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The Hardy–Lorentz spaces H
p,q(Rn)

by

Wael Abu-Shammala and Alberto Torchinsky (Bloomington, IN)

Abstract. We deal with the Hardy–Lorentz spaces Hp,q(Rn) where 0 < p ≤ 1,
0 < q ≤ ∞. We discuss the atomic decomposition of the elements in these spaces, their
interpolation properties, and the behavior of singular integrals and other operators acting
on them.

The real variable theory of the Hardy spaces represents a fruitful set-
ting for the study of maximal functions and singular integral operators. In
fact, it is because of the failure of these operators to preserve L1 that the
Hardy space H1 assumes its prominent place in harmonic analysis. Now,
for many of these operators, the role of L1 can just as well be played by
H1,∞, or WeakH1. However, although these operators are amenable to
H1-L1 and H1,∞-L1,∞ estimates, interpolation between H1 and H1,∞ has
not been available. Similar considerations apply to Hp and WeakHp for
0 < p < 1.

The purpose of this paper is to provide an interpolation result for the
Hardy–Lorentz spaces Hp,q, 0 < p ≤ 1, 0 < q ≤ ∞, including the case of
WeakHp as an end point for real interpolation. Since in this context neither
truncations are available nor reiteration applies, the atomic decomposition
will be the key ingredient in dealing with interpolation.

The paper is organized as follows. The Lorentz spaces, including criteria
that ensure membership in Lp,q, 0 < p < ∞, 0 < q ≤ ∞, are discussed in
Section 1. In Section 2 we show that distributions in Hp,q have an atomic de-
composition in terms of Hp atoms with coefficients in an appropriate mixed
norm space. An interesting application of this decomposition is to Hp,q-Lp,∞

estimates for Calderón–Zygmund singular integral operators, p < q ≤ ∞.
Also, by manipulating the different levels of the atomic decomposition, we
show that, for 0 < q1 < q < q2 ≤ ∞, Hp,q is an intermediate space between
Hp,q1 and Hp,q2 . This result applies to Calderón–Zygmund singular integral
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operators, including those with variable kernels, Marcinkiewicz integrals,
and other operators.

1. The Lorentz spaces. The Lorentz space Lp,q(Rn)=Lp,q, 0<p<∞,
0 < q ≤ ∞, consists of those measurable functions f with finite quasinorm
‖f‖p,q given by

‖f‖p,q =

(

q

p

∞\
0

[t1/pf∗(t)]q
dt

t

)1/q

, 0 < q <∞, ‖f‖p,∞ = sup
t>0

[t1/pf∗(t)].

The Lorentz quasinorm may also be given in terms of the distribution func-
tion m(f, λ) = |{x ∈ R

n : |f(x)| > λ}|, loosely speaking, the inverse of the
non-increasing rearrangement f∗ of f . Indeed, we have

‖f‖p,q =

(

q

p

∞\
0

λq−1m(f, λ)q/p dλ

)1/q

∼
(

∑

k

[2km(f, 2k)1/p]q
)1/q

when 0 < q <∞, and

‖f‖p,∞ = sup
k

2km(f, 2k)1/p

Note that, in particular, Lp,p = Lp, and Lp,∞ is weak Lp.

The following two results are useful in verifying that a function is in Lp,q.

Lemma 1.1. Let 0 < p < ∞ and 0 < q ≤ ∞. Assume that the non-

negative sequence {µk} satisfies {2kµk} ∈ ℓq. Further suppose that the non-

negative function ϕ has the following property : there exists 0 < ε < 1 such

that , given an arbitrary integer k0, we have ϕ ≤ ψk0
+ ηk0

, where ψk0
is

essentially bounded and satisfies ‖ψk0
‖∞ ≤ c 2k0 , and

2k0εpm(ηk0
, 2k0) ≤ c

∞
∑

k=k0

[2kεµk]
p.

Then ϕ ∈ Lp,q, and ‖ϕ‖p,q ≤ c‖{2kµk}‖ℓq .

