STUDIA MATHEMATICA 177 (3) (2006)

Compact operators on the weighted Bergman space $A^1(\psi)$

by

TAO YU (Jinhua)

Abstract. We show that a bounded linear operator S on the weighted Bergman space $A^1(\psi)$ is compact and the predual space $A_0(\varphi)$ of $A^1(\psi)$ is invariant under S^* if and only if $Sk_z \to 0$ as $z \to \partial D$, where k_z is the normalized reproducing kernel of $A^1(\psi)$. As an application, we give conditions for an operator in the Toeplitz algebra to be compact.

1. Introduction. Let φ be a positive continuous function on [0, 1). We say that φ is *normal* if there exist 0 < a < b and $r_0 < 1$ such that

(1)
$$\frac{\varphi(r)}{(1-r^2)^a} \searrow 0 \text{ and } \frac{\varphi(r)}{(1-r^2)^b} \nearrow \infty \quad (r_0 \le r \to 1^-).$$

The functions $\{\varphi, \psi\}$ will be called a *normal pair* if φ is normal and if, for some *b* satisfying (1), there exists $\alpha > b - 1$ such that $\varphi(r)\psi(r) = (1 - r^2)^{\alpha}$. Let *dA* denote the normalized Lebesgue measure on the open unit disk *D* in the complex plane, and dA_{ψ} the measure on *D* defined by $dA_{\psi}(z) = \psi(|z|) dA(z)$. The condition $\alpha > b - 1$ ensures that the measure dA_{ψ} on *D* is finite.

Let $L^1(\psi)$ denote the Banach space of measurable functions f with norm $||f||_{\psi} = \int_D |f| \, dA_{\psi} < \infty$. Let $A^1(\psi)$ denote the closed subspace of $L^1(\psi)$ consisting of all analytic functions, which will be called the *weighted Bergman* space. In the case that $\varphi(r) = (1 - r)^c$ for some constant c > 0, and that $\alpha = c, A^1(\psi)$ is the Bergman space $L^1_a(D)$.

Let $L_{\infty}(\varphi)$ denote the Banach space consisting of all measurable functions such that $f(z)\varphi(|z|)$ is essentially bounded on D with norm $||f||_{\varphi} =$ $\operatorname{ess\,sup}_{z\in D} |f(z)|\varphi(|z|)$. Let $A_{\infty}(\varphi)$ denote the closed subspace of $L_{\infty}(\varphi)$ consisting of all analytic functions, and

²⁰⁰⁰ Mathematics Subject Classification: 47B35, 47A15.

Key words and phrases: weighted Bergman space, compact operator, reproducing kernel, Toeplitz algebra.

Partially supported by the Scientific Research Fund (20040850) of Zhejiang Provincial Education Department of China.

T. Yu

$$A_0(\varphi) := \{ f \in A_\infty(\varphi) : \lim_{r \to 1^-} \sup_{|z|=r} f(z)\varphi(|z|) = 0 \},$$

a closed subspace of $A_{\infty}(\varphi)$.

Throughout this paper we shall use the following pairing between $A^1(\psi)$ and $A_{\infty}(\varphi)$:

(2)
$$\langle f,g\rangle = \int_D f(z)\overline{g(z)}(1-|z|^2)^{\alpha} dA(z).$$

For $z, w \in D$, let

$$K_z(w) = \frac{1+\alpha}{(1-\overline{z}w)^{2+\alpha}},$$

and define an operator Q on $L^1(\psi)$ by

$$(Qf)(z) = \langle f, K_z \rangle = \int_D f(w) \overline{K_z(w)} (1 - |w|^2)^{\alpha} \, dA(w).$$

Then Q is a bounded projection from $L^1(\psi)$ onto $A^1(\psi)$ and $K_z(w)$ is the reproducing kernel of $A^1(\psi)$, that is, $f(z) = \langle f, K_z \rangle$ for any $f \in A^1(\psi)$. Since K_z is in $A^1(\psi)$ for any $z \in D$, the reproducing property $f(z) = \langle f, K_z \rangle$ also holds for $f \in A_{\infty}(\varphi)$ (see [6] for the details). The function $k_z(w) := K_z(w)/||K_z||_{\psi}$ will be called the *normalized reproducing kernel* of $A^1(\psi)$.

