Compact operators on the weighted Bergman space $A^1(\psi)$

by

TAO YU (Jinhua)

Abstract. We show that a bounded linear operator S on the weighted Bergman space $A^1(\psi)$ is compact and the predual space $A_0(\varphi)$ of $A^1(\psi)$ is invariant under S^* if and only if $Sk_z \to 0$ as $z \to \partial D$, where k_z is the normalized reproducing kernel of $A^1(\psi)$. As an application, we give conditions for an operator in the Toeplitz algebra to be compact.

1. Introduction. Let φ be a positive continuous function on $[0,1)$. We say that φ is normal if there exist $0 < a < b$ and $r_0 < 1$ such that

\begin{align*}
\frac{\varphi(r)}{1-r^2} \to 0 \quad \text{and} \quad \frac{\varphi(r)}{(1-r^2)^b} \to \infty \quad (r_0 \leq r \to 1^-).
\end{align*}

The functions $\{\varphi, \psi\}$ will be called a normal pair if φ is normal and if, for some b satisfying (1), there exists $\alpha > b - 1$ such that $\varphi(r)\psi(r) = (1-r^2)^\alpha$.

Let dA denote the normalized Lebesgue measure on the open unit disk D in the complex plane, and dA_ψ the measure on D defined by $dA_\psi(z) = \psi(|z|)dA(z)$. The condition $\alpha > b - 1$ ensures that the measure dA_ψ on D is finite.

Let $L^1(\psi)$ denote the Banach space of measurable functions f with norm $\|f\|_\psi = \int_D |f|dA_\psi < \infty$. Let $A^1(\psi)$ denote the closed subspace of $L^1(\psi)$ consisting of all analytic functions, which will be called the weighted Bergman space. In the case that $\varphi(r) = (1-r)^c$ for some constant $c > 0$, and that $\alpha = c$, $A^1(\psi)$ is the Bergman space $L^1_a(D)$.

Let $L^\infty(\varphi)$ denote the Banach space consisting of all measurable functions such that $f(z)\varphi(|z|)$ is essentially bounded on D with norm $\|f\|_\varphi = \text{ess sup}_{z \in D} |f(z)|\varphi(|z|)$. Let $A^\infty(\varphi)$ denote the closed subspace of $L^\infty(\varphi)$ consisting of all analytic functions, and

2000 Mathematics Subject Classification: 47B35, 47A15.

Key words and phrases: weighted Bergman space, compact operator, reproducing kernel, Toeplitz algebra.

Partially supported by the Scientific Research Fund (20040850) of Zhejiang Provincial Education Department of China.
\[A_0(\varphi) := \{ f \in A_\infty(\varphi) : \lim_{r \to 1^-} \sup_{|z| = r} f(z)\varphi(|z|) = 0 \}, \]
a closed subspace of \(A_\infty(\varphi) \).

Throughout this paper we shall use the following pairing between \(A^1(\psi) \) and \(A_\infty(\varphi) \):
\[
\langle f, g \rangle = \int_D f(z)\overline{g(z)}(1 - |z|^2)^\alpha \, dA(z).
\]
For \(z, w \in D \), let
\[
K_z(w) = \frac{1 + \alpha}{(1 - \overline{z}w)^{2+\alpha}},
\]
and define an operator \(Q \) on \(L^1(\psi) \) by
\[
(Qf)(z) = \langle f, K_z \rangle = \int_D f(w)\overline{K_z(w)}(1 - |w|^2)^\alpha \, dA(w).
\]
Then \(Q \) is a bounded projection from \(L^1(\psi) \) onto \(A^1(\psi) \) and \(K_z(w) \) is the reproducing kernel of \(A^1(\psi) \), that is, \(f(z) = \langle f, K_z \rangle \) for any \(f \in A^1(\psi) \). Since \(K_z \) is in \(A^1(\psi) \) for any \(z \in D \), the reproducing property \(f(z) = \langle f, K_z \rangle \) also holds for \(f \in A_\infty(\varphi) \) (see [6] for the details). The function \(k_z(w) := K_z(w)/\|K_z\|_\psi \) will be called the normalized reproducing kernel of \(A^1(\psi) \).

