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Compact operators on the weighted Bergman space A'(1)
by

TAO YU (Jinhua)

Abstract. We show that a bounded linear operator S on the weighted Bergman space
A'(v) is compact and the predual space Ao(p) of A'(z)) is invariant under S* if and only
if Sk, — 0 as z — 9D, where k. is the normalized reproducing kernel of A'(y)). As an
application, we give conditions for an operator in the Toeplitz algebra to be compact.

1. Introduction. Let ¢ be a positive continuous function on [0,1). We
say that ¢ is normal if there exist 0 < a < b and rg < 1 such that

r r
(1) %\0 and %/oo (ro<r—17).
The functions {p, 1} will be called a normal pair if ¢ is normal and if, for
some b satisfying (1), there exists a > b— 1 such that (7)) (r) = (1 —r2)%.
Let dA denote the normalized Lebesgue measure on the open unit disk D
in the complex plane, and dA, the measure on D defined by dAy,(z) =
¥(|2]) dA(z). The condition o > b — 1 ensures that the measure dA, on D
is finite.

Let L'(3) denote the Banach space of measurable functions f with norm
[ flly = §p | f] dAy < co. Let Al (1)) denote the closed subspace of L' (1) con-
sisting of all analytic functions, which will be called the weighted Bergman
space. In the case that ¢(r) = (1 — r)¢ for some constant ¢ > 0, and that
a = c, A () is the Bergman space L1(D).

Let Loo(p) denote the Banach space consisting of all measurable func-
tions such that f(z)p(|z]) is essentially bounded on D with norm || f|, =
esssup,cp | f(2)|e(|z]). Let As(p) denote the closed subspace of Lo (i)
consisting of all analytic functions, and
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Ao(p) == {f € Aco(p) = lim sup f(2)ep(|2]) = 0},

r—1- |z|=r

a closed subspace of A ().
Throughout this paper we shall use the following pairing between A! (1))
and A (¢):

(2) (fr9) = § F(2)9(z)(1 = [21*)* dA(2).
D
For z,w € D, let
14+«
K. (w) = A —zwp2ra
and define an operator @ on L!(v)) by
(Q/)() = | f)K(w)(1 - |w]*)* dA(w).
D

Then @ is a bounded projection from L!(v)) onto Al(¢)) and K, (w) is the
reproducing kernel of Al(3), that is, f(z) = (f, K,) for any f € Al(¢).
Since K is in A'(v)) for any z € D, the reproducing property f(z) = (f, K.)
also holds for f € Ax(p) (see [6] for the details). The function k,(w) :=
K.(w)/|| K|y will be called the normalized reproducing kernel of A*(1)).

In the Bergman space L2(D) setting, Axler and Zheng [1] proved that an
operator S which is a finite sum of finite products of Toeplitz operators, is
compact if and only if ||Sk.|| — 0 as |z| — 1~. This result also holds for the
spaces LA(D) (1 < p < o0) (see [7]), A2(£2) with £2 a regular bounded sym-
metric domain in C™ (see [2]), and H?(2,dv) with £ a smoothly bounded
multiply connected domain in the complex plane (see [5]). Recently Miao
and Zheng [4] proved that for a bounded operator S on LE(D) (1 < p < o0)
such that both sup,cp ||S:1|m and sup,cp |[S51||,, are finite, S is a com-
pact operator on LA(D) if and only if the Berezin transform of S tends to 0
at dD.

In this note, we will obtain a similar result for A'(¢)). More precisely, we
show that a bounded linear operator S on Al(¢) is compact and Ag(y) is
an invariant subspace of S* if and only if ||Sk.||, — 0 as z — 0D.

2. Preliminaries. The following result can be found in [6].
LEMMA 1. AY(¢)* = A (@) and Ag(p)* = AL ().
We also need some results about the reproducing kernel of Al(1)).
LEMMA 2. There exist constants ¢ and C such that

c/e(l2]) < 1 K:[ly < C/e(l2])-

Proof. The second inequality can be derived from Lemmas 5 and 8 in [6].
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Now we prove the first inequality. If | z| < rg, the first inequality obviously
holds. If |z| > rg, using (1) and @(r)y(r) = (1 — r?)®, we have

(1= fw)? _ (1]

when 1 > |w| > |z],

D Y(|2])
_ w2 thb — z2 a— b
S S ey Sl <B

Hence

a1 = § TR dadw
D

(1+a)y(lz) (1—Jw*)?
> -~ 7 S ol B,
— (1 _ |Z|2)O‘_b S ’1 _ Ew|2+0‘ dA(w)
ro<|w|<|z|
(1= Jwp)*
+ 11— zw2ta(l — |2]2)b—e dA(w) ).
|z|<|w|<1
Note that
1 1 1

= >
(1 =]z (4[N = [2]))7e ~ (21 = Zw]|)>~e
and similarly
1 1
>
(1= Jwl?)P=e = (21 = Zw|)>~¢

So there exists a positive constant ¢; such that

c z 1 — |w|?)e—e
||Kz||¢ > %T <X|w| ’1<_ E/(L‘Ql-l-)a—&-b—a
__av(z) (S o ) (1= |wf)oe

(1 _ ‘z‘2)a—b D ‘1 _ zw‘2+a+b—a
w|<rg

dA(w)

dA(w)

= % (I(2) — Io(2)).