Proof. It clearly suffices to verify that ‖{2k|{ϕ > γ2k}|1/p}‖ℓq < ∞,
where γ is an arbitrary positive constant. Now, given k0, let ψk0

and ηk0
be

as above, and put γ = c+1, where c is the constant in the above inequalities;
for this choice of γ, {ϕ > γ2k0} ⊆ {ηk0

> 2k0}.

When q = ∞, we have

2k0εm(ηk0
, 2k0)1/p ≤ c

(

∞
∑

k0

[2−k(1−ε)2kµk]
p
)1/p

≤ c2−k0(1−ε) sup
k≥k0

[2kµk].

Thus, 2k0m(ηk0
, 2k0)1/p ≤ supk≥k0

[2kµk], and consequently,

2k0m(ϕ, γ2k0)1/p ≤ c‖{2kµk}‖ℓ∞ for all k0.
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When 0 < q < ∞, let 1 − ε = 2δ, and rewrite the right-hand side above
as

∞
∑

k0

1

2kδp
[2k(1−δ)µk]

p.

When p < q, by Hölder’s inequality with exponent r = q/p and its conju-
gate r′, this expression is dominated by

( ∞
∑

k0

1

2kδpr′

)1/r′
(

∞
∑

k0

[2k(1−δ)µk]
rp

)1/r
≤ c2−k0δp

(

∞
∑

k0

[2k(1−δ)µk]
q
)p/q

,

and when 0 < q ≤ p, r < 1, we get a similar bound by simply observing
that it does not exceed

2−k0δp
(

∞
∑

k0

[2k(1−δ)µk]
p
)r/r

≤ 2−k0δp
(

∞
∑

k0

[2k(1−δ)µk]
q
)p/q

.

Hence, continuing with the estimate, we have

2k0εpm(ηk0
, 2k0) ≤ c2−k0δp

(

∞
∑

k0

[2k(1−δ)µk]
q
)p/q

,

which yields, since 1 − ε = 2δ,

2k0m(ϕ, γ2k0)1/p ≤ c2k0δ
(

∞
∑

k0

[2k(1−δ)µk]
q
)1/q

.

Thus, raising to the power q and summing, we get

∑

k0

[2k0m(ϕ, γ2k0)1/p]q ≤ c
∑

k0

2k0δq
∞

∑

k=k0

[2k(1−δ)µk]
q,

which, upon changing the order of summation on the right-hand side of the
above inequality, is bounded by

∑

k

[2k(1−δ)µk]
q
[

k
∑

k0=−∞

2k0δq
]

≤ c
∑

k

[2kµk]
q.

The reader will have no difficulty in verifying that, for Lemma 1.1 to
hold, it suffices that ψx0

satisfies

m(ψx0
, 2k0)1/p ≤ cµk0

for all k0.

This holds, for instance, when ‖ψx0
‖r

r ≤ c2k0rµp
k0

, 0 < r < ∞. In fact, the
assumptions of Lemma 1.1 correspond to the limiting case of this inequality
as r → ∞.

Another useful condition is given by our next result; its proof is left to
the reader.
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Lemma 1.2. Let 0 < p < ∞, and let the non-negative sequence {µk} be

such that {2kµk} ∈ ℓq, 0 < q ≤ ∞. Further , suppose that the non-negative

function ϕ has the following property : there exists 0 < ε < min(1, q/p) such

that , given an arbitrary integer k0, we have ϕ ≤ ψk0
+ ηk0

, where ψk0
and

ηk0
satisfy

2k0pm(ψk0
, 2k0)ε ≤ c

k0
∑

−∞

[2kµε
k]

p, 2k0ε|{ηk0
> 2k0}| ≤ c

∞
∑

k0

[2kεµk]
p.

Then ϕ ∈ Lp,q, and ‖ϕ‖p,q ≤ c‖{2kµk}‖ℓq .

We will also require some basic concepts from the theory of real interpo-
lation. Let A0, A1 be a compatible couple of quasinormed Banach spaces,
i.e., both A0 and A1 are continuously embedded in a larger topological vec-
tor space. The Peetre K-functional of f ∈ A0 + A1 at t > 0 is defined
by

K(t, f ;A0, A1) = inf
f=f0+f1

‖f0‖0 + t‖f1‖1,

where f = f0 + f1, f0 ∈ A0 and f1 ∈ A1.

