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Weak amenability of the second dual of a Banach algebra

by

M. Eshaghi Gordji (Semnan) and M. Filali (Oulu)

Abstract. It is known that a Banach algebra A inherits amenability from its second
Banach dual A∗∗. No example is yet known whether this fails if one considers the weak
amenability instead, but the property is known to hold for the group algebra L

1(G), the
Fourier algebra A(G) when G is amenable, the Banach algebras A which are left ideals
in A∗∗, the dual Banach algebras, and the Banach algebras A which are Arens regular
and have every derivation from A into A∗ weakly compact. In this paper, we extend this
class of algebras to the Banach algebras for which the second adjoint of each derivation
D : A → A∗ satisfies D

′′(A∗∗) ⊆ WAP(A), the Banach algebras A which are right ideals
in A∗∗ and satisfy A∗∗A = A∗∗, and to the Figà-Talamanca–Herz algebra Ap(G) for G

amenable. We also provide a short proof of the interesting recent criterion on when the
second adjoint of a derivation is again a derivation.

1. Introduction. Amenable Banach algebras were introduced by John-
son in [23]. A derivation from a Banach algebra A to a Banach A-bimodule
X is a bounded linear mapping D : A → X such that

D(ab) = aD(b) + D(a)b for all a, b ∈ A.

Easy examples of derivations are the inner derivations, which are given for
each x ∈ X by

Dx(a) = ax − xa for all a ∈ A.

The Banach algebra A is said to be amenable when for every Banach
A-bimodule X, the inner derivations are the only derivations existing from
A to X∗ (note that X∗ is also a Banach A-bimodule).

A Banach algebra A is weakly amenable if every derivation from A into
A∗ is inner ([3] and [24]).

It is clear that an amenable algebra is weakly amenable, but the converse
is not true as can be checked with the algebra ℓp (1 ≤ p < ∞) with pointwise
multiplication. This algebra is weakly amenable but not amenable since it
does not have a bounded approximate identity ([24]). Another less trivial but
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much more interesting example is the group algebra L1(G). It is amenable
if and only if G amenable ([23]), but it is always weakly amenable ([25]
or [10]).

Consider now the second dual A∗∗ of our Banach algebra A. Then A∗∗ is
also a Banach algebra with an Arens product, and so one may consider the
question of how the amenability and weak amenability of A∗∗ and A relate.
It is known that neither the amenability of A implies that of A∗∗, nor the
weak amenability of A implies that of A∗∗; for example L1(R) is amenable
(and hence weakly amenable) but its second dual is not weakly amenable
(and so not amenable); see [19] or the end of this paper. The amenability of
A∗∗, however, implies the amenability of A (see [20] or [19]). The unavoidable
question is therefore whether weak amenability passes from A∗∗ to A. This
problem was considered by a few authors and a positive answer has been
given in each of the following cases:

• A is a left ideal in A∗∗, [19].
• A is a dual Banach algebra, [17].
• A is Arens regular and every derivation from A into A∗ is weakly

compact, [8].

In this paper, we go on being positive and show that the implication
holds in the following instances:

• The second adjoint of each derivation D : A → A∗ satisfies D′′(A∗∗) ⊆
WAP(A); this includes, in particular, the result proved in [8, Corol-
lary 7.5] stated above.

• A is a right ideal in A∗∗ and A∗∗A = A∗∗.

The result in [8, Corollary 7.5] is proved using the main theorem [8,
Theorem 7.1] of that paper which gives a criterion on when the second
conjugate of D is a derivation. A by-product of our arguments is a very
short and straightforward proof of that theorem. Another by-product is
that if the topological centre of A∗∗ is weakly amenable and each derivation
D : A → A∗ is weakly compact, then A is weakly amenable. That the
amenability of the topological centre of A∗∗ implies that of A without any
extra condition is proved in [17].

At the end of the paper we consider the Figà-Talamanca–Herz algebra
Ap(G) (1 < p < ∞) and prove in particular that the weak amenability of
Ap(G)∗∗ implies that of Ap(G) when G is amenable. This was proved in [28,
Proposition 6.3] for the Fourier algebra A(G), i.e., when p = 2.