In the Bergman space \(L^2_\alpha(D) \) setting, Axler and Zheng [1] proved that an operator \(S \) which is a finite sum of finite products of Toeplitz operators, is compact if and only if \(\|Sk_z\| \to 0 \) as \(|z| \to 1^- \). This result also holds for the spaces \(L^p_\alpha(D) \) \((1 < p < \infty) \) (see [7]), \(A^2_\psi(\Omega) \) with \(\Omega \) a regular bounded symmetric domain in \(C^n \) (see [2]), and \(H^2(\Omega, dv) \) with \(\Omega \) a smoothly bounded multiply connected domain in the complex plane (see [5]). Recently Miao and Zheng [4] proved that for a bounded operator \(S \) on \(L^p_\alpha(D) \) \((1 < p < \infty) \) such that both \(\sup_{z \in \partial D} \|Sz\|_m \) and \(\sup_{z \in \partial D} \|S^*_z1\|_m \) are finite, \(S \) is a compact operator on \(L^p_\alpha(D) \) if and only if the Berezin transform of \(S \) tends to 0 at \(\partial D \).

In this note, we will obtain a similar result for \(A^1(\psi) \). More precisely, we show that a bounded linear operator \(S \) on \(A^1(\psi) \) is compact and \(A_0(\varphi) \) is an invariant subspace of \(S^* \) if and only if \(\|Sk_z\|_\psi \to 0 \) as \(z \to \partial D \).

2. Preliminaries. The following result can be found in [6].

Lemma 1. \(A^1(\psi)^* = A_\infty(\varphi) \) and \(A_0(\varphi)^* = A^1(\psi) \).

We also need some results about the reproducing kernel of \(A^1(\psi) \).

Lemma 2. There exist constants \(c \) and \(C \) such that
\[
c/\varphi(|z|) \leq \|K_z\|_\psi \leq C/\varphi(|z|).
\]

Proof. The second inequality can be derived from Lemmas 5 and 8 in [6].
Now we prove the first inequality. If $|z| \leq r_0$, the first inequality obviously holds. If $|z| > r_0$, using (1) and $\varphi(r)\psi(r) = (1 - r^2)^{\alpha}$, we have

$$
\frac{(1 - |w|^2)^{\alpha-a}}{\psi(|w|)} \leq \frac{(1 - |z|^2)^{\alpha-a}}{\psi(|z|)} \quad \text{when } 1 > |w| > |z|,
$$

$$
\frac{(1 - |w|^2)^{\alpha-b}}{\psi(|w|)} \leq \frac{(1 - |z|^2)^{\alpha-b}}{\psi(|z|)} \quad \text{when } r_0 \leq |w| < |z|.
$$

Hence

$$
\|K_z\|_{\psi} = \int_D \frac{(1 + \alpha)\psi(|w|)}{|1 - \bar{z}w|^{2+\alpha}} dA(w)
$$

$$
\geq \frac{(1 + \alpha)\psi(|z|)}{(1 - |z|^2)^{\alpha-b}} \left(\int_{r_0 \leq |w| \leq |z|} \frac{(1 - |w|^2)^{\alpha-b}}{|1 - \bar{z}w|^{2+\alpha}} dA(w) + \int_{|z| < |w| < 1} \frac{(1 - |w|^2)^{\alpha-a}}{|1 - \bar{z}w|^{2+\alpha}(1 - |z|^2)^{b-a}} dA(w) \right).
$$

Note that

$$
\frac{1}{(1 - |z|^2)^{b-a}} = \frac{1}{((1 + |z|)(1 - |z|))^{b-a}} \geq \frac{1}{(2|1 - \bar{z}w|)^{b-a}},
$$

and similarly

$$
\frac{1}{(1 - |w|^2)^{b-a}} \geq \frac{1}{(2|1 - \bar{z}w|)^{b-a}}.
$$

So there exists a positive constant c_1 such that

$$
\|K_z\|_{\psi} \geq \frac{c_1\psi(|z|)}{(1 - |z|^2)^{\alpha-b}} \left(\int_{r_0 \leq |w|} \frac{(1 - |w|^2)^{\alpha-a}}{|1 - \bar{z}w|^{2+\alpha+b-a}} dA(w) \right)
$$

