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Plus-operators in Krein spaces and dichotomous behavior

of irreversible dynamical systems with discrete time

by

V. Khatskevich (Karmiel) and L. Zelenko (Haifa)

Abstract. We study dichotomous behavior of solutions to a non-autonomous linear
difference equation in a Hilbert space. The evolution operator of this equation is not
continuously invertible and the corresponding unstable subspace is of infinite dimension
in general. We formulate a condition ensuring the dichotomy in terms of a sequence of
indefinite metrics in the Hilbert space. We also construct an example of a difference
equation in which dichotomous behavior of solutions is not compatible with the signature
of the indefinite metric.

1. Introduction. In [Kh-Z2] we considered a linear fractional transfor-
mation of the ball K− of all angular operators corresponding to the set of
all maximal non-positive subspaces of a Krein space, i.e., of a Hilbert space
H with an indefinite metric, for which both positive and negative compo-
nents can be infinite-dimensional in general ([Kh2], [Kh3], [Az-I], [Kr]). This
transformation is generated by a continuous linear operator U in H (so-called
bistrict plus-operator: see for example [Kh1]–[Kh3], [Az-I] and [Kr]). We did
not assume U to be continuously invertible. The weak compactness of the
image and preimage of K− under the associated linear fractional transfor-
mation FU has been established ([Kh-Z2, Theorem 2.1]).

In the present paper we consider much more general operator linear frac-
tional relations and we obtain some additional properties of the image and
preimage of the ball K− (see Theorem 2.1, Proposition 2.1 and Example 3.1).
We apply the above results to the study of dichotomous behavior of solutions
to a non-autonomous linear difference equation in a Hilbert space H,

yn+1 = Anyn (yn ∈ H, n = 0, 1, 2, . . .),(1.1)
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where An are bounded linear operators acting in H. This equation describes
a non-autonomous dynamical system, in which the integer n plays the role of
discrete time. We do not assume that the operators An are continuously in-
vertible. This means that the corresponding dynamical system is irreversible
in general. The dichotomous behavior means that solutions with initial val-
ues belonging to some subspace of the phase space H (the stable subspace)
stabilize to zero at infinity, but all the other solutions grow indefinitely.
For differential equations in Hilbert and Banach spaces this property was
studied in [Mz], [Ms-Sh], [Kh-Z1], [Kh4], [Kh-Z2] and [Kh-Sh].

We formulate a condition ensuring dichotomous behavior in terms of
the increment of a sequence {[·, ·]n}n∈N of indefinite metrics with respect to
equation (1.1) (see Definition 3.1 and Theorem 3.1) and apply the method
of embedded bicones used in [Z], [Kh-Z1], [Kh4] and [Kh-Z2]. We obtain
estimates for the velocity of the dichotomy. We pay a special attention to
the case where the stable subspace is a maximal non-positive subspace as-
sociated with the indefinite metric [·, ·]n for a large enough n (see Theorem
3.1(iv)). In this case we say that the dichotomy is compatible with the signa-

ture of the indefinite metric. Close questions were considered and a similar
approach was applied in [B-G1]–[B-G3]. In [B-G1] and [B-G3] the dichotomy
of solutions of (1.1) was studied with the help of indefinite metrics in the
case of a finite-dimensional Hilbert space H. In particular, in [B-G3] the
case of invertible operators An was considered (a reversible system) and the
method used was close to the method of embedded bicones (see the proof of
Lemma 4.4 of [B-G3]). In [B-G2] the case of an infinite-dimensional Hilbert
space was studied and the so-called inertia theorems for (1.1) were obtained
(see Remark 3.1 of the present paper).

If the operators An in (1.1) are not continuously invertible, application
of the method of embedded bicones faces certain topological difficulties.
To overcome these, we use Theorem 2.1 of [Kh-Z2] mentioned above. We
also construct an example of a dichotomous dynamical system in which
the dichotomy is not compatible with the signature of the indefinite metric
(Example 3.2).

Notice that another approach to the dichotomy of the dynamical sys-
tem (1.1) (see [B-G1], [B-G4], [B-G5] (1), [A-M-Z], [A-S] and [B-P]) is to
study the connection of the dichotomy with the Fredholm properties of the
operator

(Ly)n = yn+1 − Anyn

(so-called “weighted shift”), acting in the Hilbert space L2(Z+,H) of se-
quences y = {yn}n∈Z+

(yn ∈ H). In particular, it turns out [B-G4] that the
exponential dichotomy of a reversible dynamical system of the form (1.1)

(1) In [B-G1]–[B-G5] a more general version of equation (1.1) was considered.
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in a finite-dimensional Hilbert space H is equivalent to the continuous in-
vertibility of the operator L acting in L2(Z,H) (after a suitable extension
of {An}n∈Z+

to the negative time axis).

