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On individual subsequential ergodic theorem
in von Neumann algebras

by

Semyon Litvinov (Fargo, ND) and Farrukh Mukhamedov (Tashkent)

Abstract. We use a non-commutative generalization of the Banach Principle to show
that the classical individual ergodic theorem for subsequences generated by means of
uniform sequences can be extended to the von Neumann algebra setting.

0. Introduction. The study of almost everywhere convergence of the
ergodic averages in the non-commutative setting was initiated by a number
of authors among whom we mention Lance [5] and Yeadon [11]. Individual
ergodic theorems have been established for algebras with states as well as for
algebras equipped with a semifinite trace. The study of almost everywhere
convergence of weighted and subsequential averages in von Neumann alge-
bras is relatively new. So far, not much is known in this direction. Recently,
a non-commutative analog of the classical Banach Principle, on convergence
of sequences of measurable functions generated by a sequence of linear maps
on Lp-spaces, was established in [3]. It is expected that, as in the commuta-
tive case, this principle will be instrumental in obtaining various convergence
results for the averages in non-commutative setting. In [8], an individual er-
godic theorem for subsequences was proved, where the proof was based on
application of the “commutative” Banach Principle. In this paper we use
the ergodic theorem of Yeadon [11] together with the results of [3], adjusted
to the bilateral almost uniform convergence, to show that the main result
of [8] also holds in the vNa setting.

1. Preliminaries. Let M be a von Neumann algebra (vNa) acting on
a Hilbert space H. Let I be the unit of M , and let τ be a faithful normal
semifinite trace on M . Denote by P (M) the complete lattice of all projec-
tions in M . Let A(M) be the set of all closed operators affiliated with M .
An operator x ∈ A(M) is said to be τ -measurable if for each ε > 0 there
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exists e ∈ P (M) such that τ(e⊥) ≤ ε and eH ⊂ Dx. Let M be the set
of all τ -measurable operators with the measure topology given by, say, the
following system of neighborhoods of zero: for ε > 0, δ > 0,

V (ε, δ) = {x ∈M : ‖xe‖ ≤ ε for some e ∈ P (M) with τ(e⊥) ≤ δ},
where ‖ · ‖ is the operator norm in M . For a positive self-adjoint operator
x =

� ∞
0 λdeλ affiliated with M one can define

τ(x) = sup
n
τ
( n�

0

λdeλ

)
=
∞�

0

dτ(eλ).

For 0 < p ≤ ∞, let

Lp = Lp(M, τ) = {x ∈ A(M) : ‖x‖p = τ(((x∗x)1/2)p)1/p <∞}
if p 6= ∞, and let L∞ = M . For properties of non-commutative Lp-spaces
which are naturally imbedded inM , see [2, 6, 9, 10]. There are many different
types of convergence in M each of which, in the commutative case with finite
measure, reduces to the usual almost everywhere convergence. We deal with
the so-called bilateral almost uniform (b.a.u.) convergence in M for which
an → â means that for every ε > 0 there exists p ∈ P (M) with τ(p⊥) ≤ ε
such that ‖p(an − â)p‖ → 0.

The following is a non-commutative variant of the Banach Principle [3]
adapted to the b.a.u. convergence.

Theorem 1. Let M be a vNa with unit I and with a faithful normal
semifinite trace τ . Let M be the topological ∗-algebra of all τ -measurable
operators. For a Banach space X, assume that an : X → M is a sequence
of continuous linear maps satisfying the condition:

(i) for every x ∈ X and ε > 0 there is an operator b ∈ M , 0 ≤ b ≤ I,
with τ(I − b) ≤ ε such that supn{‖ban(x)b‖} <∞.

If , for every x from a dense subset X0 ⊂ X,

(ii) an(x) converges b.a.u. in M ,

then (ii) holds on all X.

Sketch of proof (for more details see [3]). (I) It is easy to see that, given
x ∈ X, p ∈ P (M) with τ(p) < ∞ and ε, δ > 0 it is enough to find a
projection q ≤ p such that τ(p− q) < ε and

‖q(am(x)− an(x))q‖ < δ

for any m,n ≥ N(ε, δ, p). In its turn, this inequality will follow if we con-
struct a sequence {yk} ⊂ X and a projection g ∈ P (M) with g ≤ p and
τ(p− g) ≤ ε/2 enjoying the properties

(a) x+ yk ∈ X0 for all k and
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(b) ‖gan(yk)g‖ → 0 uniformly in n.