$$
= \frac{c_1\psi(|z|)}{(1 - |z|^2)^{\alpha-b}} \left(\int_D - \int_{|w| \leq r_0} \frac{(1 - |w|^2)^{\alpha-a}}{|1 - \bar{z}w|^{2+\alpha+b-a}} dA(w) \right)
$$

$$
=: \frac{c_1\psi(|z|)}{(1 - |z|^2)^{\alpha-b}} (I_1(z) - I_2(z)).
$$

Now by Lemma 4.2.2 of [8], $I_1(z) \sim (1 - |z|^2)^{-b}$ as $z \to \partial D$; and I_2 is bounded. Thus it is easy to see that there exists $c > 0$ so that

$$
\|K_z\|_{\psi} \geq c \frac{\psi(|z|)}{(1 - |z|^2)^{\alpha}} = c/\varphi(|z|).
$$

The proof is now complete. \blacksquare

Lemma 3. The normalized reproducing kernel k_z converges weakly* to 0 in $A^1(\psi)$ as $z \to \partial D$.

Proof. For \(g \in A_0(\varphi) \), by the reproducing property of \(K_z \), we have
\[
\langle k_z, g \rangle = \frac{\langle K_z, g \rangle}{\|K_z\|_\psi} = \frac{\overline{g(z)}}{\|K_z\|_\psi}.
\]
Now it follows from the definition of \(A_0(\varphi) \) and Lemma 2 that \(\langle k_z, g \rangle \to 0 \) as \(z \to \partial D \).

3. Compactness

Theorem 1. Suppose that \(S \) is a bounded linear operator on \(A^1(\psi) \). Then \(S \) is compact and \(A_0(\varphi) \) is an invariant subspace of \(S^* \) if and only if \(\|Sk_z\|_\psi \to 0 \) as \(z \to \partial D \).

Proof. Necessity. Suppose that \(S \) is a compact operator and \(A_0(\varphi) \) is an invariant subspace of \(S^* \). If \(\|Sk_z\|_\psi \not\to 0 \) as \(z \to \partial D \), then there exist a constant \(\delta > 0 \) and a sequence \(\{z_n\} \) in \(D \) such that
\[
z_n \to \partial D \quad \text{and} \quad \|Sk_{z_n}\|_\psi > \delta.
\]
Since \(\{k_{z_n}\} \) is a bounded sequence in \(A^1(\psi) \) and \(S \) is compact, there exists a subsequence of \(\{k_{z_n}\} \), also denoted by \(\{k_{z_n}\} \), such that \(\{Sk_{z_n}\} \) converges in \(A^1(\psi) \). By Lemma 3, \(z_n \to \partial D \) implies that \(k_{z_n} \xrightarrow{w^*} 0 \). Since \(A_0(\varphi) \) is an invariant subspace of \(S^* \), we have, for any \(g \in A_0(\varphi) \),
\[
\langle Sk_{z_n}, g \rangle = \langle k_{z_n}, S^*g \rangle \to 0.
\]
Thus \(Sk_{z_n} \xrightarrow{w^*} 0 \). Since \(\{Sk_{z_n}\} \) converges in \(A^1(\psi) \), it must converge to its weak*-limit, that is, 0. This contradicts (3).

Sufficiency. Suppose that \(\|Sk_z\|_\psi \to 0 \) as \(z \to \partial D \). By the reproducing property of \(K_z \), one can see that
\[
(S^*K_w)(z) = \langle S^*K_w, K_z \rangle = \overline{\langle SK_z, K_w \rangle} = \overline{(SK_z)(w)}.
\]
So for \(f \in A^1(\psi) \),
\[
(Sf)(w) = \langle Sf, K_w \rangle = \langle f, S^*K_w \rangle = \int_D f(z)(S^*K_w)(z)(1 - |z|^2)^\alpha dA(z)
\]
\[
= \int_D f(z)(SK_z)(w)\varphi(|z|) dA_\psi(z).
\]
For \(0 < t < 1 \), define a compact supporting continuous function \(\eta_t \) on \(D \) by
\[
\eta_t(z) = \begin{cases}
1, & |z| \leq t, \\
\frac{1 + t}{1 - t} - \frac{2|z|}{1 - t}, & t < |z| \leq (1 + t)/2, \\
0, & (1 + t)/2 < |z| < 1.
\end{cases}
\]
For any $0 < r, t < 1$, define the integral operators $S_{[r]}$ on $A^1(\psi)$ and $S_{[r,t]}$ from $A^1(\psi)$ to $L^1(\psi)$ as follows:

\[
S_{[r]} f(w) = \int_D f(z)(SK_z)(w)\eta_r(z)\varphi(|z|) dA_\psi(z),
\]

\[
S_{[r,t]} f(w) = \int_D f(z)(SK_z)(w)\eta_r(z)\eta_t(w)\varphi(|z|) dA_\psi(z).
\]

Using Lemma 2, we have

\[
\|(S - S_{[r]})f\|_\psi \leq \int_D |f(z)| dA_\psi(z) \int_D |(SK_z)(w)\varphi(|z|)(1 - \eta_r(z))| dA_\psi(w)
\]

\[
\leq C\|f\|_\psi \sup_{z \in D} (1 - \eta_r(z))\|Sk_z\|_\psi.
\]

Since $\|Sk_z\|_\psi \to 0$ as $z \to \partial D$, we have $\sup_{z \in D} (1 - \eta_r(z))\|Sk_z\|_\psi \to 0$ as $r \to 1^-$. Thus

\[
(4) \quad \|S - S_{[r]}\| \to 0 \quad \text{as } r \to 1^-.
\]

Seeing $S_{[r]}$ as an operator from $A^1(\psi)$ to $L^1(\psi)$, if we prove that it is compact, then it is also compact as an operator on $A^1(\psi)$. Similar to the above, we have

\[
(5) \quad \|S_{[r]} - S_{[r,t]}\| \leq C \sup_{z \in \frac{1+r}{2}D} \int D |(Sk_z)(w)(1 - \eta_t(w))| dA_\psi(w).
\]

We will prove that

\[
\sup_{z \in \frac{1+r}{2}D} \int D |(Sk_z)(w)(1 - \eta_t(w))| dA_\psi(w) \to 0
\]

as $t \to 1^-$ for fixed $r < 1$.

Let $g_t(z) = \int_D |(Sk_z)(w)(1 - \eta_t(w))| dA_\psi(w)$. Firstly we will show that \{$g_t : 0 < t < 1$\} is equicontinuous and uniformly bounded on $\frac{1+r}{2}D$.

Since the Taylor expansion of K_z is $K_z(w) = \sum_{m=0}^\infty \beta_m(wz)^m$, where $\beta_m = (\alpha + 1) \cdots (\alpha + m + 1)/m!$, for any $z_1, z_2 \in \frac{1+r}{2}D$ we have

\[
|K_{z_1}(w) - K_{z_2}(w)| = \left| \sum_{m=0}^\infty \beta_m(wz_1)^m - \sum_{m=0}^\infty \beta_m(wz_2)^m \right|
\]

\[
\leq \sum_{m=1}^\infty \beta_m |w|^m |z_1^m - z_2^m| \leq |z_1 - z_2| \sum_{m=1}^\infty \beta_m mr^{m-1}.
\]

The last series above is the derivative of the series $\sum_{m=0}^\infty \beta_m rm$ for $\frac{1+r}{2}D$ hence convergent in $|r| < 1$. So for any $\varepsilon > 0$, there exists a constant $\delta_1 > 0$ such that $|K_{z_1}(w) - K_{z_2}(w)| \leq \varepsilon$ for any $z_1, z_2 \in \frac{1+r}{2}D$ with $|z_1 - z_2| < \delta_1$, and so $\|K_z\|_\psi$ is uniformly continuous on $\frac{1+r}{2}D$. Then for any $\varepsilon > 0$, there exist
\(\delta_2 > 0 \) such that \(|k_{z_1}(w) - k_{z_2}(w)| < \varepsilon \) for \(z_1, z_2 \in \frac{1+r}{2}D \) with \(|z_1 - z_2| < \delta_2 \), whence

\[
|g_t(z_1) - g_t(z_2)| \leq \int_D |Sk_{z_1}(w) - Sk_{z_2}(w)|(1 - \eta_t(w)) \, dA(z)
\]

\[
\leq \|S\| \int_D |k_{z_1}(w) - k_{z_2}(w)| \, dA(z) \leq \varepsilon \|S\| \|1\|_\psi.
\]