Now by Lemma 4.2.2 of [8], I1(2) ~ (1 — |2|*)7® as 2 — OD; and I is
bounded. Thus it is easy to see that there exists ¢ > 0 so that

(|2
I 2 o 2 = e/,
The proof is now complete. m

LEMMA 3. The normalized reproducing kernel k, converges weakly® to 0
in A1) as z — OD.
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Proof. For g € Ap(p), by the reproducing property of K,, we have
_(K.9) _ 9(2)
729 PP P

Now it follows from the definition of Ag(¢) and Lemma 2 that (k.,g) — 0
asz — 0D. u

(kz,g)

3. Compactness

THEOREM 1. Suppose that S is a bounded linear operator on Al(w)).

Then S is compact and Ag(p) is an invariant subspace of S* if and only if
||Skz||y — 0 as z — OD.

Proof. Necessity. Suppose that S is a compact operator and Ag(p) is
an invariant subspace of S*. If ||Sk.|l, - 0 as z — 0D, then there exist a
constant § > 0 and a sequence {z,} in D such that

(3) zp — 0D and ||Sk., |y > 0.

Since {k.,} is a bounded sequence in A'(¢)) and S is compact, there exists
a subsequence of {k, }, also denoted by {k., }, such that {Sk,, } converges
in Al(z). By Lemma 3, z, — 0D implies that k., “%, 0. Since Ap(yp) is an

invariant subspace of S*, we have, for any g € Ao(¢p),

<Skzmg> = <an7S*g> — 0.

Thus Sk, “7, 0. Since {Sk., } converges in Al(v), it must converge to its
weak*-limit, that is, 0. This contradicts (3).

Sufficiency. Suppose that [|Sk;|l, — 0 as z — 0D. By the reproducing
property of K., one can see that

(S*Ky)(z) = (S"Ky, K,) = (SK,, Ky) = (SK.)(w).
So for f € Al(v),

(SH)(w) = (Sf, Kuw) = (f, 5" Ku) = | f(2)(S*Ku)(2)(1 - |2[*)* dA(2)
D

= | L) (SEL) (w)p(|2]) dAy(=).
D

For 0 < t < 1, define a compact supporting continuous function 7; on D by
1, 2 <t,

1+t 2z

— = 2 t<|z| <(1+1)/2,

1—t 1-—1t
0, (1+1t)/2 < |7 < 1.

n(z) =
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For any 0 < r,t < 1, define the integral operators S|,) on Al(¢) and Sir)
from A'(v) to L'(v)) as follows:

S f(w) = ) f(2)(SKz)(w)ne(2)e(|2]) dAy(2),

Straf(w) = ) F(2)(SEKZ) (w)ne(2)n: (w)(|2]) dAp(2).

Oe— Je—

Using Lemma 2, we have

1S = Sp)flle < Y 1F ()l dAy(2) | I(SKL) ()l (=)L = 10 (2)) dAy (w)
D D

<Cllflly sup (1 =71 ()1 Sk= -

Since ||Sk.|ly — 0 as z — 0D, we have sup,cp(1 — n,(2))[|Sk.||y — 0 as
r — 17. Thus

(4) 1S =Sull —0 asr—1".

Seeing Sy, as an operator from A'(v) to L'(1), if we prove that it is com-
pact, then it is also compact as an operator on A!(¢)). Similar to the above,
we have

(5) 190 = Spragll < € sup § [(Sk2)(w)[(1 = e (w)) dAy (w).

ZG%D D
We will prove that

sup | [(Sk2)(w)[(1 — m(w)) dAy(w) — 0
zelftp D
2
as t — 17 for fixed r < 1.
Let g¢(z) = {, |(SE.)(w)[(1 — n¢(w)) dAy(w). Firstly we will show that
{9+ : 0 <t < 1} is equicontinuous and uniformly bounded on %D.
Since the Taylor expansion of K, is K,(w) = Y °_ Bm(wZz)™, where

Bm = (a+1)-- (a+m+1)/ml, for any 21,2 € 3D we have

[y () = Ko ()] = | 3 Bu(wz)™ = > Bn(wz)"|
m=0 m=0

o0 oo
< Bulw|™[F = Z| < |z — 22| Y ™
m=1 m=1
The last series above is the derivative of the series >~ Bpr™ for Oij‘%
hence convergent in |r| < 1. So for any € > 0, there exists a constant d; > 0
such that | K., (w)— K., (w)| < e for any 21, 20 € 1D with |21—25| < 61, and

so || K|l is uniformly continuous on %D. Then for any € > 0, there exist
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d2 > 0 such that |k, (w) — k, (w)| < e for 21,29 € %D with |z1 — 22| < 09,
whence
19:(21) = ge(22)| < | [Skzy (w) = Sk (w)[ (1 = 7 (w)) dAy(w)
D
SIS Ezy (w) = kezy (w)] d Ay (w) < ]| S 11y
D

Since ¢ is arbitrary, {g: : 0 < ¢t < 1} is equicontinuous. It is obvious that
{g¢ : 0 <t < 1} is uniformly bounded.