Now we describe the contents of the paper.

At the beginning of Section 2 we give the needed background from the
theory of spaces with an indefinite metric. In particular, the concepts of
plus-operator, strict plus-operator and bistrict plus-operator are defined.
Moreover, we introduce a couple of new notions: a linear fractional relation
FU (LFR for brevity), defined by the block-matrix of a plus-operator U , the
dual notion of an LFR GT defined by a minus-operator T , and some operator
sets G±

U . These notions have a conceptual character and Theorem 2.1 is an
evidence of this. It asserts that in the case of an invertible bistrict plus-
operator U the image Im(GT ) (T = U−1) is exactly the set G−

U (equation
(2.6)). And vice versa: if (2.6) holds with T = U−1, then U is a bistrict
plus-operator (consequently, T is a bistrict minus-operator, and GT is a
usual linear fractional transformation, LFT for brevity). This fact defines
the borders of the method used in [Kh-Sh], where the case of a reversible
continuous time dynamical system was considered, that is, the evolution
operator U(t) was assumed to be invertible. In [Kh-Sh] the compactness of
Im(GT ) (T = U−1) in the weak operator topology (WOT) was established
by using (2.6) and the fact that the image of an LFT is compact in WOT.
This compactness is a key point of the proof of the dichotomy of solutions
x(t) = U(t)x0 to the evolution equation in [Kh-Sh]. In view of Theorem 2.1,
we now see that in the general case of a plus-operator U(t) (not necessarily
bistrict as in [Kh-Z2] or invertible as in [Kh-Sh]) one has to develop a general
theory of LFRs of types (2.3)–(2.4) (see also Remark 2.1). In [Kh4, Section 2]
a number of results on geometrical and topological structure of images and
domains of LFRs (called there generalized linear fractional transformations)
were obtained. Our Theorem 2.1 is also a result of such type.

The final Proposition 2.1 of Section 2 asserts that the spectrum σ(U) of a
strict plus-operator U such that G−

U = ∅ surrounds the origin of the complex
plane C. This result is closely related to a very interesting problem concern-
ing existence of a continuous time dynamical system with the dichotomy of
solutions which is not compatible with the signature of an indefinite metric
(see details in Remark 3.4).

In Section 3 we prove the above mentioned Theorem 3.1 about dichotomy
of solutions of irreversible dynamical systems with discrete time. Further-
more, we construct examples of dynamical systems with dichotomy of solu-
tions incompatible with an indefinite metric (see Examples 3.1 and 3.2).

Let us introduce some notation:

• C is the set of all complex numbers;
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• R+ = [0,∞);
• N is the set of all natural numbers;
• Z+ = {0} ∪ N;
• T = {z ∈ C | |z| = 1};
• cl(S) is the closure of a subset S of a Banach space B;
• H is a complex or real Hilbert space with inner product (x, y) and

norm ‖x‖ = (x, x)1/2; we will also use H with subscripts, but they will
be omitted in the notation of norms and inner products;

• span(S) is the minimal closed subspace of a Hilbert space H containing
a subset S of H;

• L(H1,H2) is the set of all bounded linear operators acting from a
Hilbert space H1 to a Hilbert space H2; if H1 = H2 = H, we will write
L(H);

• SL(H) is the set of all selfadjoint operators from L(H);
• σ(A) is the spectrum of a linear operator A acting in H;
• (H, V ) is a Krein space, i.e. H is a Hilbert space with an indefinite

metric [x, y] = (V x, y), where V ∈ SL(H) is continuously invertible;
• H+, H− (possibly with subscripts) are the invariant subspaces of V ,

corresponding to the positive and negative parts of its spectrum, re-
spectively; d+

V = dim(H+), d−V = dim(H−) (these numbers can be
infinite in general);

• P+, P− (possibly with subscripts) are respectively the non-negative
and non-positive bicones generated by the indefinite metric [x, y]:
P+ = {x ∈ H : [x, x] ≥ 0}, P− = {x ∈ H : [x, x] ≤ 0}.

2. Plus-operators and linear fractional relations. Let (H, V ) be a
Krein space, H = H+ ⊕H−. Denote by P+, P− the orthogonal projections
on H+, H− respectively. It is well known that one can reduce the regular
indefinite square form [x, x] = (V x, x) to the form

[x, x] = ‖P+x‖2 − ‖P−x‖2,

by passing to an equivalent norm in H [Az-I]. In the following we will as-
sume such passage to be realized. Recall that a subspace L ⊆ H is called
non-positive (respectively, non-negative) if it is contained in P− (respec-
tively, in P+). A non-positive (respectively, non-negative) subspace L ⊆ H is
called maximal non-positive (respectively, maximal non-negative) if it is not
a proper subset of any non-positive (respectively, non-negative) subspace.