In the particular case of the Lq spaces, theK-functional can be computed
by Holmstedt’s formula (see [11]). Specifically, for 0 < q0 < q1 ≤ ∞, let α
be given by 1/α = 1/q0 − 1/q1. Then

K(t, f ;Lq0, Lq1) ∼
(

tα\
0

f∗(s)q0 ds
)1/q0

+ t
(

∞\
tα

f∗(s)q1 ds
)1/q1

.

The intermediate space (A0, A1)η,q, 0 < η < 1, 0 < q ≤ ∞, consists of
those f ’s in A0 +A1 with

‖f‖(A0,A1)η,q
=

(∞\
0

[t−ηK(t, f ;A0, A1)]
q dt

t

)1/q

<∞, q <∞,

‖f‖(A0,A1)η,∞
= sup

t>0
[t−ηK(t, f ;A0, A1)] <∞, q = ∞.

Finally, for the Lq and Lp,q spaces, we have the following result. Let
0 < q1 < q < q2 ≤ ∞, and suppose that 1/q = (1 − η)/q1 + η/q2. Then
Lq = (Lq1 , Lq2)η,q, and Lp,q = (Lp,q1 , Lp,q2)η,q, 0 < p <∞ (see [3]).

2. The Hardy–Lorentz spaces Hp,q. In this paper we adopt the
atomic characterization of the Hardy spaces Hp, 0 < p ≤ 1. Recall that
an Hp atom with defining cube I is a compactly supported function a with
[n(1/p − 1)] vanishing moments, supp(a) ⊆ I, and |I|1/p|a(x)| ≤ 1. The
Hardy space Hp(Rn) = Hp consists of those distributions f that can be
written as f =

∑

λjaj , where the aj ’s are Hp atoms,
∑

|λj|
p <∞, and the



Hardy–Lorentz spaces Hp,q(Rn) 287

convergence is in the sense of distributions as well as in Hp. Furthermore,

‖f‖Hp ∼ inf
(

∑

|λj|
p
)1/p

,

where the infimum is taken over all possible atomic decompositions of f .
This last expression has traditionally been called the atomic Hp-norm of f .

C. Fefferman, Rivière and Sagher identified the intermediate spaces be-
tween the Hardy space Hp0 , 0 < p0 < 1, and L∞ as

(Hp0 , L∞)η,q = Hp,q, 1/p = (1 − η)/p0, 0 < q ≤ ∞,

where Hp,q consists of those distributions f whose radial maximal function
Mf(x) = supt>0 |(f ∗ ϕt)(x)| belongs to Lp,q. Here ϕ is a compactly sup-
ported, smooth function with non-vanishing integral (see [9]). R. Fefferman
and Soria studied in detail the space H1,∞, which they called WeakH1

(see [10]).
Just as in the case of Hp, the spaces Hp,q can be characterized in a num-

ber of different ways, including in terms of non-tangential maximal functions
and Luzin functions. In what follows we will calculate the quasinorm of f
in Hp,q by means of the expression

‖{2km(Mf, 2k)1/p}‖ℓq , 0 < p ≤ 1, 0 < q ≤ ∞,

where Mf is an appropriate maximal function of f .
Passing to the atomic decomposition of Hp,q, the proof is divided in

two parts. First, we construct an essentially optimal atomic decomposition;
Parilov has obtained independently this result forH1,q when 1 ≤ q (see [13]).
Also, R. Fefferman and Soria gave the atomic decomposition of WeakH1

(see [10]), and Alvarez the atomic decomposition of WeakHp, 0 < p < 1
(see [1]).

Theorem 2.1. Let f ∈ Hp,q, 0 < p ≤ 1, 0 < q ≤ ∞. Then f has

an atomic decomposition f =
∑

j,k λj,kaj,k, where the aj,k’s are Hp atoms

with defining cubes Ij,k that have bounded overlap uniformly for each k,

the sequence {λj,k} satisfies (
∑

k[
∑

j |λj,k|
p]q/p)1/q < ∞, and the conver-

gence is in the sense of distributions. Furthermore, (
∑

k[
∑

j |λj,k|
p]q/p)1/q ∼

‖f‖Hp,q .

