The bounded approximation property for the predual of the space of bounded holomorphic mappings

by

Erhan Çalışkan (İstanbul)

Abstract. When U is the open unit ball of a separable Banach space E, we show that $G^{\infty}(U)$, the predual of the space of bounded holomorphic mappings on U, has the bounded approximation property if and only if E has the bounded approximation property.

- 1. Introduction. Let E and F be complex Banach spaces, and let L(E;F) be the Banach space of all continuous linear operators. Let $1 \le \lambda < \infty$. A Banach space E is said to have:
 - the approximation property (AP for short) if given a compact set $K \subset E$ and $\varepsilon > 0$, there is a finite rank operator $T \in L(E; E)$ such that $||Tx x|| < \varepsilon$ for every $x \in K$;
 - the λ -bounded approximation property (λ -BAP for short) if given a compact set $K \subset E$ and $\varepsilon > 0$, there is a finite rank operator $T \in L(E; E)$ so that $||T|| \le \lambda$ and $||Tx x|| < \varepsilon$ for every $x \in K$;
 - the bounded approximation property (BAP for short) if it has the λ -BAP for some λ ;
 - the metric approximation property (MAP for short) if it has the 1-BAP.

Clearly the BAP implies the AP. But the converse is in general false. In [5] Figiel and Johnson gave an example of a separable Banach space with the AP which fails to have the BAP. (See also Casazza [2].)

Let U be an open subset of a Banach space E, and let $G^{\infty}(U)$ denote the predual of the space $\mathcal{H}^{\infty}(U)$ of all bounded holomorphic mappings constructed by Mujica in [10]. If U is a bounded balanced open subset of E then Mujica [10] proved that E has the AP (resp. MAP) if and only if $G^{\infty}(U)$ has the AP (resp. MAP). In [1] the author proved that E has the compact AP if and only if $G^{\infty}(U)$ has the compact AP.

²⁰⁰⁰ Mathematics Subject Classification: 46G20, 46B28, 46G25, 46E50.

Key words and phrases: Banach spaces, bounded approximation property, bounded holomorphic mappings.

In the present paper, we establish our notation and terminology in Section 2, and in Section 3 we give two basic results, one of which characterizes the weakly compactly generated Banach spaces with the BAP. In Section 4 we show that a Banach space E has the λ -BAP if and only if each m-homogeneous continuous Banach-valued polynomial on E of norm ≤ 1 can be uniformly approximated on compact sets by m-homogeneous finite rank polynomials of norm $\leq \lambda^m$, for some $1 \leq \lambda < \infty$. In our main result we show that a separable Banach space E has the BAP if and only if $G^{\infty}(U)$ has the BAP, where U is the open unit ball of E. This gives a partial solution for a problem posed by Mujica in [10].

I wish to thank Professor Jorge Mujica for many useful suggestions on the exposition.

2. Notation and terminology. The symbol \mathbb{C} represents the field of all complex numbers, \mathbb{N} the set of all positive integers, and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Unless stated otherwise E and F denote complex Banach spaces. The letter U denotes a nonvoid open subset of E, and U_E is the open unit ball of E.

The symbol B_E^{λ} , $1 \leq \lambda < \infty$, represents the subset of E consisting of the elements of norm $\leq \lambda$. We write B_E instead of B_E^1 , the closed unit ball of E.

The symbol τ_c denotes the compact-open topology.

Let L(E; F) denote the Banach space of all continuous linear operators from E into F. When $F = \mathbb{C}$ we write E' instead of $L(E; \mathbb{C})$.

We denote by $E \otimes F$ the tensor product of E and F.

Let $\mathcal{P}(E;F)$ denote the vector space of all continuous polynomials from E into F, and $\mathcal{P}(^mE;F)$ the subspace of all m-homogeneous members of $\mathcal{P}(E;F)$. If $F=\mathbb{C}$ then we denote $\mathcal{P}(^mE;\mathbb{C})$ by $\mathcal{P}(^mE)$.

A polynomial $P \in \mathcal{P}(^mE; F)$ is said to be of finite type if it is a linear combination of functions $\phi^m \otimes y$ ($\phi \in E'$, $y \in F$), where $\phi^m \otimes y(x) = \phi^m(x)y$ for all $x \in E$. Let $\mathcal{P}_f(^mE; F)$ denote the subspace of all members of $\mathcal{P}(^mE; F)$ which are of finite type, for every $m \in \mathbb{N}_0$.