Consider two Krein spaces (Hi, Vi) (i = 1, 2) with indefinite metrics of
the form defined above, i.e. Vi = P+

i −P−

i , where P+
i , P−

i are the orthogonal
projections in Hi on the subspaces H+

i ,H−

i respectively. This means that
we have orthogonal splittings

Hi = H+
i ⊕H−

i , i = 1, 2.(2.1)
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Assume that the signatures of the quadratic forms [x, x]i = (Vix, x) are
the same, i.e. d+

V1
= d+

V2
and d−V1

= d−V2
. Let P+

i , P−

i (i = 1, 2) be the
non-negative and non-positive bicones respectively generated by the above
indefinite metrics.

Recall that a bounded linear operator U acting from (H1, V1) to (H2, V2)
is called a plus-operator if x ∈ P+

1 implies Ux ∈ P+
2 , and it is called a strict

plus-operator if

[Ux, Ux]2 ≥ µ(U)[x, x]1 ∀x ∈ H1,

where µ(U) > 0. If together with U the adjoint operator U⋆ is also a strict
plus-operator, then U is called a bistrict plus-operator. The definitions of a
minus-operator (strict and bistrict) are analogous (see [Az-I]).

Consider the block matrix representation of the operator U , correspond-
ing to the orthogonal decompositions (2.1):

U = {Ui,j}2
i,j=1.(2.2)

Let M+
i (resp., M−

i ) be the set of all maximal non-negative (resp., maximal
non-positive) subspaces of (Hi, Vi), i = 1, 2. We denote by K+

i (resp., K−

i )
the set of all angular operators of subspaces L+

i ∈ M+
i (resp., L−

i ∈ M−

i ),

i = 1, 2. Recall that these are the linear operators K+
i : H+

i → H−

i (resp.,
K−

i : H−

i → H+
i ) for which L+

i = graph(K+
i ) (L−

i = graph(K−

i )). Let
us also recall [Az-I] that any non-negative (resp., non-positive) subspace
is contained in some maximal non-negative (resp., maximal non-positive)
subspace. In other words, for any E+

i ⊂ P+
i (resp., E−

i ⊂ P−

i ) there exists
K+

i ∈ K+
i (resp., K−

i ∈ K−

i ) such that

E+
i ⊂ L+

i = (P+
i + K+

i )H+
i (resp., E−

i ⊂ L−

i = (P−

i + K−

i )H−

i )

(see details in [Az-I], [Kh1]). Define

G−

U = {K−

1 ∈ K−

1 : U(P−

1 + K−

1 )H−

1 ⊂ P−

2 },
G+

U = {K+
2 ∈ K+

2 : (P+
2 + K+

2 )H+
2 ⊇ U(P+

1 + K+
1 )H+

1 for some K+
1 ∈ K+

1 }.
For a plus-operator U define a linear fractional relation (LFR for brevity)

FU : K+
1 → K+

2 by

FU (K+
1 ) = {K+

2 ∈ K+
2 : U2,1 + U2,2K

+
1 = K+

2 (U1,1 + U1,2K
+
1 )}.(2.3)

In the particular case of a bistrict plus-operator U , the LFR FU becomes
a usual single-valued linear fractional mapping (LFM for brevity) of the form

FU (K+
1 ) = (U2,1 + U2,2K

+
1 )(U1,1 + U1,2K

+
1 )−1.

Analogously, for a minus-operator T : H2 → H1 define an LFR GT : K−

2 →
K−

1 as follows:

GT (K−

2 ) = {K−

1 ∈ K−

1 : T1,1K
−

2 + T1,2 = K−

1 (T2,1K
−

2 + T2,2)}.(2.4)
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Let us notice that K−

1 ∈ GT (K−

2 ) is equivalent to TL−

2 ⊆ L−

1 , where
L−

i = (P−

i + K−

i )H−

i ∈ M−

i . In the particular case when TL−

2 ∈ M−

i we
have the equality TL−

2 = L−

1 . Hence in this case GT (K−

2 ) is a single point
of K−

1 and K−

1 = GT (K−

2 ). In the general case GT (K−

2 ) is the set of all

the operators K̃−

1 ∈ K−

1 such that the restriction K̃−

1 |P−
1

TL−
2

coincides with

P+
1 (P−

1 |TL−
2

)−1 (see [Az-I]).