The first Arens product on A∗∗ is defined in three stages as follows
(see [2]). For every a′′, b′′ ∈ A∗∗, a′ ∈ A∗ and a ∈ A, we define a′a ∈ A∗,
b′′a′ ∈ A∗ and a′′b′′ ∈ A∗∗, respectively, by
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〈a′a, b〉 = 〈a′, ab〉, b ∈ A,

〈a′′a′, a〉 = 〈a′′, a′a〉, a ∈ A,

〈a′′b′′, a′〉 = 〈a′′, b′′a′〉, a′ ∈ A∗.

When A∗∗ is given the weak∗-topology, we see that the mapping

a′′ 7→ a′′b′′ : A∗∗ → A∗∗

is continuous for each fixed b′′ ∈ A∗∗. It is not difficult to verify that the
mapping

b′′ 7→ ab′′ : A∗∗ → A∗∗

is also continuous for each fixed a ∈ A ⊆ A∗∗. But, in general, this mapping
is not continuous. The topological centre of A∗∗ is defined by

Z(A∗∗) = {a′′ ∈ A∗∗ : the map b′′ 7→ a′′b′′ : A∗∗ → A∗∗

is weak∗-weak∗-continuous}.

As already noted, A is a subalgebra of Z(A∗∗). The algebra A is said to be
Arens regular when Z(A∗∗) = A∗∗. We may recall that any C∗-algebra is
Arens regular, and that the group algebra L1(G) of a locally compact group
G is strongly Arens irregular, i.e., Z(L1(G)∗∗) = L1(G) (see [27], or [29] and
[14] for different proofs). For more details, the reader is directed for example
to [15], [5] or [7].

As already done and throughout the rest of the paper, we shall identify
every Banach space with its canonical image in its second dual.

2. Weak amenability of the second dual. Let A be a Banach algebra
such that A∗∗ is weakly amenable. If D : A → A∗ is a derivation, then we
wish to extend D to a (bounded) derivation from A∗∗ to A∗∗∗. The natural
extension of D as a bounded linear map is the second conjugate D′′ of D.
But in general, nothing guarantees that D′′ is a derivation, i.e.,

D′′(a′′b′′) = a′′D(b′′) + D(b′′)a′′,

where the module actions of A on A∗ are given by

〈a′a, b〉 = 〈a′, ab〉, 〈aa′, b〉 = 〈a′, ba〉, a′ ∈ A∗, a, b ∈ A,

and the module actions of A∗∗ on A∗∗∗ are given by

〈a′′a′′′, b′′〉 = 〈a′′′, b′′a′′〉,

〈a′′′a′′, b′′〉 = 〈a′′′, a′′b′′〉, a′′′ ∈ A∗∗∗, a′′, b′′ ∈ A∗∗.

To see this, let a′′, b′′ ∈ A∗∗ and take nets (aα) and (bβ) in A which converge,
respectively, to a′′ and b′′ in the weak∗-topology of A∗∗. Using the weak∗-
weak∗-continuity of D′′ , we obtain

D′′(a′′b′′) = lim
α

lim
β

D(aαbβ) = lim
α

lim
β

D(aα)bβ + lim
α

lim
β

aαD(bβ).
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The first limit term is easily computed since b′′ 7→ b′′c′′ : A∗∗ → A∗∗ is
weak∗-weak∗-continuous. For every c′′ ∈ A∗∗, we obtain

lim
α

lim
β

〈D(aα)bβ, c′′〉 = lim
α

lim
β

〈D(aα), bβc′′〉 = lim
α

lim
β

〈bβc′′, D(aα)〉(1)

= lim
α

〈b′′c′′, D(aα)〉 = lim
α

〈D(aα), b′′c′′〉

= 〈D′′(a′′), b′′c′′〉 = 〈D′′(a′′)b′′, c′′〉.

To compute the second limit, we can go as far as

(2) lim
α

lim
β

〈aαD(bβ), c′′〉 = lim
α

lim
β

〈D(bβ), c′′aα〉 = lim
α

〈D′′(b′′), c′′aα〉.