We denote by $\mathcal{H}^{\infty}(U; F)$ the Banach space of all bounded holomorphic mappings from U into F, with the supremum norm. When $F = \mathbb{C}$ we write $\mathcal{H}^{\infty}(U)$ instead of $\mathcal{H}^{\infty}(U; \mathbb{C})$.

We refer to [3] or [9] for the properties of polynomials and holomorphic mappings on infinite-dimensional spaces, and to [7] for the theory of Banach spaces.

3. The bounded approximation property in Banach spaces. An operator T in L(E;F) is said to have a *finite rank* if T(E) is finite-dimensional. Observe that the subspace of all finite rank operators $T \in L(E;F)$ can be identified with the space $E' \otimes F$.

In [7, Theorem 1.e.4] Lindenstrauss and Tzafriri give a list of equivalent formulations of the AP for Banach spaces. The following analogous proposition characterizing spaces with the BAP can be proved easily (see also [2]).

PROPOSITION 1. Let E be a Banach space and $1 \leq \lambda < \infty$. The following statements are equivalent:

- $\begin{array}{ll} \text{(a)} \ E \ has \ the \ \lambda\text{-}BAP. \\ \text{(b)} \ B_{L(E;E)} = \overline{B_{E'\otimes E}^{\lambda}}^{\tau_{\text{c}}}. \end{array}$
- (c) For every Banach space F, $B_{L(F;E)} = \overline{B_{F'\otimes E}^{\lambda}}_{\tau_c}$.
- (d) For every Banach space F, $B_{L(E;F)} = \overline{B_{E'\otimes F}^{\lambda}}^{\tau_c}$. (e) For every c > 0, every $(x_n)_{n=1}^{\infty} \subset E$, and $(x'_n)_{n=1}^{\infty} \subset E'$ with

$$\sum_{n=1}^{\infty} \|x_n\| \cdot \|x_n'\| < \infty \quad and \quad \left|\sum_{n=1}^{\infty} x_n'(Tx_n)\right| \le c \quad \text{for all } T \in B_{E' \otimes E}^{\lambda},$$

we have $\left|\sum_{n=1}^{\infty} x'_n(x_n)\right| \le c$.

A common generalization of the notions of a reflexive and a separable Banach space is given in the following definition.

Definition 1. A Banach space E is said to be weakly compactly generated (WCG for short) if there is a weakly compact subset K of E such that $E = \overline{\bigcup_{n=1}^{\infty} nK}.$

For examples of WCG Banach spaces other than separable and reflexive spaces see [6].

One can easily show that if E has the λ -BAP, $1 \leq \lambda < \infty$, then every complemented subspace of E with the projection P has the $\lambda ||P||$ -BAP. Recall that a complemented subspace of E is said to be 1-complemented if the corresponding projection has norm 1. Using Proposition 1 and [6, Theorem 2.1 we easily get the following characterization of the BAP for WCG Banach spaces, which we have not found in the literature.

COROLLARY 1. Let E be a WCG Banach space, and $1 \leq \lambda < \infty$. The following are equivalent:

- (a) E has the λ -BAP.
- (b) Every 1-complemented subspace of E has the λ -BAP.
- (c) Every 1-complemented separable subspace of E has the λ -BAP.

One can also obtain results similar to Proposition 1 and Corollary 1 for the bounded compact approximation property (for the definition see [2]).

4. The bounded approximation property for the predual of the space of bounded holomorphic mappings. In [13] Ryan constructed a Banach space $Q(^mE)$, $m \in \mathbb{N}$, and a mapping $\delta_m \in \mathcal{P}(^mE;Q(^mE))$

with the following universal property: For each Banach space F and each $P \in \mathcal{P}(^mE; F)$, there is a unique operator $T_P \in L(Q(^mE); F)$ such that $T_P \circ \delta_m = P$. The space $Q(^mE)$ is defined as the closed subspace of all linear functionals $v \in \mathcal{P}(^mE)'$ such that $v|_{B_{\mathcal{P}(^mE)}}$ is τ_c -continuous; it is called the predual of $\mathcal{P}(^mE)$. (See also [11], or [10, Theorems 2.4 and 4.1].)

The next result asserts that a Banach space E has the BAP if and only if, for each $m \in \mathbb{N}$, $Q(^mE)$ has the BAP.