Since \(\varepsilon \) is arbitrary, \(\{g_t : 0 < t < 1\} \) is equicontinuous. It is obvious that \(\{g_t : 0 < t < 1\} \) is uniformly bounded.

For \(z \in \frac{1+r}{2}D \), Lebesgue’s dominated convergence theorem implies that \(g_t(z) \to 0 \) as \(t \to 1^- \). It follows from Ascoli’s theorem that \(\{g_t : 0 < t < 1\} \) is relatively compact in \(C(\frac{1+r}{2}D) \), the Banach space of continuous functions on \(\frac{1+r}{2}D \), so has a unique accumulation point, 0. Therefore \(g_t \to 0 \) as \(t \to 1^- \).

So (5) implies that

\[
(6) \quad \|S_{[r]} - S_{[r,t]}\| \to 0 \quad \text{as} \quad t \to 1^-.
\]

Since the kernel of \(S_{[r,t]} \) is a compact supporting continuous function on \(D \times D \), it can be approximated uniformly by polynomials in \(z, \bar{z}, w, \bar{w} \) on \(D \times D \). Because a polynomial kernel induces a finite rank integral operator, \(S_{[r,t]} \) is a compact operator (cf. [3]). Thus (6) implies that \(S_{[r]} \) is compact, and (4) implies that \(S \) is compact.

Finally, we show that \(A_0(\varphi) \) is invariant under \(S^* \). Suppose that \(g \in A_0(\varphi) \) and \(S^*g \in A_\infty(\varphi) \setminus A_0(\varphi) \). By the definitions of \(A_0(\varphi) \) and \(A_\infty(\varphi) \), there exist some positive constant \(\varepsilon \) and a sequence \(\{z_n\} \) in \(D \) such that \(z_n \to \partial D \) as \(n \to \infty \) and \(|\langle S^*g(z_n), \varphi(z_n) \rangle| > \varepsilon \). Thus using Lemma 2 and the reproducing property of \(K_z \), we have

\[
|\langle Sk_{z_n}, g \rangle| = |\langle k_{z_n}, S^*g \rangle| = \frac{|\langle (S^*g)(z_n), \varphi(z_n) \rangle|}{\|K_{z_n}\|_\psi} \geq \frac{1}{C} \|S^*g(z_n)\| \|\varphi(z_n)\| > \frac{\varepsilon}{C}.
\]

This contradicts the hypothesis \(\|Sk_z\|_\psi \to 0 \) as \(z \to \partial D \), and completes the proof of Theorem 1. \(\blacksquare \)

In the last argument of the proof of Theorem 1, \(g \in A_\infty(\varphi) \) is only needed. So the following result holds.

Corollary. If \(S \) is a compact operator on \(A^1(\psi) \) and \(S^*A_0(\varphi) \subset A_0(\varphi) \), then \(S^*A_\infty(\varphi) \subset A_0(\varphi) \).

Remark. If \(S \) is a compact operator on \(L^2_a(D) \), then \(\|Sk_z\| \to 0 \) as \(z \to \partial D \). Examples in [1] and [4] show that the converse does not hold. However, in \(A^1(\psi) \), \(\|Sk_z\| \to 0 \) as \(z \to \partial D \) is a sufficient condition for the compactness of \(S \). Moreover, the following example shows that \(A_0(\varphi) \) being an invariant subspace of \(S^* \) in Theorem 1 is necessary.
EXAMPLE. Suppose that $f \in A_\infty(\varphi) \setminus A_0(\varphi)$. By the definitions of $A_\infty(\varphi)$ and $A_0(\varphi)$, there exists a sequence $\{z_n\}$ in D such that $z_n \to \partial D$ and $|f(z_n)|\varphi(|z_n|) \to 0$.