But this cannot be pushed any further due first to the fact that the mapping

a′′ 7→ c′′a′′ : A∗∗ → A∗∗

is not weak∗-weak∗-continuous for every c′′ ∈ A∗∗ unless A is Arens regular;
and secondly, even if A were Arens regular, D′′(a′′) is in A∗∗∗ and may very
likely be outside of A∗. Therefore additional conditions must be assumed if
we want D′′ to be a derivation. This is done in our first theorem. Recall that
a′ ∈ A∗ is weakly almost periodic if the set

{a′a : a ∈ A, ‖a‖ ≤ 1}

is relatively weakly compact. Let WAP(A) be the subspace of all weakly
almost periodic functionals in A∗. Recall also the known characterization of
WAP(A) ([30]),

WAP(A) = {a′ ∈ A∗ : a′′ 7→ 〈b′′a′′, a′〉 is continuous on A∗∗

for every b′′ ∈ A∗∗}.

Theorem 2.1. If A∗∗ is weakly amenable and if every derivation D :
A → A∗ satisfies D′′(A∗∗) ⊆ WAP(A), then A is also weakly amenable.

Proof. We continue the argument started in (2). Since D′′(b′′)∈WAP(A),
for each c′′ ∈ A∗∗ we have

lim
α

〈aαD′′(b′′), c′′〉 = lim
α

〈c′′aα, D′′(b′′)〉 = 〈c′′a′′, D′′(b′′)〉

= 〈a′′D′′(b′′), c′′〉.

Therefore

D′′(a′′b′′) = D′′(a′′)b′′ + a′′D′′(b′′),

and so D′′ is a derivation. Since A′′ is weakly amenable, D′′ is inner, and so

D′′(a′′) = a′′a′′′ − a′′′a′′ for some a′′′ ∈ A∗∗∗ and for all a′′ ∈ A∗∗.

In particular, D(a) = aa′′′ − a′′′a, and regarding D(a) in A∗, we obtain
D(a) = aa′ − a′a, where a′ = a′′′|A. Thus A is weakly amenable.

The following corollary was obtained in [8, Corollary 7.5].
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Corollary 2.1. Let A be Arens regular and suppose that every deriva-

tion from A into A∗ is weakly compact. If A∗∗ is weakly amenable, then so

is A.

Proof. Since A is Arens regular, WAP(A) = A∗. Let D : A → A∗ be a
derivation. Since D is weakly compact, D′′(A∗∗) ⊆ A∗ = WAP(A). So, by
Theorem 2.1, the weak amenability of A∗∗ implies that of A.

In [8], Corollary 2.1 was deduced from the main theorem of that paper
which provided a criterion for D′′ to be a derivation. Next we show that this
criterion may also be deduced with the same type of argument as above.
Putting (1) and (2) together, we obtain

〈D′′(a′′b′′), c′′〉 = 〈D′′(a′′)b′′, c′′〉 + lim
α

〈D′′(b′′), c′′aα〉

for every a′′, b′′, c′′ ∈ A∗∗ and whenever (aα) is a net in A weak∗-converging
to a′′ in A∗∗. It follows that D′′ is a derivation if and only if

lim
α

aαD′′(b′′) = a′′D′′(b′′).

This is true if and only if for every c′′ ∈ A∗∗,

lim
α

〈aαD′′(b′′), c′′〉 = 〈a′′D′′(b′′), c′′〉,

which in turn holds if and only if

lim
α

〈D′′(b′′)c′′, aα〉 = 〈D′′(b′′)c′′, a′′〉.

This means that D′′(b′′)c′′ : A∗∗ → C is weak∗-weak∗-continuous. Hence
D′′(b′′)c′′ ∈ A∗. Thus we obtain Theorem 7.1 of [8].

Theorem 2.2. Let A be a Banach algebra and let D : A → A∗ be a

derivation. Then D′′ is a derivation if and only if D′′(A∗∗)A∗∗ ⊆ A∗.

Theorem 2.3. Suppose that every derivation from A into A∗ is weakly

compact and let B be a closed subalgebra of A∗∗ containing A such that for

every b′′ ∈ B, a′′ 7→ b′′a′′ : B → B is weak∗-weak∗-continuous. If B is weakly

amenable, then A is weakly amenable.

Proof. Let D : A → A∗ be a derivation, and let R : A∗∗∗ → B∗ be the
restriction map, defined by

R(a′′′) = a′′′|B for every a′′′ ∈ A∗∗∗.