Consider some basic properties of LFRs. First note that it follows im-
mediately from the definition that

G+
cU = G+

U , G−

cU = G−

U , for 0 6= c ∈ C.(2.5)

Evidently, Im(FU ) = G+
U . The following assertion establishes the relation

between G−

U and Im(GU−1).

Theorem 2.1. Let U be an invertible plus-operator. Then T = U−1 is

a minus-operator. Furthermore,

G−

U = Im(GT )(2.6)

if and only if U is a bistrict plus-operator.

Proof. Since U is an invertible plus-operator, it follows that T = U−1 is
a minus-operator. As a consequence of invertibility of U we see [Az-I] that U
and U−1 are respectively a strict plus-operator and a strict minus-operator.
Now suppose in addition U is bistrict, that is, both U and U⋆ are strict
plus-operators. Then ([Kh1], [Az-I]) T is a bistrict minus-operator and

TL−

2 ∈ M−

1 ∀L−

2 ∈ M−

2 .(2.7)

Now let K−

1 ∈ Im(GT ) and L−

1 = (P−

1 + K−

1 )H−

1 ∈ M−

1 . Then by the
definition of Im(GT ) there exists K−

2 ∈ K−

2 such that TL−

2 ⊆ L−

1 , where
L−

2 = (P−

2 + K−

2 )H−

2 ∈ M−

2 . Hence by (2.7), TL−

2 = L−

1 , and consequently,
UL−

1 = L−

2 , that is, K−

1 ∈ G−

U .

Now let K−

1 ∈ G−

U and as above L−

1 = (P−

1 + K−

1 )H−

1 . Then by (2.7),
L−

2 = UL−

1 ∈ M−

2 , that is, there exists K−

2 ∈ K−

2 such that L−

2 = (P−

2 +
K−

2 )H−

2 . As a result we have TL−

2 = L−

1 , hence K−

1 ∈ Im(GT ). So, we have
proved the equality (2.6).

Now assume that G−

U = Im(GT ). Our aim is to prove that U is a bistrict
plus-operator. As mentioned above, U is strict. Take any K−

1 ∈ G−

U and

set L−

1 = (P−

1 + K−

1 )H−

1 . By the definition of G−

U , L̃−

2 = UL−

1 is a non-
positive subspace, so it belongs to some maximal non-positive subspace L−

2

with the angular operator K−

2 : L−

2 = (P−

2 + K−

2 )H−

2 and UL−

1 ⊆ L−

2 . At
the same time K−

1 ∈ Im(GT ) and T = U−1. Hence L−

1 ⊇ U−1L−

3 , where
L−

3 = (P−

2 + K−

3 )H−

2 for some K−

3 ∈ K−

2 . As a result we obtain

L−

3 ⊆ UL−

1 ⊆ L−

2 ,
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where both L−

2 and L−

3 are maximal non-positive subspaces (that is, L−

2 , L−

3

∈ M−

2 ). Consequently,

UL−

1 = L−

2 = L−

3 , U−1L−

2 = U−1L−

3 = L−

1 .

This means that the strict minus-operator U−1 takes the maximal non-
positive subspace L−

2 onto the maximal non-positive subspace L−

1 . Therefore
[Az-I], U−1 is a bistrict minus-operator and consequently U is a bistrict
plus-operator.

Remark 2.1. In [Kh-Sh] a reversible dynamical system was considered
with an invertible bistrict evolution plus-operator U , and dichotomy of so-
lutions, compatible with the signature of the indefinite metric, was proved.
The method used in [Kh-Sh] is based on replacing G−

U by Im(GU−1). Theo-
rem 2.1 shows that even in the case of an invertible strict but not bistrict
plus-operator U the method of [Kh-Sh] cannot be used to prove the com-
patible dichotomy of solutions.

In [Kh-Z2] we proved the following

Theorem 2.2. Let U be a bounded bistrict plus-operator acting from

(H1, V1) to (H2, V2). If d−V1
6= 0 then the set G−

U is non-empty and compact

with respect to the weak operator topology in L(H−

1 ,H+
1 ).

Remark 2.2. In [Kh4] the compactness of G−

U with respect to the weak
operator topology was also proved in the general case of an arbitrary bounded
plus-operator U (not bistrict and even not strict). But even in the case of
a strict (but not bistrict) plus-operator U the set G−

U can be empty in the
non-trivial situation d−V1

6= 0. The corresponding example was constructed

in [Kh-Z2, Example 2.1] (see also Example 3.1 of the present paper).

Let us introduce the following

Definition 2.1. A plus-operator U is called J-expansive if

[Ux, Ux]2 ≥ [x, x]1 ∀x ∈ H1,

and J-biexpansive if both U and U⋆ are J-expansive.