Proof. The idea of constructing an atomic decomposition using Calde-
rón’s reproducing formula is well understood, so we will only sketch it here;
for further details, see [4] and [17]. Let Nf(x)=sup{|(f ∗ψt)(y)| : |x− y|<t}
denote the non-tangential maximal function of f with respect to a suitable
smooth function ψ with non-vanishing integral. One considers the open sets
Ok = {Nf > 2k}, for all integers k, and builds the atoms with defin-
ing cube associated to the cubes of the Whitney decomposition of Ok, and
hence having all the required properties. More precisely, one constructs a se-



288 W. Abu-Shammala and A. Torchinsky

quence of bounded functions fk with L∞ norm not exceeding c2k for each k,
and such that f −

∑

|k|≤n fk → 0 as n → ∞ in the sense of distributions.

These functions have the further property that fk(x) =
∑

j αj,k(x), where

|αj,k(x)| ≤ c2k, c is a constant, each αj,k has vanishing moments up to order
[n(1/p − 1)] and is supported in Ij,k (roughly one of the Whitney cubes),
where the Ij,k’s have bounded overlaps for each k, uniformly in k. It now
only remains to scale αj,k,

αj,k(x) = λj,kaj,k(x),

and balance the contribution of each term to the sum. Let λj,k = 2k|Ij,k|
1/p.

Then aj,k(x) is essentially an Hp atom with defining cube Ij,k, and one has

(
∑

j |λj,k|
p)1/p ∼ 2k|Ok|

1/p. Thus,

∥

∥

∥

(

∑

j

|λj,k|
p
)1/p∥

∥

∥

ℓq
∼ ‖{2k|Ok|

1/p}‖ℓq ∼ ‖f‖Hp,q , 0 < q ≤ ∞.

As an application of this atomic decomposition, the reader should have
no difficulty in showing directly the C. Fefferman, Rivière, Sagher charac-
terization of Hp,q (see [9]).

Another interesting application of this decomposition is to Hp,q-Lp,∞

estimates for Calderón–Zygmund singular integral operators T , p < q ≤ ∞.
This approach combines the concept of p-quasilocal operator of Weisz (see
[16]) with the idea of variable dilations of R. Fefferman and Soria (see [10]).
Intuitively, since Hörmander’s condition implies that T maps H1 into L1,
say, for T to be defined in H1,s, 1 < s ≤ ∞, some strengthening of this
condition is required. This is accomplished by the variable dilations. More-
over, since we will include p < 1 in our discussion, as p gets smaller, more
regularity of the kernel of T will be required. This justifies the following
definition.

Given 0 < p ≤ 1, let N = [n(1/p − 1)], and, associated to the kernel
k(x, y) of a Calderón–Zygmund singular integral operator T , consider the
modulus of continuity ωp given by

ωp(δ) = sup
I

1

|I|

\
Rn\(2/δ)I

[\
I

∣

∣

∣
k(x, y) −

∑

|α|≤N

(y − yI)
αkα(x, yI)

∣

∣

∣
dy

]p
dx,

where 0 < δ ≤ 1, and the sup is taken over the collection of arbitrary cubes
I of R

n centered at yI . Here, for a multi-index α = (α1, . . . , αn),

kα(x, yI) =
1

α!
Dαk(x, y)|y=yI

.

The modulus ωp(δ) controls the behavior of T on atoms. More precisely, if
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a is an Hp atom with defining cube I, and 0 < δ < 1, observe that

T (a)(x) =
\
I

[

k(x, y) −
∑

|α|≤N

(y − yI)
αkα(x, yI)

]

a(y) dy,

and consequently, \
Rn\(2/δ)I

|T (a)(x)|p dx ≤ ωp(δ).

We are now ready to prove the Hp,q-Lp,∞ estimate for a Calderón–
Zygmund singular integral operator T with kernel k(x, y).

Theorem 2.2. Let 0 < p ≤ 1 and p < q ≤ ∞. Assume that a Calderón–

Zygmund singular integral operator T is of weak type (r, r) for some 1 <
r < ∞, and that the modulus of continuity ωp of the kernel k satisfies a

Dini condition of order q/(q − p), namely ,

Ap,q =

[ 1\
0

ωp(δ)
q/(q−p) dδ

δ

](q−p)/q

<∞.

