H^{∞} functional calculus in real interpolation spaces, II

by

GIOVANNI DORE (Bologna)

Abstract. Let A be a linear closed one-to-one operator in a complex Banach space X, having dense domain and dense range. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω , symmetric about the real positive axis, and $\|\lambda(\lambda I - A)^{-1}\|$ is bounded outside every larger sector), then A has a bounded H^{∞} functional calculus in the real interpolation spaces between X and the intersection of the domain and the range of the operator itself.

1. Introduction. In this paper we consider the H^{∞} functional calculus on a sector for a closed, linear, one-to-one operator A on a complex Banach space X, having dense domain and dense range, with resolvent set that contains \mathbb{R}^- and resolvent that decreases in a maximal way on \mathbb{R}^- (i.e. $\|\lambda(\lambda I - A)^{-1}\|$ is bounded). This is a sequel to [1], in which it was proved that such an operator A has a bounded H^{∞} functional calculus in the real interpolation spaces between X and $\mathcal{D}(A)$, provided that $0 \in \varrho(A)$. When $0 \notin \varrho(A)$ this theorem is not true, since in particular if A is bounded (i.e. $\mathcal{D}(A) = X$) then every real interpolation space between X and $\mathcal{D}(A)$ coincides with X, but there are bounded operators without a bounded H^{∞} functional calculus on a sector.

In the present paper we consider the case $0 \notin \varrho(A)$ and we prove that A has a bounded H^{∞} functional calculus in the real interpolation spaces between X and $\mathcal{D}(A) \cap \mathcal{R}(A)$.

We refer to [1] for notations and definitions, in particular for the definition of S_{ω} , S_{ω}^{0} , $H^{\infty}(S_{\mu}^{0})$, $\Psi(S_{\mu}^{0})$, operator of type ω , H^{∞} functional calculus, $L_{*}^{p}(\mathbb{R}^{+})$, real interpolation space.

2. Preliminary results. Let A be a one-to-one operator of type ω ($\omega \in [0, \pi[)$). If $z \in \mathbb{C} \setminus S_{\omega}$ then also $z^{-1} \in \mathbb{C} \setminus S_{\omega}$, therefore it is easy to show

²⁰⁰⁰ Mathematics Subject Classification: 47A60, 46B70.

that $z \in \varrho(A^{-1})$ and

 $(zI - A^{-1})^{-1} = -z^{-1}A(z^{-1}I - A)^{-1}.$

Thus if $\theta \in]\omega, \pi[$ and M_{θ} is such that $||(zI - A)^{-1}|| \leq M_{\theta}/|z|$ for $z \in \mathbb{C} \setminus S_{\theta}$ then

$$\begin{aligned} \|(zI - A^{-1})^{-1}\| &= \|z^{-1}A(z^{-1}I - A)^{-1}\| \\ &= \|z^{-1}(z^{-1}I - z^{-1}I + A)(z^{-1}I - A)^{-1}\| \\ &\leq \|z^{-2}(z^{-1}I - A)^{-1}\| + \|z^{-1}\| \leq \frac{M_{\theta} + 1}{|z|}. \end{aligned}$$

Therefore A^{-1} is an operator of type ω .

We denote by $\mathcal{D}(A; \alpha, p)$ the real interpolation space $(X, \mathcal{D}(A))_{\alpha, p}$ (with $\alpha \in]0, 1[$ and $p \in [1, \infty]$); moreover, we denote by $\mathcal{R}(A; \alpha, p)$ the real interpolation space $(X, \mathcal{R}(A))_{\alpha, p}$ (with $||x||_{\mathcal{D}(A)} = ||x||_X + ||Ax||_X$ and $||x||_{\mathcal{R}(A)} = ||x||_X + ||A^{-1}x||_X$).

The norm of x in $\mathcal{D}(A; \alpha, p)$ is equivalent to

$$||x||_X + ||t \mapsto t^{\alpha} A (tI + A)^{-1} x||_{L^p_*(\mathbb{R}^+)}$$

(see [2], Definition 1.1 and Theorem 3.1). We note that when $0 \in \rho(A)$ the term $||x||_X$ can be disregarded, while if A has unbounded inverse this term is essential.