PROPOSITION 2. Let E be a Banach space and let $1 \leq \lambda < \infty$. The following statements are equivalent:

- (a) E has the λ -BAP.
- (b) For each Banach space F and each $m \in \mathbb{N}$, $B_{\mathcal{P}(^mE;F)} = \overline{B_{\mathcal{P}_f(^mE;F)}^{\lambda^m}}^{\tau_c}$.
- (c) For each $m \in \mathbb{N}$, $Q(^mE)$ has the λ^m -BAP.

Proof. The proof of (a) \Rightarrow (b) is standard while (b) \Rightarrow (c) is a consequence of [10, Theorem 2.4 and Proposition 3.1]. Finally, (c) \Rightarrow (a) follows from the fact that $Q(^1E) = E$ (see [10, p. 871]).

We note that the implication (a) \Rightarrow (c) was stated in [10, p. 885] without proof.

The space $\mathcal{H}^{\infty}(U)$ also has a predual. In [10] Mujica constructed a Banach space $G^{\infty}(U)$ and a mapping $\delta_U \in \mathcal{H}^{\infty}(U; G^{\infty}(U))$ with the following universal property: For each Banach space F and each mapping $f \in \mathcal{H}^{\infty}(U; F)$, there is a unique operator $T_f \in L(G^{\infty}(U); F)$ such that $T_f \circ \delta_U = f$. The space $G^{\infty}(U)$ is defined as the closed subspace of all linear functionals $u \in \mathcal{H}^{\infty}(U)'$ such that $u|_{B_{\mathcal{H}^{\infty}(U)}}$ is τ_c -continuous; it is called the predual of $\mathcal{H}^{\infty}(U)$.

Now it is natural to ask whether there is a result similar to Proposition 2 for $G^{\infty}(U)$ concerning the BAP. In fact, in [10] Mujica posed the following problem (see [10, 5.9 Problem]): Does $G^{\infty}(U_E)$ have the BAP whenever E does? We have no answer to this question in general, but we give a positive answer if E is separable. First we give a general relation between E and $G^{\infty}(U)$ in connection with the BAP.

If U is a bounded open subset of a Banach space E, then by [10, Proposition 2.3], E is topologically isomorphic to a complemented subspace of $G^{\infty}(U)$. In the following proposition $P \in L(G^{\infty}(U); E)$ will indicate the relevant projection.

PROPOSITION 3. Let U be an open subset of a Banach space E and let $1 \le \lambda < \infty$. Consider the following statements:

- (a) For each Banach space F, $B_{\mathcal{H}^{\infty}(U;F)} = \overline{B_{\mathcal{H}^{\infty}(U)\otimes F}^{\lambda}}^{\tau_c}$.
- (b) $G^{\infty}(U)$ has the λ -BAP.
- (c) E has the $\lambda ||P||$ -BAP.

(d) For each Banach space F and for each open subset $V \subset F$,

$$B_{\mathcal{H}^{\infty}(V;E)} = \overline{B_{\mathcal{H}^{\infty}(V)\otimes E}^{\lambda \parallel P \parallel \tau_{c}}}.$$

(e)
$$I_U \in \overline{B_{\mathcal{H}^{\infty}(U) \otimes E}^{\lambda \parallel P \parallel}}^{\tau_c}$$
.

Then we always have the implications (a) \Leftrightarrow (b) and (c) \Rightarrow (d). If, in addition, U is bounded then (b) \Rightarrow (c) and (d) \Rightarrow (c). If U is the open unit ball then also (d) \Rightarrow (e).

Proof. The equivalence (a) \Leftrightarrow (b) follows easily from Proposition 1 and [10, Theorem 2.1, Proposition 3.1 and Proposition 4.9], and (c) \Rightarrow (d) follows from Proposition 1 and [10, Theorem 2.1, Corollary 4.10 and Proposition 3.1].