(II) We define, for every pair L and k of positive integers, the set

XL,k = {x ∈ X : ∃0 ≤ b ≤ p with τ(p− b) ≤ ε/2k+3,

sup
n
{‖ban(x)b‖} ≤ L}.

and show that XL,k is closed in X.

(III) Next, since the condition (i) implies that

X =
∞⋃

L=1

XL,k,

by the Baire category theorem we find Lk, xk ∈ X and δk > 0 such that for
every x ∈ X satisfying ‖x−xk‖X < δk there exists an operator 0 ≤ bx,k ≤ p
with τ(p− bx,k) ≤ ε/2k+3 for which

sup
n
{‖bx,kan(x)bx,k‖} ≤ Lk.

(IV) If fx,k is the spectral projection of bx,k in the von Neumann algebra
pMp corresponding to the interval [1/2, 1], then τ(p − fx,k) ≤ ε/2k+2 and
supn{‖fx,kan(x)fx,k‖} ≤ 4Lk. If ‖x−xk‖X < δk and gx,k = fx,k∧fxk,k, then
τ(p − gx,k) ≤ ε/2k+1 and supn{‖gx,kan(x − xk)gx,k‖} ≤ 8Lk. This means
that if γk = δk/(8Lk), then ‖z‖X ≤ γk entails the existence of gz,k ∈ P (M),
0 ≤ gz,k ≤ p, with τ(p−gz,k) ≤ ε/2k+1 such that supn{‖gz,kan(z)gz,k‖} ≤ 1.
If g =

∧∞
k=1 gz,k, then τ(p− g) ≤ ε/2 and ‖z‖X < γk implies

sup
n
{‖gan(z)g‖} ≤ 1.

(V) Since X0 is dense in X, for every k, there is a zk ∈ X satisfying
‖zk‖X < γk for which the condition (a) holds with yk = zk/k. It remains to
note that (b) follows from the definition of {yk}.

A positive linear map α : L1 → L1 will be called an absolute contraction
if α(I) ≤ I and τ(α(x)) ≤ τ(x) for every x ≥ 0. In [11], the following form
of non-commutative individual ergodic theorem was proved.

Theorem 2. If α is an absolute contraction in L1 = L1(M, τ), then,
for every x ∈ L1, the averages

an(x) =
1
n

n−1∑

k=0

αk(x)

converge b.a.u. in L1.

The key role in the proof of Theorem 2 is played by the so-called maximal
ergodic theorem:
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Theorem 3 (see [11]). Let L1, α be as above. Then for every x ∈ L1

and ε > 0 there exists p ∈ P (M) with τ(p⊥) ≤ 4ε−1‖x‖1 such that

‖pan(x)p‖ ≤ 4ε for every n.

In order to illustrate how the non-commutative Banach Principle may
work, we derive Theorem 2 from Theorem 3. First, note that {an(·)} is a
sequence of positive linear maps from a Banach space X = L1 to L1 ⊂
M which are continuous under ‖ · ‖1, hence as maps from L1 to M . The
condition (i) of Theorem 1 is satisfied via Theorem 3, so it remains to find
a dense subset X0 in L1 on which the b.a.u. convergence would take place.
By Kadison’s inequality [4], for every x ∈ L1 ∩ L2 ∩Ms,

‖α(x)‖22 = τ(α(x)2) ≤ τ(α(x2)) ≤ τ(x2) = ‖x‖22,
i.e. α (after its unique extension) is a contraction in the real Hilbert space
H = Hτ , the completion of L1 ∩ L2 ∩Ms with respect to the norm ‖ · ‖2
(induced by the inner product (x, y) = τ(xy), x, y ∈ L2 ∩Ms). Applying a
standard argument, we show that the set