Then T maps Hp,q continuously into Lp,∞, and ‖Tf‖p,∞ ≤ cA
1/p
p,q ‖f‖Hp,q .

Proof. We need to show that

2k0pm(Tf, 2k0) ≤ c‖f‖p
Hp,q for all k0.

Let f =
∑

k

∑

j λj,kaj,k, be the atomic decomposition of f given in Theorem
2.1, and set f1 =

∑

k≤k0

∑

j λj,kaj,k and f2 = f − f1. Further, let µk =

(
∑

j |λj,k|
p)1/p, and recall that ‖{µk}‖ℓq ∼ ‖f‖Hp,q . Now, since ‖f1‖

r
r ≤

c2k0(r−p)‖f‖p
Hp,∞ , we have

2pk0m(Tf1, 2
k0) ≤ c‖f‖p

Hp,∞ .

Next, put I∗j,k = 21/n(3/2)p(k−k0)/nIj,k, and let

Ω =
⋃

k>k0

⋃

j

I∗j,k.

Since |I∗j,k| = 2(3/2)p(k−k0)|Ij,k| ∼ 2−k0p(3/4)p(k−k0)|λj,k|
p, we get

|Ω| ≤
∑

k>k0

∑

j

|I∗j,k| ≤ c2−k0p
∑

k>k0

(3/4)p(k−k0)
∑

j

|λj,k|
p

≤ c2−k0p[ sup
k>k0

µk]
p ≤ c2−k0p‖f‖p

Hp,∞ .

Also, since 0 < p ≤ 1, it readily follows that

|T (f2)(x)|
p ≤

∑

k>k0

∑

j

|λj,k|
p|T (aj,k)(x)|

p,
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and, by Tonelli and the estimate for T (a), we have\
Rn\Ω

|T (f2)(x)|
pdx ≤

∑

k>k0

∑

j

|λj,k|
p
\

Rn\I∗
j,k

|T (aj,k)(x)|
pdx

≤
∑

k>k0

ωp((2/3)
p(k−k0)/n)µp

k

≤
(

∑

k>0

ωp((2/3)
pk/n)q/(q−p)

)(q−p)/q
‖µk‖

p
ℓq

≤ c

[ 1\
0

ωp(δ)
q/(q−p) dδ

δ

](q−p)/q

‖f‖p
Hp,q .

This bound gives at once

2pk0 |{x /∈ Ω : |T (f2)(x)| > 2k0}| ≤ cAp,q‖f‖
p
Hp,q ,

which implies that

2pk0m(Tf2, 2
k0−1) ≤ 2pk0 [|Ω| + |{x /∈ Ω : |T (f2)(x)| > 2k0−1}|]

≤ c‖f‖p
Hp,∞ + cAp,q‖f‖

p
Hp,q .

Finally,

2k0pm(Tf, 2k0) ≤ 2k0pm(Tf1, 2
k0−1) + 2k0pm(Tf2, 2

k0−1)

≤ c‖f‖p
Hp,∞ + cAp,q‖f‖

p
Hp,q ,

and, since ‖f‖Hp,∞ ≤ c‖f‖Hp,q for all q, we have finished.

We now pass to the converse of Theorem 2.1. It is apparent that a condi-
tion that relates the coefficients λj with the corresponding atoms aj involved
in an atomic decomposition of the form

∑

j λjaj(x) is relevant here. More
precisely, if Ij denotes the supporting cube of aj , let

Ik = {j : 2k ≤ |λj |/|Ij|
1/p < 2k+1},

and, for λ = {λj}, put

‖λ‖[p,q] =
(

∑

k

[

∑

j∈Ik

|λj |
p
]q/p)1/q

.

We then have:

Theorem 2.3. Let 0 < p ≤ 1, 0 < q ≤ ∞, and let f be a distribution

given by f =
∑

j λjaj(x), where the aj’s are Hp atoms, and the conver-

gence is in the sense of distributions. Further , assume that the family {Ij}
consisting of the supports of the aj’s has bounded overlap at each level Ik

uniformly in k, and ‖λ‖[p,q] <∞. Then f ∈ Hp,q, and ‖f‖Hp,q ≤ c‖λ‖[p,q].