In the Bergman space $L^2_a(D)$ setting, Axler and Zheng [1] proved that an operator S which is a finite sum of finite products of Toeplitz operators, is compact if and only if $||Sk_z|| \to 0$ as $|z| \to 1^-$. This result also holds for the spaces $L^p_a(D)$ $(1 (see [7]), <math>A^2_v(\Omega)$ with Ω a regular bounded symmetric domain in C^n (see [2]), and $H^2(\Omega, dv)$ with Ω a smoothly bounded multiply connected domain in the complex plane (see [5]). Recently Miao and Zheng [4] proved that for a bounded operator S on $L^p_a(D)$ $(1 such that both <math>\sup_{z \in D} ||S_z 1||_m$ and $\sup_{z \in D} ||S^*_z 1||_m$ are finite, S is a compact operator on $L^p_a(D)$ if and only if the Berezin transform of S tends to 0 at ∂D .

In this note, we will obtain a similar result for $A^1(\psi)$. More precisely, we show that a bounded linear operator S on $A^1(\psi)$ is compact and $A_0(\varphi)$ is an invariant subspace of S^* if and only if $\|Sk_z\|_{\psi} \to 0$ as $z \to \partial D$.

2. Preliminaries. The following result can be found in [6].

LEMMA 1. $A^1(\psi)^* = A_{\infty}(\varphi)$ and $A_0(\varphi)^* = A^1(\psi)$.

We also need some results about the reproducing kernel of $A^1(\psi)$.

LEMMA 2. There exist constants c and C such that

 $c/\varphi(|z|) \le ||K_z||_{\psi} \le C/\varphi(|z|).$

Proof. The second inequality can be derived from Lemmas 5 and 8 in [6].

Now we prove the first inequality. If $|z| \leq r_0$, the first inequality obviously holds. If $|z| > r_0$, using (1) and $\varphi(r)\psi(r) = (1 - r^2)^{\alpha}$, we have

$$\frac{(1-|w|^2)^{\alpha-a}}{\psi(|w|)} \le \frac{(1-|z|^2)^{\alpha-a}}{\psi(|z|)} \quad \text{when } 1 > |w| > |z|,$$
$$\frac{(1-|w|^2)^{\alpha-b}}{\psi(|w|)} \le \frac{(1-|z|^2)^{\alpha-b}}{\psi(|z|)} \quad \text{when } r_0 \le |w| < |z|.$$

Hence

$$\begin{split} \|K_{z}\|_{\psi} &= \int_{D} \frac{(1+\alpha)\psi(|w|)}{|1-\bar{z}w|^{2+\alpha}} \, dA(w) \\ &\geq \frac{(1+\alpha)\psi(|z|)}{(1-|z|^{2})^{\alpha-b}} \left(\int_{r_{0} \leq |w| \leq |z|} \frac{(1-|w|^{2})^{\alpha-b}}{|1-\bar{z}w|^{2+\alpha}} \, dA(w) \right) \\ &+ \int_{|z| < |w| < 1} \frac{(1-|w|^{2})^{\alpha-a}}{|1-\bar{z}w|^{2+\alpha}(1-|z|^{2})^{b-a}} \, dA(w) \Big). \end{split}$$

Note that

$$\frac{1}{(1-|z|^2)^{b-a}} = \frac{1}{((1+|z|)(1-|z|))^{b-a}} \ge \frac{1}{(2|1-\overline{z}w|)^{b-a}},$$

and similarly

$$\frac{1}{(1-|w|^2)^{b-a}} \ge \frac{1}{(2|1-\overline{z}w|)^{b-a}}$$

So there exists a positive constant c_1 such that

$$\begin{split} \|K_{z}\|_{\psi} &\geq \frac{c_{1}\psi(|z|)}{(1-|z|^{2})^{\alpha-b}} \int_{r_{0} \leq |w|} \frac{(1-|w|^{2})^{\alpha-a}}{|1-\overline{z}w|^{2+\alpha+b-a}} dA(w) \\ &= \frac{c_{1}\psi(|z|)}{(1-|z|^{2})^{\alpha-b}} \Big(\int_{D} - \int_{|w| \leq r_{0}} \Big) \frac{(1-|w|^{2})^{\alpha-a}}{|1-\overline{z}w|^{2+\alpha+b-a}} dA(w) \\ &=: \frac{c_{1}\psi(|z|)}{(1-|z|^{2})^{\alpha-b}} (I_{1}(z) - I_{2}(z)). \end{split}$$

