? dx− atq

�

RN
|w|q dx.

However, this time for sufficiently large t > 0 we get Iλ,n(tw) < 0. Combin-
ing this with Lemma 6.1 we see that in both cases (i) and (ii), Iλ,n satisfies
(uniformly in n) the conditions of the geometry of the mountain-pass theo-
rem.

Step II. Let x0 ∈ Ω1 and choose r > 0 so that B(x0, 2r) ⊂ Ω1. We
assume that B(x0, 2r) ⊂ B(0, n) for all n ≥ n0 for some integer n0. We define
a function ϕ ∈ C1

0(RN ) such that ϕ(x) = 1 on B(x0, r), ϕ(x) = 0 on RN −
B(x0, 2r) and 0≤ϕ(x)≤1 on RN and set vε=ϕWε(·− x0)/‖ϕWε(·− x0)‖p? .
We claim that there exist ε, dλ > 0 such that

max
t≥0

Iλ,n(tvε) ≤ dλ <
SN/p

N
(19)

for n ≥ n0. Setting Yε =
�
RN (|∇vε|p + |vε|p) dx, we derive from assumption

(f4) that

Iλ,n(tvε) =
tpYε
p
− tp

?

p?
− λ

�

RN
Fn(x, tvε) dx

≤ tpYε
p
− tp

?

p?
− λtq1b

�

RN
|vε|q1 dx.

Let

Jλ(tvε) =
tpYε
p
− tp

?

p?
− λtq1b

�

RN
|vε|q1 dx.

It is sufficient to show that there exist dλ, ε > 0 such that

max
t≥0

Jλ(tvε) ≤ dλ <
SN/p

N
.
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For each ε > 0 there exists tε > 0 such that

max
t≥0

Jλ(tvε) = Jλ(tεvε),

with 0 < tε ≤ Y 1/(p−1)
ε . Consequently, we have

Jλ(tεvε) ≤
1
N
Y N/p
ε − λb1

�

RN
|vε|q−1 dx

for some constant b1 > 0. Suppose that p2 ≤ N . Using the explicit form of
Wε we easily derive the following estimate:

Jλ(tεvε) ≤
SN/p

N
+O(ε(N−p)/p) +O(εp−1)− λb1

�

RN
|vε|q1 dx

=
SN/p

p
+O(εp−1)− λb1

�

RN
|vε|q1 dx.

The term O(εp−1) is due to the integral
�
RN |vε|p dx appearing in Yε. Thus,

there exists M > 0 such that

Jλ(tεvε) ≤
SN/p

N
+ εp−1

(
M − λb1

εp−1

�

RN
|vε|q1 dx

)
.

Arguing as in the proof of Proposition 5.1 in [16] we derive from this the
estimate

Jλ(tεvε) ≤
SN/p

N
+ εp−1(M − λb2ε[(N−p

p2
−N−p

p
)q1+ (p−1)N

p
+1−p]

)(20)

for some constant b2 > 0. Since[
N − p
p2 − N − p

p

]
q1 + (p− 1)

(
N

p
− 1
)
< 0

is equivalent to p < q1, our claim follows from the estimate (20). In a similar
manner we consider the case p2 > N .

Step III. We now apply the mountain-pass theorem to the functionals
Iλ,n for every n ≥ n0 to obtain the mountain-pass levels cλ,n and Palais–
Smale sequences {unj } in W 1,p(RN ) satisfying

Iλ,n(unj )→ cλ,n and I ′λn(unj )→ 0 in W−1,p′(RN )

as j →∞. We then choose a subsequence un = unjn satisfying

cλ − ε ≤ Iλ,n(un) ≤ cλ + ε, ‖I ′λ,n(un)‖ ≤ 1/n

for n ≥ n0 and some ε > 0, where up to a subsequence limn→∞ cλ,n = cλ.
Arguing as in Lemma 6.1 of [16] we show that un ⇀ u 6≡ 0 in W 1,p(RN ) and
u is a solution of (1λ).
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[12] J. Garćıa Azorero, E. Montefusco and I. Peral, Bifurcation for the p-Laplacian in

RN , Adv. Differential Equations 5 (2000), 435–464.
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