Proof. Let Mf(x) = supt>0 |(f ∗ψt)(x)| denote the radial maximal func-
tion of f with respect to a suitable smooth function ψ with support contained
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in {|x| ≤ 1} and non-vanishing integral. We will verify that Mf satisfies the
conditions of Lemma 1.1 and is thus in Lp,q.

Fix an integer k0 and let

g(x) =
∑

k<k0

∑

j∈Ik

λjaj(x).

Since ‖Mg‖∞ ≤ ‖g‖∞ it suffices to estimate |g(x)|. Let C be the bounded
overlap constant for the family of the supports of the aj ’s. Then, for j ∈ Ik,

|λj| |aj(x)| =
1

|Ij |1/p
|λj| |Ij |

1/p|aj(x)| ≤ 2kχIj
(x),

and consequently,

|g(x)| ≤
∑

k<k0

2k
∑

j

χIj
(x) ≤ C2k0 .

Next, let

h(x) =
∑

k≥k0

∑

j∈Ik

λjaj(x).

Since aj has N = [n(1/p−1)] vanishing moments it is not hard to see that, if
Ij is the defining cube of aj and Ij is centered at xj , and γ = (n+N+1)/n >
1/p, then, with c independent of j, ϕj(x) = Maj(x) satisfies

ϕj(x) ≤ c
|Ij|

γ−1/p

(|Ij| + |x− xj |n)γ
.

Thus, if 1/γ < εp < 1, then

Mh(x)εp ≤ c
∑

j∈Ik, k≥k0

(|λj| |Ij|
γ−1/p)εp

(|Ij| + |x− xj |n)γεp
,

which, upon integration, yields\
Rn

Mh(x)εp dx ≤ c
∑

j∈Ik, k≥k0

(|λj | |Ij|
γ−1/p)εp

\
Rn

1

(|Ij| + |x− xj |n)γεp
dx.

The integrals on the right-hand side above are of order |Ij |
1−γεp, and con-

sequently, by Chebyshev’s inequality,

2k0εp|{Mh > 2k0}| ≤ c
∑

j∈Ik, k≥k0

|λj |
εp|Ij|

1−ε ≤ c
∑

k≥k0

2kεp
∑

j∈Ik

|Ij|.

Thus, Lemma 1.1 applies with ϕ = Mf , ψk0
= Mg, ηk0

= Mh, and µk =
(
∑

j∈Ik
|Ij |)

1/p, and we get

‖{2km(Mf, 2k)1/p}‖ℓq ≤ c
∥

∥

∥

{

2k
(

∑

j∈Ik

|Ij |
)1/p}∥

∥

∥

ℓq
,
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which, since

|Ij | ∼
|λj|

p

2kp
, j ∈ Ik,

is bounded by c‖λ‖[p,q], 0 < q ≤ ∞.

The next result is of interest because it applies to arbitrary decomposi-
tions in Hp,q. The proof relies on Lemma 1.2, and is left to the reader.

Theorem 2.4. Let 0 < p ≤ 1, 0 < q ≤ ∞, and let f be a distribution

given by f =
∑

j λjaj(x), where the aj ’s are Hp atoms, and the convergence

is in the sense of distributions. Further assume that ‖λ‖[η,q] < ∞ for some

0 < η < min(p, q). Then f ∈ Hp,q, and ‖f‖Hp,q ≤ c‖λ‖[η,q].

2.1. Interpolation between Hardy–Lorentz spaces. We are now ready to
identify the intermediate spaces of a couple of Hardy–Lorentz spaces with
the same first index p ≤ 1.

Theorem 2.5. Let 0 < p ≤ 1. Given 0 < q1 < q < q2 ≤ ∞, define

0 < η < 1 by the relation 1/q = (1 − η)/q1 + η/q2. Then, with equivalent

quasinorms,

Hp,q = (Hp,q1 , Hp,q2)η,q.