Since $\mathcal{D}(A^{-1}) = \mathcal{R}(A)$ we have $\mathcal{R}(A; \alpha, p) = \mathcal{D}(A^{-1}; \alpha, p)$, therefore an equivalent norm on $\mathcal{R}(A; \alpha, p)$ is $||x||_X + ||t \mapsto t^{\alpha} A^{-1} (tI + A^{-1})^{-1} x||_{L^p_*(\mathbb{R}^+)}$. But

$$t^{\alpha}A^{-1}(tI+A^{-1})^{-1} = t^{\alpha}A^{-1}t^{-1}A(t^{-1}I+A)^{-1} = t^{\alpha-1}(t^{-1}I+A)^{-1},$$

therefore this norm is equivalent to $||x||_X + ||t| \mapsto t^{\alpha-1}(t^{-1}I + A)^{-1}x||_{L^p_*(\mathbb{R}^+)}$.

Let *E* and *F* be Banach spaces (embedded in the same vector space). The space $E \cap F$ is a Banach space if endowed with the norm $||x||_{E \cap F} = ||x||_E + ||x||_F$.

From now on we will drop the subscript in the notation $\|\cdot\|_X$.

THEOREM 2.1. Let A be a one-to-one operator of type ω with dense domain and dense range. Let $\alpha \in [0, 1[$ and $p \in [1, \infty]$. Then the norm on $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ is equivalent to

$$||t \mapsto t^{\alpha} A(tI+A)^{-1} x||_{L^{p}_{*}(\mathbb{R}^{+})} + ||t \mapsto t^{1-\alpha}(tI+A)^{-1} x||_{L^{p}_{*}(\mathbb{R}^{+})}.$$

Proof. From the above observations it follows immediately that the norm of $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ is equivalent to

$$||x|| + ||t \mapsto t^{\alpha} A (tI + A)^{-1} x ||_{L^{p}_{*}(\mathbb{R}^{+})} + ||t \mapsto t^{1-\alpha} (tI + A)^{-1} x ||_{L^{p}_{*}(\mathbb{R}^{+})},$$

therefore in order to prove the theorem it is sufficient to show that there

exists $C \in \mathbb{R}^+$ such that for every $x \in \mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ we have $\|x\| \leq C(\|t \mapsto t^{\alpha}A(tI + A)^{-1}x\|_{L^p_*(\mathbb{R}^+)} + \|t \mapsto t^{1-\alpha}(tI + A)^{-1}x\|_{L^p_*(\mathbb{R}^+)}).$ If $p < \infty$, then since

$$\int_{\mathbb{R}^+} (e^{-\alpha |\log t|})^p \, \frac{dt}{t} = \frac{2}{\alpha p}$$

and for every $t \in \mathbb{R}^+, x \in X$,

$$x = A(tI + A)^{-1}x + t(tI + A)^{-1}x,$$

we have

$$\begin{split} \|x\| &= \left(\frac{\alpha p}{2} \int_{\mathbb{R}^+} \|e^{-\alpha |\log t|} x\|^p \frac{dt}{t}\right)^{1/p} \\ &\leq \left(\frac{\alpha p}{2} \int_{\mathbb{R}^+} \|e^{-\alpha |\log t|} A(tI+A)^{-1} x\|^p \frac{dt}{t}\right)^{1/p} \\ &\quad + \left(\frac{\alpha p}{2} \int_{\mathbb{R}^+} \|e^{-\alpha |\log t|} t(tI+A)^{-1} x\|^p \frac{dt}{t}\right)^{1/p} \\ &\leq \left(\frac{\alpha p}{2} \int_{\mathbb{R}^+} \|t^\alpha A(tI+A)^{-1} x\|^p \frac{dt}{t}\right)^{1/p} \\ &\quad + \left(\frac{\alpha p}{2} \int_{\mathbb{R}^+} \|t^{1-\alpha} (tI+A)^{-1} x\|^p \frac{dt}{t}\right)^{1/p}. \end{split}$$

If $p = \infty$, then

$$||x|| \le ||1^{\alpha}A(I+A)^{-1}x|| + ||1^{1-\alpha}(I+A)^{-1}x||$$

$$\le \sup_{t\in\mathbb{R}^+} ||t^{\alpha}A(tI+A)^{-1}x|| + \sup_{t\in\mathbb{R}^+} ||t^{1-\alpha}(tI+A)^{-1}x||.$$

This concludes the proof.