For z € %D, Lebesgue’s dominated convergence theorem implies that
g1(z) — 0ast — 17. It follows from Ascoli’s theorem that {g; : 0 < ¢t < 1} is

relatively compact in C' (%D), the Banach space of continuous functions on

%D, so has a unique accumulation point, 0. Therefore g; — 0 ast — 17.
So (5) implies that

(6) 150 = Syl =0 ast—17.

Since the kernel of S|, ; is a compact supporting continuous function on
D x D, it can be approximated uniformly by polynomials in z,Z,w,w on
D x D. Because a polynomial kernel induces a finite rank integral operator,
Spy4 is a compact operator (cf. [3]). Thus (6) implies that S},j is compact,
and (4) implies that S is compact.

Finally, we show that Ag(y¢) is invariant under S*. Suppose that g €
Ap(p) and S*g € Axo(¢) \ Ao(p). By the definitions of Ap(p) and A (),
there exist some positive constant € and a sequence {z,} in D such that
zn, — 0D as n — oo and |(S*g)(2zn)|¢(|zn|) > €. Thus using Lemma 2 and
the reproducing property of K, we have

. (5*g)(zn)| _ 1 £
Skzn7g - kzn75 9\ = 7 Z_ -
I =1 )| Koo = C 8

This contradicts the hypothesis ||Sk. ||, — 0 as 2 — 0D, and completes the
proof of Theorem 1. m

(579) (zn)l(|2nl) >

In the last argument of the proof of Theorem 1, g € A (p) is only
needed. So the following result holds.

COROLLARY. If S is a compact operator on A'(y) and S*Ay(p) C
Ap(p), then S*Axo (@) C Ao(p).

REMARK. If S is a compact operator on L2(D), then ||Sk.|| — 0 as
z — 0D. Examples in [1] and [4] show that the converse does not hold.
However, in A(¢), ||Sk.|| — 0 as z — 0D is a sufficient condition for the
compactness of S. Moreover, the following example shows that Ay(¢) being
an invariant subspace of S* in Theorem 1 is necessary.
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EXAMPLE. Suppose that f € Ax(¢) \ Ao(p). By the definitions of
Aso(p) and Ap(yp), there exists a sequence {z,} in D such that z, — 0D
and [f(zn)|@(|zn]) - 0.

Suppose that 0 # g € A'(z)). Then there exists h € Ay () such that
{(g,h) # 0. Let S = g® f. Then S is a compact operator on A!(v)). However,

[(Skz, B)| = |(kz, (9 @ £)*h)| = (K=, (f @ g™)h)|
- _ £ ()
> Cg, M1 (zn)le([2n]) =+ 0,

where the inequality comes from Lemma 2, and g** denotes the image of g
in the double dual space of A'(). So we have ||Sk, ||, - 0.

For uw € L*°(D), define the Toeplitz operator T, by T,(f) = Q(uf),
where f € A'(¢). Let T(L™) denote the closed subalgebra of B(A'(z)))
generated by {T), : u € L>=(D)}.

THEOREM 2. Suppose that S € T(L*>°). Then S is compact if and only
if ||Sk:|ly — 0 as z — OD.

Proof. By Theorem 1, it is sufficient to prove that Ap(y) is invariant
under S* when S € 7(L*). By the definition of 7 (L), it is sufficient to
prove that Ag(p) is invariant under 7' for any u € L>°(D). Let g € Ao(yp).
Then

(T9)(2) = (K-, Tig) = (TuK-, 9) = (uK>, g).

Hence
(1) [(Trg)(2)e(2)] < | Ju(w) K (w)g(w)] (1= [w]*)*p(|2]) dA(w)
D
< Julloo § o(I2D)| K= (w)g(w)|p(|w]) dAy (w)
D
= HUHOO(S e(|2)) [ Kz (w)g(w)]e(jw]) dAy(w)
rD

+ | eUEDIE-()g(w)l(w]) dAy(w) ),
D\rD

where 0 < r < 1. Since g € Ay(yp), for any € > 0, there exists r such that
lg(w)|p(Jw|) < e for w € D\rD. Then it follows from Lemma 2 that the sec-
ond integral on the right hand side of (7) is < & SD\TD o(|2))| K2 (w)| dAy(w)
< Ce for fixed r. Since g € Ao(yp), there exists a constant M such that
sup,ep |g(w)|p(lw]) < M. Since ¢(|z])|K.(w)| converges uniformly to 0 on
rD as z — 0D, the first integral on the right hand side of (7) converges to 0
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as z — 0D. So we have
limsup [(T7;9)(2)]e(]2]) < [lullcCe.
z—0D

Since ¢ is arbitrary, |(T;g)(2)|¢(|z]) — 0 as z — 0D. Thus T%g € Ap(yp). =
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