Proof. Since the non-tangential maximal function Nf of a distribution
f in Hp,q1 is in Lp,q1 , and that of f in Hp,q2 is in Lp,q2 , we have

K(t,Nf ;Lp,q1 , Lp,q2) ≤ cK(t, f ;Hp,q1 , Hp,q2).

Thus,

‖Nf‖p,q ∼ ‖Nf‖(Lp,q1 ,Lp,q2)η,q
≤ c‖f‖(Hp,q1 ,Hp,q2 )η,q

,

and (Hp,q1 , Hp,q2)η,q →֒ Hp,q.
To show the other embedding, with the notation in the proof of Theorem

2.1, write f =
∑

k

∑

j λj,kaj,k, and recall that for every integer k, the level

set Ik = {j : |λj,k|/|Ij,k|
1/p ∼ 2k} contains exclusively the sequence {λj,k}.

Let µp
k =

∑

j∈Ik
|λj,k|

p. By construction,
∑

k µ
q
k ∼ ‖f‖q

Hp,q . Now, rearrange
{µk} into {µ∗l }, and, for each l ≥ 1, let kl be such that µkl

= µ∗l . For
l0 ≥ 1, let Kl0 = {k1, . . . , kl0}, and put f1,l0 =

∑

k∈Kl0

∑

j λj,kaj,k and

f2,l0 = f−f1,l0 . Then, by Theorem 2.2, f1,l0 ∈ Hp,q1 , f2,l0 ∈ Hp,q2 , and, with
the usual interpretation for q2 = ∞,

‖f1,l0‖Hp,q1 ≤ c
(

l0
∑

l=1

µ∗l
q1

)1/q1

, ‖f2,l0‖Hp,q2 ≤ c
(

∞
∑

l=l0+1

µ∗l
q2

)1/q2

.

So, for t > 0 and every positive integer l0, we have

K(t, f ;Hp,q1, Hp,q2) ≤ c
[(

l0
∑

l=1

µ∗l
q1

)1/q1

+ t
(

∞
∑

l=l0+1

µ∗l
q2

)1/q2
]

.
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Now, by Holmstedt’s formula, there is a choice of l0 such that the right-hand
side above is ∼ K(t, {µk}; ℓ

q1 , ℓq2), and consequently,

K(t, f ;Hp,q1, Hp,q2) ≤ cK(t, {µk}; ℓ
q1 , ℓq2).

Thus,

‖f‖(Hp,q1 ,Hp,q2)η,q
≤ c‖{µk}‖(ℓq1 ,ℓq2 )η,q

≤ c‖{µk}‖ℓq
≤ c‖f‖Hp,q ,

and Hp,q →֒ (Hp,q1 , Hp,q2)η,q.

The reader will have no difficulty in verifying that Theorem 2.5 gives the
following result: if T is a continuous, sublinear map from H1 into L1, and
from H1,∞ into L1,∞, then ‖Tf‖1,q ≤ c‖f‖H1,q for 1 < q <∞.

This observation has numerous applications. For instance, consider the
Calderón–Zygmund singular integral operators with variable kernel defined
by

TΩ(f)(x) = p.v.
\

Rn

Ω(x, x−y)

|x− y|n
f(y) dy.

Under appropriate growth and smoothness assumptions on Ω, TΩ maps
H1 continuously into L1 (see [5]), and H1,∞ continuously into L1,∞ (see
[7]). Thus, if Ω satisfies the assumptions of both of these results, then TΩ

maps H1,q continuously into L1,q for 1 < q < ∞. A similar result follows
by invoking the characterization of H1,q given by C. Fefferman, Rivière
and Sagher. However, in this case the Hp-Lp estimate requires additional
smoothness of Ω, as shown, for instance, in [5]. Similar considerations apply
to the Marcinkiewicz integral (see [8] and [6]).

Finally, when p < 1, our results cover, for instance, the δ-CZ operators
satisfying T ∗(1) = 0 discussed by Alvarez and Milman (see [2]). These oper-
ators, as well as a more general related class introduced in [14], preserve Hp

and Hp,∞ for n/(n + δ) < p ≤ 1, and consequently, by Theorem 2.5, they
also preserve Hp,q for p in that same range, and q > p.
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