Now by Lemma 4.2.2 of [8], $I_1(z) \sim (1 - |z|^2)^{-b}$ as $z \to \partial D$; and I_2 is bounded. Thus it is easy to see that there exists c > 0 so that

$$||K_z||_{\psi} \ge c \frac{\psi(|z|)}{(1-|z|^2)^{\alpha}} = c/\varphi(|z|).$$

The proof is now complete. \blacksquare

LEMMA 3. The normalized reproducing kernel k_z converges weakly^{*} to 0 in $A^1(\psi)$ as $z \to \partial D$.

Proof. For $g \in A_0(\varphi)$, by the reproducing property of K_z , we have

$$\langle k_z, g \rangle = \frac{\langle K_z, g \rangle}{\|K_z\|_{\psi}} = \frac{\overline{g(z)}}{\|K_z\|_{\psi}}.$$

Now it follows from the definition of $A_0(\varphi)$ and Lemma 2 that $\langle k_z, g \rangle \to 0$ as $z \to \partial D$.

3. Compactness

THEOREM 1. Suppose that S is a bounded linear operator on $A^1(\psi)$. Then S is compact and $A_0(\varphi)$ is an invariant subspace of S^* if and only if $||Sk_z||_{\psi} \to 0$ as $z \to \partial D$.

Proof. Necessity. Suppose that S is a compact operator and $A_0(\varphi)$ is an invariant subspace of S^* . If $||Sk_z||_{\psi} \not\rightarrow 0$ as $z \rightarrow \partial D$, then there exist a constant $\delta > 0$ and a sequence $\{z_n\}$ in D such that

(3)
$$z_n \to \partial D \text{ and } ||Sk_{z_n}||_{\psi} > \delta.$$

Since $\{k_{z_n}\}$ is a bounded sequence in $A^1(\psi)$ and S is compact, there exists a subsequence of $\{k_{z_n}\}$, also denoted by $\{k_{z_n}\}$, such that $\{Sk_{z_n}\}$ converges in $A^1(\psi)$. By Lemma 3, $z_n \to \partial D$ implies that $k_{z_n} \xrightarrow{w^*} 0$. Since $A_0(\varphi)$ is an invariant subspace of S^* , we have, for any $g \in A_0(\varphi)$,

$$\langle Sk_{z_n}, g \rangle = \langle k_{z_n}, S^*g \rangle \to 0.$$

Thus $Sk_{z_n} \xrightarrow{w^*} 0$. Since $\{Sk_{z_n}\}$ converges in $A^1(\psi)$, it must converge to its weak*-limit, that is, 0. This contradicts (3).

Sufficiency. Suppose that $||Sk_z||_{\psi} \to 0$ as $z \to \partial D$. By the reproducing property of K_z , one can see that

$$(S^*K_w)(z) = \langle S^*K_w, K_z \rangle = \overline{\langle SK_z, K_w \rangle} = \overline{\langle SK_z)(w)}.$$

So for $f \in A^1(\psi)$,

$$(Sf)(w) = \langle Sf, K_w \rangle = \langle f, S^*K_w \rangle = \int_D f(z)\overline{(S^*K_w)(z)}(1-|z|^2)^{\alpha} dA(z)$$
$$= \int_D f(z)(SK_z)(w)\varphi(|z|) dA_{\psi}(z).$$

For 0 < t < 1, define a compact supporting continuous function η_t on D by

$$\eta_t(z) = \begin{cases} 1, & |z| \le t, \\ \frac{1+t}{1-t} - \frac{2|z|}{1-t}, & t < |z| \le (1+t)/2, \\ 0, & (1+t)/2 < |z| < 1. \end{cases}$$

280

For any 0 < r, t < 1, define the integral operators $S_{[r]}$ on $A^1(\psi)$ and $S_{[r,t]}$ from $A^1(\psi)$ to $L^1(\psi)$ as follows:

$$S_{[r]}f(w) = \int_{D} f(z)(SK_z)(w)\eta_r(z)\varphi(|z|) dA_{\psi}(z),$$

$$S_{[r,t]}f(w) = \int_{D} f(z)(SK_z)(w)\eta_r(z)\eta_t(w)\varphi(|z|) dA_{\psi}(z).$$