Let U act in a Krein space (H, V ), that is, U : H → H. Then we have

Proposition 2.1. If U is a strict plus-operator in H and

G−

U = ∅,(2.8)

then there exists a circle Cr with center zero and radius r > 0 such that

Cr ⊆ σ(U).

Proof. Define Ũ = (µ(U))−1/2U . Then Ũ is a J-expansive operator:

[Ũx, Ũx] ≥ [x, x] for all x ∈ H. Assume that there is a complex number
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λ with |λ| = 1 such that λ is a regular point of Ũ . Without loss of gener-

ality consider λ = 1. Then Ũ (see [Az-I, proof of Theorem II.4.31] (2)) is
a J-biexpansive operator, and consequently, U is a bistrict plus-operator.
Hence by [Kh-Z2] we conclude that G−

U 6= ∅.
Remark 2.3. Notice that in the case d−V = 0 the only maximal non-

positive subspace is H− = {0}. Each linear operator U maps it into itself, so
(2.8) never holds. On the other hand, any operator U such that ‖Ux‖ ≥ d‖x‖
with d > 0 is a strict plus-operator. That is, in this case σ(U) may surround
the origin for some strict plus-operators (for example, for the bilateral shift)
and not surround it for others (for example, for the identity operator U = I).

3. Dichotomy of solutions to the evolution equation. We now
turn to the linear difference equation of the form (1.1) in a Hilbert space H.
Recall that we have assumed in the Introduction that all the operators An

in this equation belong to the class L(H). Consider the evolution operator
U(n, m) (n, m ∈ Z+, n ≥ m) of equation (1.1). Recall that it associates
with each y0 ∈ H the solution yn of (1.1) satisfying the initial condition
yn|n=m = y0, that is,

U(n, m)y0 = An−1An−2 · · ·Am+1Amy0 if n > m,(3.1)

and U(n, n) = I. We shall write briefly U(n) = U(n, 0). Along with (1.1)
consider the following sequence of difference equations in H:

zn+1 = A⋆
N−nzn,(3.2)

where N ∈ Z+, n = 0, 1, . . . , N . For each fixed N ∈ Z+ denote by ŨN (n, m)
the evolution operator of this equation. In view of (3.1), these operators are
linked to the evolution operator of (1.1) by

Ũn+m−1(n, m) = U⋆(n, m),

hence for m = 0,

U⋆(n) = Ũn−1(n).(3.3)

Consider a sequence of indefinite metrics in H of the form

[x, y]n = (Vnx, y) (n ∈ Z+),(3.4)

where each operator Vn belongs to SL(H), is continuously invertible and
satisfies the following conditions:

(A) The numbers d+
Vn

, d−Vn

do not depend on n.

(B) supn∈Z+
‖Vn‖ = 1.

Let us introduce the following

(2) The idea to use this theorem was suggested to us by T. Ya. Azizov.
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Definition 3.1. We call the sequence of quadratic forms

[U(n + 1, n)y0, U(n + 1, n)y0]n+1 − [y0, y0]n (n ∈ Z+)

the increment of the sequence of the quadratic forms [y0, y0]n with respect to

the difference equation (1.1) and denote it by ∆(1.1)([y0, y0]n).

From (3.4), (1.1) we obtain

∆(1.1)([y0, y0]n) = [Any0, Any0]n+1 − [y0, y0]n(3.5)

= ((A⋆
nVn+1An − Vn)y0, y0).

In the analogous manner we obtain

∆(3.2)([y0, y0]n) = [A⋆
N−ny0, A

⋆
N−ny0]n+1 − [y0, y0]n(3.6)

= ((AN−nVn+1A
⋆
N−n − Vn)y0, y0).

We shall assume the following condition to be satisfied for the metrics
(3.4) and equation (1.1):

(C) There exists a non-increasing sequence {εn}n∈Z+
of positive numbers

such that

∆(1.1)([y0, y0]n) ≥ εn‖y0‖2 ∀n ∈ Z+, y0 ∈ H,

that is,

A⋆
nVn+1An − Vn ≥ εnI ∀n ∈ Z+.

As a consequence of (C) we obtain

(3.7) [U(n + 1)y0, U(n + 1)y0]n+1 − [U(n0)y0, U(n0)y0]n0

≥
n∑

k=n0

εk‖U(k)y0‖2 ∀y0 ∈ H, n ≥ n0.