If U is bounded, we get (b) \Rightarrow (c) from [10, Proposition 2.3]. Now by modifying an idea of Mujica [10, p. 883] we shall show that (d) implies (c). From (d), by using, [10, Theorem 2.1, Proposition 3.1 and Corollary 4.10], we deduce that

$$B_{L(G^{\infty}(U);E)} = \overline{B_{G^{\infty}(U)' \otimes E}^{\lambda ||P||}}^{\tau_{c}}$$

for every Banach space F. Let $A \in B_{L(F;E)}$ be given. By [10, Proposition 2.3] there are operators $S \in B_{L(F;G^{\infty}(U_F))}$ and $S \in B_{L(G^{\infty}(U_F);F)}$ such that $T \circ S(y) = y$ for every $y \in F$. Then $A \circ T \in B_{L(G^{\infty}(U_F);E)}$ and therefore there is a net $(B_{\alpha})_{\alpha \in A} \subset B_{G^{\infty}(U_F)' \otimes E}^{\lambda \parallel P \parallel}$ which converges to $A \circ T$ for τ_c . Hence $(B_{\alpha} \circ S)_{\alpha \in A} \subset B_{F' \otimes E}^{\lambda \parallel P \parallel}$ and $B_{\alpha}S \to A \circ T \circ S = A$ for the topology τ_c . Thus, by Proposition 1, E has the $\lambda \parallel P \parallel$ -BAP.

Finally, if U is the open unit ball of E then $(d)\Rightarrow(e)$ follows from the fact that $I_U \in B_{\mathcal{H}^{\infty}(U;E)}$.

Note that, if U is a bounded open subset of a separable Banach space E which has the AP, but does not have the BAP (see [5]), then $G^{\infty}(U)$ has the AP [10, Theorem 5.4], but does not have the BAP by Proposition 3. We do not know, in the preceding proposition, if the implication $(c)\Rightarrow(b)$ is true for any Banach space E, i.e., whether or not $G^{\infty}(U)$ has the BAP whenever E does. As stated above, we have an affirmative answer for E separable. Before proving this result we need some preparation.

If E has a Schauder basis $(e_n)_{n=1}^{\infty}$ then $E_n := \langle e_1, \ldots, e_n \rangle$ denotes the subspace generated by e_1, \ldots, e_n , and $T_n : E \to E_n$ the canonical projection, for each $n \in \mathbb{N}$. If U is an open subset of E then we set $U_n := U \cap E_n$ for each $n \in \mathbb{N}$.

The following lemma, due to Mujica [8], plays an important role in the proof of Theorem 1 (see also [4, Lemma 3.1]).

Lemma 1 ([8], [4]). Let E be a Banach space with a Schauder basis. Let U be a balanced convex open subset of E. Then there are three increasing sequences $(A_n)_{n=1}^{\infty}$, $(B_n)_{n=1}^{\infty}$ and $(C_n)_{n=1}^{\infty}$ of open subsets of U with the following properties:

- (a) $C_n \subset B_n \subset A_n$ for every n, and $\bigcup_{n=1}^{\infty} C_n = U$.
- (b) $T_n(A_n) \subset U_n \subset A_n$ for every n.
- (c) $B_j \cap U_n$ is a compact subset of $A_j \cap U_n$ for every j and n.
- (d) $T_n(C_j) \subset B_j \cap U_n$ whenever $n \geq j$.
- (e) For each compact subset K of U and balanced convex open neighborhood of zero V in E such that $K + V \subset U$, there exists $n_0 \in \mathbb{N}$ such that $K \subset C_n$ and $T_n(x) \in x + V$ whenever $x \in K$ and $n \geq n_0$.

The proof of the following result was suggested to us by Professor Jorge Mujica. This greatly simplified our original proof.

THEOREM 1. Let E be a Banach space with a monotone Schauder basis. Then $\mathcal{H}^{\infty}(U_E) \otimes F$ is sequentially dense in $(\mathcal{H}^{\infty}(U_E; F), \tau_c)$ for every Banach space F.

Proof. Let $f \in \mathcal{H}^{\infty}(U_E; F)$ be given. We may assume, without loss of generality, that $||f|| \leq 1$. Since, by hypothesis, E has the MAP (see, for example, [7, p. 38]), by [10, Proposition 5.7] we have $B_{\mathcal{H}^{\infty}(U_E;F)} = \overline{B_{\mathcal{H}^{\infty}(U_E)\otimes F}}^{\tau_c}$. Hence, there exists a sequence $(h_n)_{n=1}^{\infty} \subset B_{\mathcal{H}^{\infty}(U_E)\otimes F}$ such that

(*)
$$||h_n(y) - f(y)|| < 1/n$$
 for all $y \in B_n \cap U_n$.