Using Lemma 2, we have

$$\begin{aligned} \|(S - S_{[r]})f\|_{\psi} &\leq \int_{D} |f(z)| \, dA_{\psi}(z) \int_{D} |(SK_z)(w)|\varphi(|z|)(1 - \eta_r(z)) \, dA_{\psi}(w) \\ &\leq C \|f\|_{\psi} \sup_{z \in D} (1 - \eta_r(z)) \|Sk_z\|_{\psi}. \end{aligned}$$

Since $||Sk_z||_{\psi} \to 0$ as $z \to \partial D$, we have $\sup_{z \in D} (1 - \eta_r(z)) ||Sk_z||_{\psi} \to 0$ as $r \to 1^-$. Thus

(4)
$$||S - S_{[r]}|| \to 0 \quad \text{as } r \to 1^-.$$

Seeing $S_{[r]}$ as an operator from $A^1(\psi)$ to $L^1(\psi)$, if we prove that it is compact, then it is also compact as an operator on $A^1(\psi)$. Similar to the above, we have

(5)
$$||S_{[r]} - S_{[r,t]}|| \le C \sup_{z \in \frac{1+r}{2}D} \int_{D} |(Sk_z)(w)| (1 - \eta_t(w)) \, dA_{\psi}(w).$$

We will prove that

$$\sup_{z \in \frac{1+r}{2}D} \int_{D} |(Sk_z)(w)| (1 - \eta_t(w)) \, dA_{\psi}(w) \to 0$$

as $t \to 1^-$ for fixed r < 1.

Let $g_t(z) = \int_D |(Sk_z)(w)|(1 - \eta_t(w)) dA_{\psi}(w)$. Firstly we will show that $\{g_t : 0 < t < 1\}$ is equicontinuous and uniformly bounded on $\overline{\frac{1+r}{2}D}$.

Since the Taylor expansion of K_z is $K_z(w) = \sum_{m=0}^{\infty} \beta_m(w\overline{z})^m$, where $\beta_m = (\alpha + 1) \cdots (\alpha + m + 1)/m!$, for any $z_1, z_2 \in \frac{1+r}{2}D$ we have

$$|K_{z_1}(w) - K_{z_2}(w)| = \left| \sum_{m=0}^{\infty} \beta_m (w\overline{z}_1)^m - \sum_{m=0}^{\infty} \beta_m (w\overline{z}_2)^m \right|$$

$$\leq \sum_{m=1}^{\infty} \beta_m |w|^m |\overline{z}_1^m - \overline{z}_2^m| \leq |z_1 - z_2| \sum_{m=1}^{\infty} \beta_m m r^{m-1}.$$

The last series above is the derivative of the series $\sum_{m=0}^{\infty} \beta_m r^m$ for $\frac{1+\alpha}{(1-r)^{2+\alpha}}$ hence convergent in |r| < 1. So for any $\varepsilon > 0$, there exists a constant $\delta_1 > 0$ such that $|K_{z_1}(w) - K_{z_2}(w)| \le \varepsilon$ for any $z_1, z_2 \in \frac{\overline{1+r}}{2}D$ with $|z_1 - z_2| < \delta_1$, and so $||K_z||_{\psi}$ is uniformly continuous on $\frac{\overline{1+r}}{2}D$. Then for any $\varepsilon > 0$, there exist $\delta_2 > 0$ such that $|k_{z_1}(w) - k_{z_2}(w)| < \varepsilon$ for $z_1, z_2 \in \overline{\frac{1+r}{2}D}$ with $|z_1 - z_2| < \delta_2$, whence

$$\begin{aligned} |g_t(z_1) - g_t(z_2)| &\leq \int_D |Sk_{z_1}(w) - Sk_{z_2}(w)| (1 - \eta_t(w)) \, dA_{\psi}(w) \\ &\leq ||S|| \int_D |k_{z_1}(w) - k_{z_2}(w)| \, dA_{\psi}(w) \leq \varepsilon ||S|| \, ||1||_{\psi}. \end{aligned}$$

Since ε is arbitrary, $\{g_t : 0 < t < 1\}$ is equicontinuous. It is obvious that $\{g_t : 0 < t < 1\}$ is uniformly bounded.