THEOREM 2.2. Let A be a one-to-one operator of type ω . Let B be the operator from $\mathcal{D}(A) \cap \mathcal{R}(A)$ to X such that $Bx = (2I + A + A^{-1})x$. Then B is a closed operator of type ω_0 (for a suitable ω_0) and $0 \in \varrho(B)$. Moreover, if A has dense domain and dense range then $\mathcal{D}(B)$ is dense.

Proof. Obviously, $B = (I + A)^2 A^{-1}$ but $(I + A)^2$ has bounded inverse and A^{-1} is closed, therefore B is closed and its inverse is $A(I + A)^{-2}$, hence $0 \in \rho(B)$.

For $t \in \mathbb{R}^+$ put

$$\tau_t = \frac{t + 2 + \sqrt{t^2 + 4t}}{2}.$$

We have

$$((t+2)I + A + A^{-1})^{-1} = \tau_t(\tau_t I + A)^{-1}(\tau_t I + A^{-1})^{-1}.$$

Indeed,
$$t + 2 = \tau_t + \tau_t^{-1}$$
, thus for $x \in \mathcal{D}(A) \cap \mathcal{R}(A)$ we have

$$\begin{aligned} \tau_t (\tau_t I + A)^{-1} (\tau_t I + A^{-1})^{-1} ((t+2)I + A + A^{-1})x \\ &= \tau_t (\tau_t I + A)^{-1} (\tau_t I + A^{-1})^{-1} ((\tau_t + \tau_t^{-1})I + A + A^{-1})x \\ &= (\tau_t I + A)^{-1} (\tau_t I + A^{-1})^{-1} ((\tau_t^2 + 1)I + \tau_t A + \tau_t A^{-1})x \\ &= (\tau_t I + A)^{-1} (\tau_t I + A^{-1})^{-1} (\tau_t I + A^{-1}) (\tau_t I + A)x = x \end{aligned}$$

and analogously, for every $x \in X$,

$$((t+2)I + A + A^{-1})\tau_t(\tau_t I + A)^{-1}(\tau_t I + A^{-1})^{-1}x = x;$$

therefore $\mathbb{R}^- \subseteq \rho(B)$. Moreover, we have

$$\|(tI+B)^{-1}\| = \|\tau_t(\tau_tI+A)^{-1}(\tau_tI+A^{-1})^{-1}\|$$
$$= \|(\tau_tI+A)^{-1}A(\tau_t^{-1}I+A)^{-1}\| \le \frac{C}{\tau_t} \le \frac{C}{t+1},$$

therefore B is of type ω_0 for some ω_0 .

Suppose now that $\mathcal{D}(A)$ and $\mathcal{R}(A)$ are dense in X. Then for every $x \in X$ we have

$$\begin{aligned} \|tA(tI+A)^{-1}(t^{-1}I+A)^{-1}x-x\| \\ &\leq \|tA(tI+A)^{-1}(t^{-1}I+A)^{-1}x-t(tI+A)^{-1}x+t(tI+A)^{-1}x-x\| \\ &\leq \|t(tI+A)^{-1}\| \cdot \|A(t^{-1}I+A)^{-1}x-x\| + \|t(tI+A)^{-1}x-x\| \xrightarrow[t\to 0^+]{} 0. \end{aligned}$$

But

$$tA(tI+A)^{-1}(t^{-1}I+A)^{-1}x \in \mathcal{D}(A) \cap \mathcal{R}(A),$$

so x is a limit of elements of $\mathcal{D}(A) \cap \mathcal{R}(A)$, therefore $\mathcal{D}(B) = \mathcal{D}(A) \cap \mathcal{R}(A)$ is dense in X. This proves the theorem.