H0 = {x+ (y − α(y)) : x ∈ H with α(x) = x, y ∈Ms}
is dense in H. Indeed, it is enough to check that x ⊥ (y − α(y)) with
x ∈ H and y ∈ Ms would imply α(x) = x. We have 0 = (x, y − α(y)) =
(x− α∗(x), y), which implies x = α∗(x). Then

‖x− α(x)‖22 = ‖x‖22 − (α∗(x), x)− (x, α∗(x)) + ‖α(x)‖22
= ‖α(x)‖22 − ‖x‖22 ≤ 0,

so α(x) = x. By properties of non-commutative Lp-spaces, the set X0 =
H0 + iH0 is dense in L1. Moreover, for every x ∈ X0, an(x) definitely
converges b.a.u. in M . Consequently, by Theorem 1, we obtain the b.a.u.
convergence of an(x) for every x ∈ L1.

2. Main result. Let Ω be a compact Hausdorff space, and let ϕ be a
continuous map of Ω into itself such that the family {ϕn}n≥0 is equicon-
tinuous. The system (Ω,ϕ) is called strictly ergodic if there exists a unique
ϕ-invariant measure µ on (Ω,B) with supp(µ) = Ω, where B stands for the
σ-algebra of all Borel subsets of Ω, such that for any ω ∈ Ω and f ∈ C(Ω),

�

Ω

f dµ = lim
n→∞

1
n

n−1∑

k=0

f(ϕkω)

with respect to the uniform norm in C(Ω).

Definition 1. A sequence {ki} of non-negative integers is said to be
uniform if there exist

(i) a strictly ergodic system (Ω,B, µ, ϕ),
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(ii) a set Y ∈ B with µ(Y ) > 0 = µ(∂Y ), where ∂Y denotes the boundary
of Y ,

(iii) a point ω0 ∈ Ω such that

k1 = min{k ≥ 0 : ϕkω0 ∈ Y },
kn = min{k > kn−1 : ϕkω0 ∈ Y }, n ≥ 2.

The triple (Ω,B, µ, ϕ), Y and ω0 is called the apparatus for {ki}.
The following two lemmas can be found in [8].

Lemma 1. If {ki} is a uniform sequence as above, then

lim
n→∞

n/kn = µ(Y ).

Lemma 2. If {ki} is a uniform sequence as above, then for any ε > 0
there exist open subsets Y1, Y2 and W of Ω such that

(i) Y1 ⊂ Y ⊂ Y2, µ(Y2 − Y1) < ε and µ(∂Y1) = 0 = µ(∂Y2),
(ii) ω0 ∈W and , for every ω ∈W and all k ≥ 0,

χY1(ϕkω) ≤ χY (ϕkω0) ≤ χY2(ϕkω),

where χE(ω) is the characteristic function of a set E.

The next simple lemma will be used in the proof of Theorem 4 below.

Lemma 3. If a sequence {ãn} in M is such that for every ε > 0 there are
a b.a.u. convergent sequence {an} ⊂ M and a positive integer n0 satisfying
‖ãn − an‖ < ε for all n ≥ n0, then {ãn} converges b.a.u.

Proof. Take arbitrary ε, δ>0 and find, for every k, a sequence {a(k)
n }⊂M ,

a projection pk ∈P (M) with τ(p⊥k )<ε/2k and positive integers n0(k), n1(k)
such that

‖pk(a(k)
m − a(k)

n )pk‖ < δ/3 ∀m,n ≥ n0(k),

‖ãn − a(k)
n ‖ < 1/k ∀n ≥ n1(k).

If p =
∧∞
k=1 pk then, by the subadditivity of trace, we have τ(p⊥) < ε.

Moreover, since p ≤ pk for all k, we obtain, for every k,

‖p(a(k)
m − a(k)

n )p‖ < δ/3

as soon as m,n ≥ n0(k). If k0 is such that 1/k0 < δ/3, then

‖p(ãm − ãn)p‖ ≤ ‖p(ãm − a(k0)
m )p‖

+ ‖p(a(k0)
m − a(k0)

n )p‖+ ‖p(ãn − a(k0)
n )p‖ < δ

wheneverm,n ≥ max{n0(k0), n1(k0)}. This means that the sequence {pãnp}
is Cauchy, i.e. {ãn} converges b.a.u.