Suppose that $0 \neq g \in A^1(\psi)$. Then there exists $h \in A_\infty(\varphi)$ such that $\langle g, h \rangle \neq 0$. Let $S = g \otimes f$. Then S is a compact operator on $A^1(\psi)$. However,

$$|\langle Sk_z, h \rangle| = |\langle k_z, (f \otimes g^*)h \rangle| = |\langle k_z, (f \otimes g^*)h \rangle|$$

$$\geq C|\langle g, h \rangle||f(z_n)|\varphi(|z_n|) \to 0,$$

where the inequality comes from Lemma 2, and g^{**} denotes the image of g in the double dual space of $A^1(\psi)$. So we have $\|Sk_z\|_{\psi} \to 0$.

For $u \in L^\infty(D)$, define the Toeplitz operator T_u by $T_u(f) = Q(uf)$, where $f \in A^1(\psi)$. Let $T(L^\infty)$ denote the closed subalgebra of $B(A^1(\psi))$ generated by $\{T_u : u \in L^\infty(D)\}$.

Theorem 2. Suppose that $S \in T(L^\infty)$. Then S is compact if and only if $\|Sk_z\|_{\psi} \to 0$ as $z \to \partial D$.

Proof. By Theorem 1, it is sufficient to prove that $A_0(\varphi)$ is invariant under S^* when $S \in T(L^\infty)$. By the definition of $T(L^\infty)$, it is sufficient to prove that $A_0(\varphi)$ is invariant under T_u^* for any $u \in L^\infty(D)$. Let $g \in A_0(\varphi)$. Then

$$(T_u^*g)(z) = \langle K_z, T_u^*g \rangle = \langle T_uK_z, g \rangle = \langle uK_z, g \rangle.$$

Hence

$$|(T_u^*g)(z)\varphi(|z|)| \leq \int_D |u(w)K_z(w)g(w)|(|1 - |w|^2)^a \varphi(|z|) dA(w)$$

$$\leq \|u\|_\infty \int_D \varphi(|z|)|K_z(w)g(w)|\varphi(|w|) dA_\psi(w)$$

$$= \|u\|_\infty \left(\int_{rD} \varphi(|z|)|K_z(w)g(w)|\varphi(|w|) dA_\psi(w) + \int_{D \setminus rD} \varphi(|z|)|K_z(w)g(w)|\varphi(|w|) dA_\psi(w) \right),$$

where $0 < r < 1$. Since $g \in A_0(\varphi)$, for any $\varepsilon > 0$, there exists r such that $|g(w)|\varphi(|w|) \leq \varepsilon$ for $w \in D \setminus rD$. Then it follows from Lemma 2 that the second integral on the right hand side of (7) is $\leq \varepsilon \int_{D \setminus rD} \varphi(|z|)|K_z(w)| dA_\psi(w) \leq C\varepsilon$ for fixed r. Since $g \in A_0(\varphi)$, there exists a constant M such that $\sup_{w \in D} |g(w)|\varphi(|w|) \leq M$. Since $\varphi(|z|)|K_z(w)|$ converges uniformly to 0 on rD as $z \to \partial D$, the first integral on the right hand side of (7) converges to 0.
as \(z \to \partial D \). So we have
\[
\limsup_{z \to \partial D} |(T^*_u g)(z)| \varphi(|z|) \leq \|u\|_\infty C \varepsilon.
\]
Since \(\varepsilon \) is arbitrary, \(|(T^*_u g)(z)| \varphi(|z|) \to 0 \) as \(z \to \partial D \). Thus \(T^*_u g \in A_0(\varphi) \).

Acknowledgements. The author is grateful to the referee for several comments that improved the paper, in particular indicated the Corollary of Theorem 1.

References

Department of Mathematics
Zhejiang Normal University
Jinhua, Zhejiang 321004
P.R. China
E-mail: yufuzhou@zjnu.cn

Received October 28, 2005
Revised version April 28, 2006