Since $||h_n|| \le 1$ for every n, the sequence $(h_n)_{n=1}^{\infty}$ is equicontinuous (see [9, Proposition 9.15]). It follows from (*) that $(h_n(y))_{n=1}^{\infty}$ converges to f(y) for every $y \in D = \bigcup_{n=1}^{\infty} (B_n \cap U_n)$. As E has the MAP, it is easy to see that D is dense in U_E by Lemma 1. As $(h_n)_{n=1}^{\infty}$ is equicontinuous, it follows that $(h_n(y))_{n=1}^{\infty}$ is a Cauchy sequence in F for every $y \in U_E$ (see the proof of [14, Theorem 3]).

Define $h(y) = \lim h_n(y)$ for every $y \in U_E$. Since $(h_n)_{n=1}^{\infty}$ is equicontinuous, h is continuous (see [9, Lemma 9.10]). Since h(y) = f(y) for every $y \in D$, and D is dense in U_E , it follows that h(y) = f(y) for every $y \in U_E$. Now, from equicontinuity of $(h_n)_{n=1}^{\infty}$, it follows that $(h_n)_{n=1}^{\infty}$ converges to f uniformly on compact subsets of U_E (see [9, Proposition 9.11]). This completes the proof.

Using a result of Pełczyński we obtain the following stronger version of the previous theorem.

COROLLARY 2. Let E be a separable Banach space with the BAP. Then $\mathcal{H}^{\infty}(U_E) \otimes F$ is sequentially dense in $(\mathcal{H}^{\infty}(U_E; F), \tau_c)$ for every Banach space F.

Proof. By a result of Pełczyński [12] there exists a Banach space M with a Schauder basis, and a Banach space N, such that $M = E \oplus N$. We may assume that M has a monotone Schauder basis. Now, $U_E \oplus N$ is an open

subset of $E \oplus N = M$. Let $\sigma : x \in U_E \mapsto x + 0 \in U_E \oplus N$ and let $\pi : x + y \in U_E \oplus N \mapsto x \in U_E$. If $f \in \mathcal{H}^{\infty}(U_E; F)$, then $f \circ \pi \in \mathcal{H}^{\infty}(U_E \oplus N; F)$. By Theorem 1 there exists a sequence $(h_n)_{n=1}^{\infty} \subset \mathcal{H}^{\infty}(U_E \oplus N) \oplus F$ which converges to $f \circ \pi$ in $(\mathcal{H}^{\infty}(U_E \oplus N; F), \tau_c)$. Hence the sequence $(h_n \circ \sigma)_{n=1}^{\infty}$ lies in $\mathcal{H}^{\infty}(U_E) \oplus F$, and converges to $f \circ \pi \circ \sigma = f$ in $(\mathcal{H}^{\infty}(U_E; F), \tau_c)$.

To attain our main result we need the following proposition which shows that sequential convergence on $\mathcal{H}^{\infty}(U;F)$ for the topology τ_c implies sequential convergence on $L(G^{\infty}(U);F)$ for the topology of pointwise convergence.

PROPOSITION 4. Let U be an open subset of a Banach space E and let F be a Banach space. If $\mathcal{H}^{\infty}(U) \otimes F$ is sequentially dense in $(\mathcal{H}^{\infty}(U; F), \tau_c)$, then for each $T \in L(G^{\infty}(U); F)$ there exists a sequence $(T_n)_{n=1}^{\infty} \subset G^{\infty}(U)' \otimes F$ such that $T_n(u) \to T(u)$ for every $u \in G^{\infty}(U)$.

Proof. Let $T \in L(G^{\infty}(U); F)$ be given. Then by [10, Theorem 2.1] there exists a corresponding mapping $f \in \mathcal{H}^{\infty}(U; F)$ and hence, by hypothesis, there is a sequence $(f_n)_{n=1}^{\infty} \subset \mathcal{H}^{\infty}(U) \otimes F$ such that $f_n \to f$ for the compact-open topology τ_c . By [10, Theorem 2.1 and Proposition 3.1] there is a corresponding sequence $(T_{f_n})_{n=1}^{\infty} \subset G^{\infty}(U)' \otimes F$.