Consider the following bicones, connected with the metrics (3.4) and the
evolution operator of (1.1):

C−
n = {y0 ∈ H : [U(n)y0, U(n)y0]n ≤ 0} (n ∈ Z+).(3.8)

Using this definition and (3.7) it is easy to show that

C−

n+1 ⊆ C−
n .(3.9)

We set

C−
∞ =

⋂

n∈Z+

C−
n .(3.10)

Lemma 3.1. Assume that , besides conditions (A)–(C), the condition

∆(3.2)([y0, y0]k) ≥ 0 ∀k ∈ {0, 1, . . . , N}, y0 ∈ H(3.11)

is satisfied , that is,

AN−kVk+1A
⋆
N−k ≥ Vk ∀k ∈ {0, 1, . . . , N}, N ∈ N.
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Then the set C−
∞, defined by (3.10), contains a maximal non-positive sub-

space L−
∞ of the Krein space (H, V0).

Proof. In view of (C), (3.11) with N = n − 1 and (3.3), we have

[U(n)y, U(n)y]n ≥ [y, y]0, [U⋆(n)y, U⋆(n)y]n ≥ [y, y]0 ∀y ∈ H, n ∈ N.

This means that each U(n) is a J-biexpansive operator. Let M−
n be the

set of maximal subspaces of the bicone C−
n , defined by (3.8), and M−

n be
the set of angular operators K− in the Krein space (H, V0), corresponding
to the subspaces L− ∈ M−

n . By Theorem 2.2, each M−
n is compact with

respect to the weak operator topology in L(H−

0 ,H+
0 ), where H−

0 and H+
0 are

the components of the canonical decomposition of the Krein space (H, V0).
At the same time, (3.9) implies that M−

n+1 ⊆ M−
n . Thus

⋂
n∈N

M−
n is

non-empty. Hence a subspace L−
∞ ∈ ⋂

n∈N
M−

n is the desired maximal non-
positive subspace of the Krein space (H, V0) contained in C−

∞.

Let {εn}n∈Z+
be as in condition (C) and L2,ε(Z+,H) be the Hilbert space

of sequences y = {yn}n∈Z+
of vectors in H satisfying the condition

∞∑

n=1

εn‖yn‖2 < ∞

with the inner product

(y, z)ε =
∞∑

n=1

εn(yn, zn).

Denote by N the set of solutions of (1.1) which belong to L2,ε(Z+,H), i.e.,

N = {y = {yn}n∈Z+
∈ L2,ε(Z+,H) | yn+1 = Anyn ∀n ∈ Z+}.(3.12)

Let N0 be the “slice” of N at time n = 0, i.e.

N0 = {y0 | (y0, y1, . . . , yn, . . .) ∈ N}.(3.13)

We now turn to the main result of the present paper.

Theorem 3.1. Assume that besides conditions (A)–(C), the condition
∞∑

n=0

εn = +∞(3.14)

is satisfied , where {εn}n∈Z+
is as in (C). Then:

(i) The set C−
∞ is a closed subspace of H, and

C−
∞ = N0;(3.15)

(ii) For any y0 ∈ C−
∞ the solution yn = U(n)y0 of (1.1) satisfies

∞∑

k=n+1

εk‖yk‖2 ≤ I(y0)
n∏

k=0

(1 + εk)
−1,(3.16)
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where

I(y0) =

∞∑

k=1

εk‖yk‖2;(3.17)

(iii) For any y0 /∈ C−
∞ there exists C(y0) > 0 such that the solution

yn = U(n)y0 of (1.1) satisfies

‖yn‖2 ≥ C(y0)
n∏

k=0

(1 + εk);(3.18)

(iv) If , in addition, condition (3.11) is satisfied , then C−
∞ is a maximal

non-positive subspace of the Krein space (H, V0).

Proof. First of all, let us prove (iii). Assume that y0 /∈ C−
∞. Then, in

view of (3.8)–(3.10), there exists n0 ∈ Z+ such that

[U(n0)y0, U(n0)y0]n0
> 0.(3.19)

Using condition (B), we obtain from (3.7) the following inequality:

‖U(n + 1)y0‖2 ≥ [U(n0)y0, U(n0)y0]n0
(3.20)

+
n∑

k=n0

εk‖U(k)y0‖2 ∀n ≥ n0,

which can be rewritten in the form

Yn+1 − Yn ≥ εn+1Yn (n ≥ n0),(3.21)

where

Yn = [U(n0)y0, U(n0)y0]n0
+

n∑

k=n0

εk‖U(k)y0‖2.(3.22)

Inequalities (3.19) and (3.21) imply that

Yn ≥ [U(n0)y0, U(n0)y0]n0

n∏

k=n0

(1 + εk+1) (n ≥ n0).

Taking into account (3.19), (3.20) and (3.22), we obtain from the last in-
equality the desired estimate (3.18) with some positive constant C(y0).