For $z \in \overline{\frac{1+r}{2}D}$, Lebesgue's dominated convergence theorem implies that $g_t(z) \to 0$ as $t \to 1^-$. It follows from Ascoli's theorem that $\{g_t : 0 < t < 1\}$ is relatively compact in $C(\overline{\frac{1+r}{2}D})$, the Banach space of continuous functions on $\overline{\frac{1+r}{2}D}$, so has a unique accumulation point, 0. Therefore $g_t \to 0$ as $t \to 1^-$. So (5) implies that

(6)
$$||S_{[r]} - S_{[r,t]}|| \to 0 \text{ as } t \to 1^-.$$

Since the kernel of $S_{[r,t]}$ is a compact supporting continuous function on $D \times D$, it can be approximated uniformly by polynomials in $z, \overline{z}, w, \overline{w}$ on $D \times D$. Because a polynomial kernel induces a finite rank integral operator, $S_{[r,t]}$ is a compact operator (cf. [3]). Thus (6) implies that $S_{[r]}$ is compact, and (4) implies that S is compact.

Finally, we show that $A_0(\varphi)$ is invariant under S^* . Suppose that $g \in A_0(\varphi)$ and $S^*g \in A_\infty(\varphi) \setminus A_0(\varphi)$. By the definitions of $A_0(\varphi)$ and $A_\infty(\varphi)$, there exist some positive constant ε and a sequence $\{z_n\}$ in D such that $z_n \to \partial D$ as $n \to \infty$ and $|(S^*g)(z_n)|\varphi(|z_n|) > \varepsilon$. Thus using Lemma 2 and the reproducing property of K_z , we have

$$|\langle Sk_{z_n}, g \rangle| = |\langle k_{z_n}, S^*g \rangle| = \frac{|(S^*g)(z_n)|}{\|K_{z_n}\|_{\psi}} \ge \frac{1}{C} |(S^*g)(z_n)|\varphi(|z_n|) > \frac{\varepsilon}{C}.$$

This contradicts the hypothesis $||Sk_z||_{\psi} \to 0$ as $z \to \partial D$, and completes the proof of Theorem 1.

In the last argument of the proof of Theorem 1, $g \in A_{\infty}(\varphi)$ is only needed. So the following result holds.

COROLLARY. If S is a compact operator on $A^1(\psi)$ and $S^*A_0(\varphi) \subset A_0(\varphi)$, then $S^*A_{\infty}(\varphi) \subset A_0(\varphi)$.

REMARK. If S is a compact operator on $L^2_a(D)$, then $||Sk_z|| \to 0$ as $z \to \partial D$. Examples in [1] and [4] show that the converse does not hold. However, in $A^1(\psi)$, $||Sk_z|| \to 0$ as $z \to \partial D$ is a sufficient condition for the compactness of S. Moreover, the following example shows that $A_0(\varphi)$ being an invariant subspace of S^* in Theorem 1 is necessary. EXAMPLE. Suppose that $f \in A_{\infty}(\varphi) \setminus A_0(\varphi)$. By the definitions of $A_{\infty}(\varphi)$ and $A_0(\varphi)$, there exists a sequence $\{z_n\}$ in D such that $z_n \to \partial D$ and $|f(z_n)|\varphi(|z_n|) \nrightarrow 0$.

Suppose that $0 \neq g \in A^1(\psi)$. Then there exists $h \in A_{\infty}(\varphi)$ such that $\langle g, h \rangle \neq 0$. Let $S = g \otimes f$. Then S is a compact operator on $A^1(\psi)$. However,

$$\begin{aligned} |\langle Sk_z, h \rangle| &= |\langle k_z, (g \otimes f)^* h \rangle| = |\langle k_z, (f \otimes g^{**})h \rangle| \\ &= |\langle k_z, f \rangle \langle g, h \rangle| = |\langle g, h \rangle| \frac{|f(z_n)|}{\|K_{z_n}\|_{\psi}} \\ &\geq C|\langle g, h \rangle| |f(z_n)|\varphi(|z_n|) \nrightarrow 0, \end{aligned}$$

where the inequality comes from Lemma 2, and g^{**} denotes the image of g in the double dual space of $A^1(\psi)$. So we have $\|Sk_{z_n}\|_{\psi} \neq 0$.