Note that

$$||x||_{\mathcal{D}(B)} = ||x|| + ||Bx|| = ||x|| + ||(2I + A + A^{-1})x||$$

$$\leq 3||x|| + ||Ax|| + ||A^{-1}x|| = ||x||_X + ||x||_{\mathcal{D}(A)} + ||x||_{\mathcal{R}(A)}$$

$$\leq ||x||_{\mathcal{D}(A)\cap\mathcal{R}(A)}.$$

Therefore the vector spaces $\mathcal{D}(A) \cap \mathcal{R}(A)$ and $\mathcal{D}(B)$ are equal and the first space is continuously embedded in the second one; by the open mapping theorem the reverse embedding is continuous and the two norms are equivalent.

It follows that $(X, \mathcal{D}(A) \cap \mathcal{R}(A))_{\alpha, p} = \mathcal{D}(B; \alpha, p)$ with equivalent norms.

THEOREM 2.3. Let A be a one-to-one operator of type ω with dense domain and dense range. Let $\alpha \in [0, 1[$ and $p \in [1, \infty]$. Then $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p) = (X, \mathcal{D}(A) \cap \mathcal{R}(A))_{\alpha, p}$ with equivalent norms.

Proof. Since $\mathcal{D}(A) \cap \mathcal{R}(A)$ is continuously embedded in $\mathcal{D}(A)$ and in $\mathcal{R}(A)$, by interpolation we deduce that $(X, \mathcal{D}(A) \cap \mathcal{R}(A))_{\alpha,p}$ is continuously embedded in $\mathcal{D}(A; \alpha, p)$ and in $\mathcal{R}(A; \alpha, p)$ and also in their intersection.

As we have already observed, $\mathcal{D}(A) \cap \mathcal{R}(A) = \mathcal{D}(B)$ (with *B* as in Theorem 2.2); therefore, in order to prove the inverse embedding, it is sufficient to prove that $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ is continuously embedded in $\mathcal{D}(B; \alpha, p)$. Let $x \in \mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$; we have

$$\begin{split} \|t \mapsto t^{\alpha}B(tI+B)^{-1}x\|_{L_{*}^{p}(\mathbb{R}^{+})} \\ &\leq \|t \mapsto t^{\alpha}(2I+A+A^{-1})(tI+B)^{-1}x\|_{L_{*}^{p}(\mathbb{R}^{+})} \\ &\leq \|t \mapsto t^{\alpha}2(tI+B)^{-1}x\|_{L_{*}^{p}(\mathbb{R}^{+})} \\ &+ \|t \mapsto t^{\alpha}A(tI+A)^{-1}(tI+A)(tI+B)^{-1}x\|_{L_{*}^{p}(\mathbb{R}^{+})} \\ &+ \|t \mapsto t^{\alpha}A^{-1}(tI+A^{-1})^{-1}(tI+A^{-1})(tI+B)^{-1}x\|_{L_{*}^{p}(\mathbb{R}^{+})} \\ &\leq C \left\|t \mapsto \frac{t^{\alpha}}{t+1}\right\|_{L_{*}^{p}(\mathbb{R}^{+})} \|x\| \\ &+ \sup_{t \in \mathbb{R}^{+}} \|(tI+A)(tI+B)^{-1}\| \cdot \|t \mapsto t^{\alpha}A(tI+A)^{-1}x\|_{L_{*}^{p}(\mathbb{R}^{+})} \\ &+ \sup_{t \in \mathbb{R}^{+}} \|(tI+A^{-1})(tI+B)^{-1}\| \cdot \|t \mapsto t^{\alpha}A^{-1}(tI+A^{-1})x\|_{L_{*}^{p}(\mathbb{R}^{+})}. \end{split}$$