Then R is a B-module homomorphism. We show that D := R ◦D′′
|B : B →

B∗ is a derivation. Obviously, D is an extension of D. Let a′′, b′′ ∈ B, and as
before, pick nets (aα) and (bβ) in A converging, respectively, to a′′ and b′′ in
the weak∗-topology of A∗∗. Then for every c′′ ∈ B, we have limα c′′aα = c′′a′′,
and so

lim
α

〈aαD′′(b′′), c′′〉 = 〈c′′a′′, D′′(b′′)〉 = 〈a′′D′′(b′′), c′′〉.



210 M. Eshaghi Gordji and M. Filali

Therefore, with (1) in mind,

D(a′′b′′) = R(lim
α

lim
β

D(aαbβ)) = R(lim
α

lim
β

D(aα)bβ + lim
α

lim
β

aαD(bβ))

= R(D′′(a′′)b′′) + R(a′′D′′(b′′))

= (R ◦ D′′)(a′′)b′′ + a′′(R ◦ D′′)(b′′) = D(a′′)b′′ + a′′D(b′′).

Since B is weakly amenable, D = Db′ for some b′ ∈ B∗. As before, letting
a′ = b′|A, we see that D = Da′ . Thus, A is weakly amenable.

Corollary 2.2. If the topological centre Z(A∗∗) is weakly amenable,
then A is weakly amenable in each of the following cases.

(1) Every derivation from A into A∗ is weakly compact.

(2) A∗ is weakly sequentially complete.

Proof. It is well known that if A∗ is weakly sequentially complete, then
every derivation from A into A∗ is weakly compact (see for example [1]).
So (1) follows from Theorem 2.2 by letting B = Z(A∗∗), and (2) follows
from (1).

The following result may puzzle the unprepared reader since in [19] it
is proved that A is weakly amenable if A∗∗ is weakly amenable and A is
a left ideal in A∗∗. Passing from A to the Banach algebra with reversed
multiplication would thus yield Theorem 2.4 without even the additional
hypothesis that A∗∗A = A∗∗. Unfortunately (or fortunately), reversing the
multiplication in A leads to the second Arens product in A∗∗. So the right
ideal in A∗∗ becomes a left ideal in A∗∗ (as one wishes) but with A∗∗ now
having the second Arens product, and so [19] cannot be applied.

Theorem 2.4. Let A be a right ideal in A∗∗ and suppose A∗∗A = A∗∗.

If A∗∗ is weakly amenable, then A is weakly amenable.

Proof. Let D : A → A∗ be a derivation. To show that D′′ : A∗∗ → A∗∗∗

is a derivation, we apply Theorem 2.2 and verify that D′′(A∗∗)A∗∗ ⊆ A∗. For
this, we prove that every element in D′′(A∗∗)A∗∗ is in fact weak∗-continuous.
So let (c′′α)α be a net in A∗∗ with limα c′′α = c′′ in A∗∗, let a′′, b′′ ∈ A∗∗ and
write b′′ = d′′a with d′′ ∈ A∗∗ and a ∈ A. Then

〈D′′(a′′)b′′, c′′α〉 = 〈D′′(a′′)d′′a, c′′α〉 = 〈D′′(a′′)d′′, ac′′α〉.

Since a ∈ A ⊆ Z(A∗∗), we have limα acα = ac′′ in A∗∗ with respect to the
weak∗-topology. But since A is a right ideal in A∗∗, for every α, acα and ac′′

are members of A. So limα acα = ac′′ weakly in A.
Now the linear map D′′(a′′)d′′|A : A → C is norm-norm-continuous,

and so it is weak-weak-continuous (see for example [11, Theorem V.3.15]).
Therefore,

lim
α

〈D′′(a′′)d′′, ac′′α〉 = 〈D′′(a′′)d′′, ac′′〉 = 〈D′′(a′′)b′′, c′′〉.
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Therefore D′′(a′′)b′′ : A∗∗ → C is weak∗-continuous, and so D′′(a′′)b′′ ∈ A∗

and the proof is complete.

Remark. We can also prove Theorem 2.4 by applying Corollary 2.1.
In fact, the conditions imposed on A imply that A is Arens regular (see
[12, Theorem 4.3]). Furthermore, it is not difficult to check in this case that
every derivation D : A → A∗ satisfies D′′(A∗∗) ⊆ A∗.