We claim that $T_{f_n}(u) \to T(u)$ for every $u \in G^{\infty}(U)$. Let $u \in G^{\infty}(U)$ and $\varepsilon > 0$ be given. By [10, Corollary 4.12] there exist $(\alpha_i)_{i=1}^{\infty} \subset l_1$ and $(x_i)_{i=1}^{\infty} \subset U$ such that $u = \sum_{i=1}^{\infty} \alpha_i \delta_U(x_i)$, where δ_U is the bounded holomorphic mapping given in [10, Theorem 2.1] for which $T_{f_n} \circ \delta_U = f_n$ for every $n \in \mathbb{N}$, and $T \circ \delta_U = f$. Let m be any positive integer and consider $u_m := \sum_{i=1}^m \alpha_i \delta_U(x_i)$. Since f_n converges to f for the topology τ_c , and $(x_i)_{i=1}^m$ is a compact subset of U, there is an $n_0 \in \mathbb{N}$ such that

$$\sup_{1 \le i \le m} \|f_n(x_i) - f(x_i)\| \le \frac{\varepsilon}{m \sup_{1 \le i \le m} |\alpha_i|}$$

for all $n \geq n_0$. Hence, for each $m \in \mathbb{N}$ we get

$$||T_{f_n}(u_m) - T(u_m)|| = \left\| \sum_{i=1}^m \alpha_i (T_{f_n}(\delta_U(x_i)) - T(\delta_U(x_i))) \right\|$$

$$\leq \sum_{i=1}^m |\alpha_i| ||(T_{f_n} \circ \delta_U(x_i) - T \circ \delta_U(x_i))||$$

$$\leq \sup_{1 \leq i \leq m} |\alpha_i| \sum_{i=1}^m ||f_n(x_i) - f(x_i)||$$

$$\leq m \sup_{1 \leq i \leq m} |\alpha_i| \frac{\varepsilon}{m \sup_{1 \leq i \leq m} |\alpha_i|} = \varepsilon,$$

for all $n \geq n_0$. Therefore

$$||T_{f_n}(u) - T(u)|| = \lim_{m \to \infty} ||T_{f_n}(u_m) - T(u_m)|| \le \varepsilon$$

for all $n \geq n_0$, which completes the proof.

Now from Corollary 2 and Proposition 4 we obtain our main result.

COROLLARY 3. A separable Banach space E has the BAP if and only if $G^{\infty}(U_E)$ has the BAP.

Proof. Let E be a separable Banach space and suppose that E has the BAP. Let I be the identity mapping on $G^{\infty}(U_E)$. Then by Corollary 2 and Proposition 4 there exists a sequence $(T_n)_{n=1}^{\infty} \subset G^{\infty}(U_E)' \otimes G^{\infty}(U_E)$ such that $T_n(u) \to I(u)$ for every $u \in G^{\infty}(U_E)$. Since $G^{\infty}(U_E)$ is also a separable Banach space (see [10, Remark 2.2]), by a characterization of the BAP for separable Banach spaces (see, for example, [9, Theorem 27.4]), we conclude that $G^{\infty}(U_E)$ has the BAP. Since the converse implication follows from Proposition 3, the proof is complete.

Hence, the above result provides a positive answer to the problem posed by Mujica in [10] in the case of separable Banach spaces.

References

- E. Çalışkan, Approximation of holomorphic mappings on infinite dimensional spaces, Rev. Mat. Complut. 17 (2004), 411–434.
- P. G. Casazza, Approximation properties, in: Handbook of the Geometry of Banach Spaces, Vol. 1, W. Johnson and J. Lindenstrauss (eds.), North-Holland, Amsterdam, 2001, 271–316.
- [3] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., Springer, Berlin, 1999.
- [4] S. Dineen and J. Mujica, The approximation property for spaces of holomorphic functions on infinite dimensional spaces I, J. Approx. Theory 126 (2004), 141–156.
- [5] T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197–200.
- [6] J. Lindenstrauss, Weakly compact sets—their topological properties and the Banach spaces they generate, in: Symposium on Infinite Dimensional Topology, R. D. Anderson (ed.), Ann. of Math. Stud. 69, Princeton Univ. Press, 1972, 235–273.
- [7] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
- [8] J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains, Studia Math. 82 (1985), 107-134.
- [9] —, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1986.
- [10] —, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (1991), 867–887.
- [11] —, Reflexive spaces of homogeneous polynomials, Bull. Polish Acad. Sci. Math. 49 (2001), 211–223.
- [12] A. Pelczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239–243.

(5692)

- [13] R. R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Ph.D. thesis, Trinity College, Dublin, 1980.
- [14] P. Takatsuka, Normal families of holomorphic functions on infinite dimensional spaces, Portugal. Math. 63 (2006), 351–362.

Yıldız Teknik Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Davutpaşa, 34210 Esenler Istanbul, Turkey E-mail: caliskan@yildiz.edu.tr

> Received June 30, 2005 Revised version November 3, 2006