For $u \in L^{\infty}(D)$, define the Toeplitz operator T_u by $T_u(f) = Q(uf)$, where $f \in A^1(\psi)$. Let $\mathcal{T}(L^{\infty})$ denote the closed subalgebra of $B(A^1(\psi))$ generated by $\{T_u : u \in L^{\infty}(D)\}$.

THEOREM 2. Suppose that $S \in \mathcal{T}(L^{\infty})$. Then S is compact if and only if $||Sk_z||_{\psi} \to 0$ as $z \to \partial D$.

Proof. By Theorem 1, it is sufficient to prove that $A_0(\varphi)$ is invariant under S^* when $S \in \mathcal{T}(L^{\infty})$. By the definition of $\mathcal{T}(L^{\infty})$, it is sufficient to prove that $A_0(\varphi)$ is invariant under T_u^* for any $u \in L^{\infty}(D)$. Let $g \in A_0(\varphi)$. Then

$$(T_u^*g)(z) = \overline{\langle K_z, T_u^*g \rangle} = \overline{\langle T_u K_z, g \rangle} = \overline{\langle u K_z, g \rangle}.$$

Hence

(7)
$$|(T_u^*g)(z)\varphi(|z|)| \leq \int_D |u(w)K_z(w)g(w)|(1-|w|^2)^{\alpha}\varphi(|z|) dA(w)$$

$$\leq ||u||_{\infty} \int_D \varphi(|z|)|K_z(w)g(w)|\varphi(|w|) dA_{\psi}(w)$$

$$= ||u||_{\infty} \Big(\int_{rD} \varphi(|z|)|K_z(w)g(w)|\varphi(|w|) dA_{\psi}(w)$$

$$+ \int_{D\setminus rD} \varphi(|z|)|K_z(w)g(w)|\varphi(|w|) dA_{\psi}(w) \Big),$$

where 0 < r < 1. Since $g \in A_0(\varphi)$, for any $\varepsilon > 0$, there exists r such that $|g(w)|\varphi(|w|) \leq \varepsilon$ for $w \in D \setminus rD$. Then it follows from Lemma 2 that the second integral on the right hand side of (7) is $\leq \varepsilon \int_{D \setminus rD} \varphi(|z|) |K_z(w)| dA_{\psi}(w) \leq C\varepsilon$ for fixed r. Since $g \in A_0(\varphi)$, there exists a constant M such that $\sup_{w \in D} |g(w)|\varphi(|w|) \leq M$. Since $\varphi(|z|)|K_z(w)|$ converges uniformly to 0 on rD as $z \to \partial D$, the first integral on the right hand side of (7) converges to 0

as $z \to \partial D$. So we have

$$\limsup_{z \to \partial D} |(T_u^*g)(z)|\varphi(|z|) \le ||u||_{\infty} C\varepsilon.$$

Since ε is arbitrary, $|(T_u^*g)(z)|\varphi(|z|) \to 0$ as $z \to \partial D$. Thus $T^*g \in A_0(\varphi)$.

Acknowledgements. The author is grateful to the referee for several comments that improved the paper, in particular indicated the Corollary of Theorem 1.

References

- S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), 387–400.
- M. Engliš, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Equations Operator Theory 33 (1999), 426–455.
- [3] P. R. Halmos and V. S. Sunder, Bounded Integral Operators on L²-spaces, Springer, Berlin, 1978.
- [4] J. Miao and D. Zheng, Compact operators on the Bergman space, Integral Equations Operator Theory 48 (2004), 61–79.
- [5] R. Raimondo, Compact operators on the Bergman space of multiply-connected domains, Proc. Amer. Math. Soc. 129 (2000), 739–747.
- [6] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–303.
- [7] T. Yu and S. L. Sun, Berezin transform and Toeplitz operators on $A^p(\varphi)$, Acta Anal. Funct. Appl. 2 (2000), no. 1, 73–84 (in Chinese).
- [8] K. H. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.

Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang 321004 P.R. China E-mail: yufuzhou@zjnu.cn

> Received October 28, 2005 Revised version April 28, 2006

(5804)

284