As promised, we finish the exposition with the Figà-Talamanca–Herz al-
gebra. Recall first that when A = L1(G), A∗A is the space LUC(G) of all
bounded left uniformly continuous functions. By using the known decompo-
sitions L1(G)∗∗ = LUC(G)∗ ⊕ LUC(G)⊥ and LUC(G)∗ = M(G) ⊕ C0(G)⊥

(see [13] or [18]), the weak amenability passes from L1(G)∗∗ to LUC(G)∗

and then to M(G). This is done in [19, Theorem 2.1]. By [6], G is therefore
discrete and so L1(G) is weakly amenable.

If we consider A as the Fourier algebra A(G), we take B̺(G) which
is the dual of the reduced C∗-algebra C∗

̺(G). The latter is the closure of

L1(G) with respect to the norm in B(L2(G)) when L1(G) is regarded as
convolution operators on L2(G). Then we apply the decomposition theo-
rem proved in [26] to see that B̺(G) inherits the weak amenability from

UC(Ĝ)∗. As noted in the proof of [16, Proposition 3.6], this in turn implies
that A(G) is weakly amenable by [21, Proposition 2.2]. If G is amenable,
then A(G) has a bounded approximate identity and so the decomposition

A(G)∗∗ = UC(Ĝ)∗ ⊕ UC(Ĝ)⊥ together with the previous one enables the

weak amenability to be inherited successively from A(G)∗∗ to UC(Ĝ)∗, to
the Fourier–Stieltjes algebra B(G), and then to A(G). This is proved in [28,
Proposition 6.3].

We prove this result for Ap(G). Recall that Ap(G) is the space of all
complex-valued functions f on G which can be represented as

f =
∞∑

n=1

un ∗ ṽn,

where un ∈ Lp(G), vn ∈ Lq(G), 1/p + 1/q = 1, and
∑∞

n=1
‖un‖p‖vn‖q < ∞.

The norm of f is then defined by

‖f‖ = inf
{ ∞∑

n=1

‖un‖p‖vn‖q : f =
∞∑

n=1

un ∗ ṽn, un ∈ Lp(G), vn ∈ Lq(G)
}
,

making Ap(G) a commutative Banach algebra [22]. We consider L1(G) as an
algebra of convolution operators on Lp(G), and define PFp(G) and PMp(G)
as the closure of L1(G) in B(Lp(G)) with respect to the norm operator
topology and the weak operator topology, respectively. It is known that
PMp(G) = Ap(G)∗. We denote PFp(G)∗ by Wp(G). Then Ap(G) ⊆ Wp(G) ⊆
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M(Ap(G)), the latter is the multiplier algebra of Ap(G), and Wp(G) =
M(Ap(G)) when G is amenable (see [4]). When p = 2, Ap(G) = A(G),
PMp(G) is the von Neumann algebra VN(G), and PFp(G) is the reduced
C∗-algebra C∗

̺(G) of G.

Let UCp(Ĝ) be the norm closed linear span of Ap(G) PMp(G).

Theorem 2.5. Let G be a locally compact group.

(1) The weak amenability of UCp(Ĝ)∗ implies that of Wp(G).
(2) If G is amenable, then the weak amenability of Ap(G)∗∗ implies that

of UCp(Ĝ), Bp(G) and Ap(G)

Proof. To prove (1) we use the decomposition UCp(Ĝ)∗ = Wp(G) ⊕
Fp(G)⊥ proved in [9, Corollary 3.5], then apply [28, Lemma 2.3].

To prove (2), as for p = 2, when G is amenable, UCp(Ĝ)=Ap(G) PMp(G)
by the Cohen factorisation theorem. We use first the decomposition Ap(G)∗∗

= UCp(Ĝ)∗ ⊕ UCp(Ĝ)⊥ to deduce the weak amenability of UCp(Ĝ)∗. Then
as in (1), we deduce the weak amenability of Wp(G). Since Ap(G) has a

bounded approximate identity, we see that Ap(G)2 = Ap(G). It is clear
that Ap(G) is also an ideal in Wp(G). Consequently, Ap(G) is also weakly
amenable by [21, Proposition 2.2].
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