Theorem 4. Let M be a vNa with a faithful normal semifinite trace
τ , and let α be an absolute contraction on L1(M, τ). If {ki} is a uniform
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sequence and x ∈ L1, then the averages

ãn(x) =
1
n

n∑

i=1

αki(x)

converge b.a.u. in L1.

Proof. Let (Ω,B, µ, ϕ) and ω0, Y be the apparatus connected with the
sequence {ki}. Let M̃ be the algebra of all essentially bounded ultra-weakly
measurable functions g : (Ω,µ)→M equipped with the trace

τ̃(g) =
�

Ω

τ(g(ω)) dµ(ω),

g ≥ 0, and let L̃1 be the Banach space of all Bochner µ-integrable functions
h : (Ω,µ)→ L1(M, τ) (see [7], p. 68). Being the predual to M̃ , the space L̃1

is isomorphic to L1(M̃, τ̃). Next, we define a map α̃ on L̃1 by

α̃(h)(ω) = α(h(ϕω)), h ∈ L̃1.

It can be easily checked that α̃ is an absolute contraction in L̃1. Then, by
Theorem 2, we see that, for every h ∈ L̃1, the averages

1
n

n−1∑

k=0

α̃k(h) =
1
n

n−1∑

k=0

αk(h(ϕk))

converge b.a.u. in L̃1. Repeating the argument of Lemma 2 in [1] shows that
the averages

1
n

n−1∑

k=0

αk(h(ϕkω))

converge b.a.u. in L1(M, τ) for almost all ω ∈ Ω. For an arbitrary ε > 0,
choose open subsets Y1, Y2 and W of Ω satisfying the conditions of Lemma 2.
Applying the latter convergence to the function h(ω) = x ·χY1(ω) ∈ L̃1 and
taking into account that, obviously, µ(W ) > 0, we find a point ω ∈ W for
which the sequence

1
n

n−1∑

k=0

αk(x)χY1(ϕkω)

converges b.a.u.
On the other hand, since µ(∂Yi) = 0, we have (see proof of Lemma 1

in [8])

lim
n→∞

1
n

n−1∑

k=0

χYi(ϕ
kω) = µ(Yi), i = 1, 2,



Individual ergodic theorem 61

which, together with µ(Y2) − µ(Y1) < ε and χY1(ϕkω) ≤ χY (ϕkω0) ≤
χY2(ϕkω) for every k, entails the existence of an n0 such that

0 ≤ 1
n

n−1∑

k=0

[χY (ϕkω0)− χY1(ϕkω)] < ε

for all n ≥ n0. Therefore, for all n ≥ n0, we have
∥∥∥∥

1
n

n−1∑

k=0

αk(x)χY (ϕkω0)− 1
n

n−1∑

k=0

αk(x)χY1(ϕkω)
∥∥∥∥

≤ ‖x‖ 1
n

n−1∑

k=0

[χY (ϕkω0)− χY1(ϕkω)] < ‖x‖ε.

Then Lemma 3 implies that the averages

1
n

n−1∑

k=0

αk(x)χY (ϕkω0)

converge b.a.u. Now, since

1
n

n∑

i=1

αki(x) =
kn + 1
n

· 1
kn + 1

n∑

i=1

αki(x)

=
kn + 1
n

· 1
n

n−1∑

k=0

αk(x)χY (ϕkω0),

by Lemma 1, we obtain the b.a.u. convergence of the averages ãn(x) for
every x ∈ L1(M, τ) ∩M .

Finally, if x ∈ L1, x ≥ 0, then, according to Theorem 3, given ε > 0, one
finds e ∈ P (M) with τ(e⊥) ≤ ε such that

sup
n
‖ean(x)e‖ <∞.

Therefore we also have

sup
n
‖eãn(x)e‖ ≤

[
sup
n

kn + 1
n

]
· [sup

n
‖ean(x)e‖] <∞,

and then

sup
n
‖eãn(x)e‖ <∞ for all x ∈ L1.

Hence, by Theorem 1, and taking into account that X0 = L1 ∩M is dense
in X = L1, we get the result.
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