To prove (i), observe that (3.18) and (3.14) imply that, if y0 /∈ C−
∞, the

solution yn = U(n)y0 (n ∈ Z+) of (1.1) does not belong to L2,ε(Z+). This
means that

N0 ⊆ C−
∞.(3.23)

Conversely, assume that y0 ∈ C−
∞. Then, by (3.8) and (3.9),

[U(n)y0, U(n)y0]n ≤ 0 ∀n ∈ Z+.
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This fact and (3.7) imply that
n∑

k=n0

εk‖U(k)y0‖2 ≤ [U(n0)y0, U(n0)y0]n0
∀n ≥ n0,(3.24)

hence the solution yn = U(n)y0 (n ∈ Z+) of (1.1) belongs to L2,ε(Z+),
i.e., y0 ∈ N0. So, we have proved (3.15). Since C−

∞ is closed in H as the
intersection of the closed sets C−

n , and the set N0 is linear (by (3.12), (3.13)),
we have proved (i).

To prove (ii), assume, as above, that y0 ∈ C−
∞. Let n → ∞ in (3.24) and

then substitute n for n0 to obtain, in view of (B),
∞∑

k=n+1

εk‖U(k)y0‖2 ≤ ‖U(n)y0‖2 ∀n ∈ Z+.

Define

Zn =
∞∑

k=n+1

εk‖U(k)y0‖2.(3.25)

Then the last inequality can be rewritten in the form

Zn+1 ≤ (1 + εn+1)
−1Zn ∀n ∈ Z+.

This estimate and (3.25) imply the desired estimate (3.16).

Assertion (iv) follows from the obvious inclusion C−
∞ ⊆ C−

0 and Lemma
3.1.

Remark 3.1. In [B-G2] an irreversible dynamical system similar to (1.1)
was considered under condition (C) with εn = const. But the results ob-
tained there differ from those of Theorem 3.1. In particular, in [B-G2] the
so-called inertia theorem was proved (Theorem 2.5). It asserts that the op-
erator ζI−T is left-invertible for any ζ ∈ T, where T is the operator defined
in L2(Z+,H) by the block matrix

{δi,j+1Aj}i,j∈Z+
,(3.26)

and, furthermore, a formula for the dimension of ker (ζI − T )⋆ is valid in
terms of the operators An and Vn (see formula (2.6) of [B-G2]). On the other
hand, Theorem 3.1 of the present paper gives information about the asymp-
totic behavior of sequences from the subspace ker(I − T ), which coincides
with the subspace N defined by (3.12). Theorem 3.1(iv) also gives informa-
tion about the dimension of the latter subspace. Furthermore, Theorem 3.1
states that all those solutions of (1.1) which do not belong to N grow to
infinity with a certain rate.

The following example shows that condition (3.11) cannot be eliminated
in assertion (iv) of the previous theorem.
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Example 3.1. Let

H = H+ ⊕H−,(3.27)

where

H+ = cl(span({ei}∞i=1)),

(ei, ej) = δi,j , i, j = 1, 2, . . . , H− = span({e−}), (e−, e−) = 1.

Define an indefinite metric in H by [x, y] = (V x, y), where V = P+ − P−

and P+, P− are the orthogonal projections onto H+ and H−, respectively.
Consider the operator U = U(λ) acting in H and having the following block
matrix representation with respect to the splitting (3.27):

U = (Ui,j)
2
i,j=1,(3.28)

where
U1,1ek = ek+1, k ∈ N, U1,2e− = e1,

U2,1 = 0, U2,2 = λI, λ ∈ C, |λ| ≤
√

2.
(3.29)

Then U = U(λ) is a bounded left-invertible operator, and [Ux, Ux]−[x, x] =
|β|2(2 − |λ|2) ≥ 0 for any x =

∑
∞

k=1 αkek + βe− ∈ H, that is, U is a
J-expansion. Let us calculate G−

U(λ). A simple criterion for K− ∈ G−

U(λ) is

the following (see [Kh4, proof of Theorem 2.1]):

(3.30) (K−)⋆(U⋆
1,1U1,1 − U⋆

2,1U2,1)K
− + (K−)⋆(U⋆

1,1U1,2 − U⋆
2,1U2,2)

+ (U⋆
1,2U1,1 − U⋆

2,2U2,1)K
− + (U⋆

1,2U1,2 − U⋆
2,2U2,2) ≤ 0.

In our case

U2,1 = U⋆
1,1U1,2 = 0, U⋆

1,1U1,1 = U⋆
1,2U1,2 = I, U⋆

2,2U2,2 = |λ|2I,

and (3.30) becomes
‖K−‖2 + 1 − |λ|2 ≤ 0.

This shows that

G−

U(λ) = ∅ for |λ| < 1,(3.31)

G−

U(λ) 6= ∅ for 1 ≤ |λ| ≤
√

2.(3.32)

Consider the operator A = cU , |c| > 1, and the autonomous difference
equation

yn+1 = Ayn.(3.33)

Take any y0 =
∑

∞

k=1 αkek + βe− ∈ H. Then

[Ay0, Ay0] − [y0, y0] = (|c|2 − 1)
∞∑

k=1

|αk|2 + |β|2(1 + |c|2(1 − |λ|2)) ≥ d‖y0‖2,

where d = min{|c|2 − 1, 1 + |c|2(1 − |λ|2)}. Evidently, d > 0 for |λ| ≤ 1 and
any c with |c| > 1, and also for 1 < |λ| ≤

√
2 and 1 < |c| < 1/

√
|λ|2 − 1, i.e.,
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in these two cases condition (C) is satisfied for equation (3.33) with εn = d.
It is clear that also conditions (A), (B) are satisfied for [x, y]n = [x, y]. On
the other hand, in view of (2.5) and (3.31), C−

n = {0} for each n ∈ N, hence
C−
∞ = {0} for all λ ∈ C with |λ| < 1 and

dim(C−
∞) = 1 ∀λ ∈ C, 1 ≤ |λ| ≤

√
2.(3.34)

Thus for |λ| < 1 Theorem 3.1 implies that for any 0 6= y0 ∈ H the solution
yn = U(n)y0 of (3.33) tends to infinity exponentially as n → ∞. This means
that the stable subspace of (3.33) is {0}, which is evidently not a maximal
subspace in C−

0 . So, for |λ| < 1 assertion (iv) of Theorem 3.1 is not valid.
But if 1 ≤ |λ| ≤

√
2 we have the following picture in view of (3.32):

by Theorem 3.1(ii), (iii), for any y0 in the one-dimensional subspace C−
∞

the solution yn = U(n)y0 of (3.33) tends to zero exponentially as n → ∞,
and for any 0 6= y0 ∈ H \ C−

∞ it tends to infinity exponentially as n → ∞.
Observe that, in view of (3.34), in this case assertion (iv) of Theorem 3.1 is
valid.

Let us show that condition (3.11) holds for neither |λ| < 1 nor 1 ≤ |λ|
≤

√
2. Indeed, for y0 ∈ H+,

[U⋆y0, U
⋆y0] − [y0, y0] = −2.

Remark 3.2. A simple version (with λ = 0) of Example 3.1 has been
considered in [B-G2] as an example of equation (1.1) which satisfies condition
(C), but ζI − T is not right-invertible for any ζ ∈ T, where T is defined in
L2(Z+,H) by the block matrix (3.26).

Remark 3.3. The case 1 ≤ |λ| ≤
√

2 of Example 3.1 shows that condi-
tion (3.11) is not necessary for assertion (iv) of Theorem 3.1 to be valid.

Remark 3.4. It would be interesting to construct an example analogous
to the case |λ| < 1 of Example 3.1 for an evolution equation with continuous
time:

dx

dt
= A(t)x.(3.35)

Observe that there is little chance to construct such an example for the
autonomous equation (A(t) = A = const). If we have a strict plus-operator
A with G−

A = ∅ and try to extend the discrete semigroup {An}n∈Z+
to a

semigroup with continuous time t ∈ [0,∞), we see that the operator At

does not exist in the sense of Dunford for t /∈ Z+ by Proposition 2.1. But
it would be interesting to construct such an example for a non-autonomous
dynamical system of the type (3.35).

Example 3.2. In a Hilbert space H consider the operator A defined in
Example 3.1 with λ = 0, that is, A = cU(0) (c > 1), where U(λ) is the
operator defined by the block matrix representation (3.28), (3.29). Consider
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the Hilbert space H̃ = H ⊕ C and denote by (·, ·)
H̃

the inner product in

it. Define an indefinite inner product in H̃ by [x, y]
H̃

= (Ṽ x, y)
H̃

, where

Ṽ = V ⊕ (−I) and V is the operator from Example 3.1, which defines the

indefinite metric in H. Also consider the operator Ã = A⊕θI with θ ∈ (0, 1)

and the corresponding autonomous difference equation in H̃:

yn+1 = Ãyn.(3.36)

It is easy to check that for some ε > 0,

∆(3.36)([y0, y0]H̃) ≥ ε(y0, y0)H̃ ∀n ∈ Z+, y0 ∈ H̃.

Furthermore, d−
Ṽ

= 2, because d−V = 1 in H. On the other hand, in view of the

result of Example 3.1, equation (3.36) exhibits the exponential dichotomy
with a one-dimensional stable subspace. So, in the constructed example the
dichotomy is not compatible with the signature of the indefinite metric.
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