For $t \in \mathbb{R}^+$ we have

$$\|(tI+A)(tI+B)^{-1}\| = \|(tI+A)A(I+A)^{-2}B(tI+B)^{-1}\| \le \|(tI+A)(I+A)^{-1}\| \cdot \|A(I+A)^{-1}\| \cdot \|B(tI+B)^{-1}\| \le C$$

since A and B are of type ω and ω_0 respectively. In a similar way one can estimate the term $||(tI + A^{-1})(tI + B)^{-1}||$; thus the second summand is less than or equal to a constant times $||t \mapsto t^{\alpha}A(tI + A)^{-1}x||_{L^p_*(\mathbb{R}^+)}$ and the third one is less than or equal to a constant times $||t \mapsto t^{\alpha}A^{-1}(tI + A^{-1})x||_{L^p_*(\mathbb{R}^+)}$. We can conclude that if $x \in \mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ then

$$\begin{aligned} \|t \mapsto t^{\alpha} B(tI+B)^{-1} x\|_{L^{p}_{*}(\mathbb{R}^{+})} &\leq C(\|x\|+\|t \mapsto t^{\alpha} A(tI+A)^{-1} x\|_{L^{p}_{*}(\mathbb{R}^{+})} \\ &+ \|t \mapsto t^{\alpha} A^{-1}(tI+A^{-1}) x\|_{L^{p}_{*}(\mathbb{R}^{+})}) \\ &\leq C\|x\|_{\mathcal{D}(A;\alpha,p)\cap\mathcal{R}(A;\alpha,p)} < \infty. \end{aligned}$$

This proves that the space $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ is continuously embedded in $(X, \mathcal{D}(A) \cap \mathcal{R}(A))_{\alpha, p}$. We denote by $A_{\alpha,p}$ the part of the operator A in $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$, i.e. the operator such that

$$\mathcal{D}(A_{\alpha,p}) = \{ x \in \mathcal{D}(A) \cap \mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p) : \\ Ax \in \mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p) \} \\ = \{ x \in \mathcal{D}(A) \cap \mathcal{R}(A; \alpha, p) : Ax \in \mathcal{D}(A; \alpha, p) \} \\ A_{\alpha, p} x = Ax.$$

We note that if $0 \in \rho(A)$ then $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p) = \mathcal{D}(A; \alpha, p)$ and this definition of $A_{\alpha, p}$ coincides with the one in [1].

THEOREM 2.4. If A is a one-to-one operator of type ω , then for $\alpha \in]0, 1[$ and $p \in [1,\infty]$, $A_{\alpha,p}$ is a one-to-one operator of type ω in $\mathcal{D}(A;\alpha,p) \cap \mathcal{R}(A;\alpha,p)$. Moreover, if A has dense domain and dense range and $p < \infty$ then $A_{\alpha,p}$ has dense domain and dense range.

Proof. Obviously, $A_{\alpha,p}$ is a closed operator and it is one-to-one. If $\lambda \in \varrho(A)$ then $(\lambda - A)^{-1}$ restricted to $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ is the inverse operator of $\lambda - A_{\alpha,p}$, thus $\lambda \in \varrho(A_{\alpha,p})$, therefore $\sigma(A_{\alpha,p}) \subseteq S_{\omega}$.

Moreover, if
$$x \in \mathcal{D}(A) \cap \mathcal{R}(A)$$
 then $(\lambda - A)^{-1}x \in \mathcal{D}(A) \cap \mathcal{R}(A)$ and
 $\|(\lambda I - A)^{-1}x\|_{\mathcal{D}(A)\cap\mathcal{R}(A)} \leq C\|B(\lambda I - A)^{-1}x\|_X = C\|(\lambda I - A)^{-1}Bx\|_X$
 $\leq C_1\|(\lambda I - A)^{-1}\|_{\mathcal{L}(X)}\|Bx\|_X$
 $\leq C_2\|(\lambda I - A)^{-1}\|_{\mathcal{L}(X)}\|x\|_{\mathcal{D}(A)\cap\mathcal{R}(A)}$

(with *B* as in Theorem 2.2); this proves that the restriction of $(\lambda I - A)^{-1}$ to $\mathcal{D}(A) \cap \mathcal{R}(A)$ belongs to $\mathcal{L}(\mathcal{D}(A) \cap \mathcal{R}(A))$ and its norm in this space is less than or equal to a constant times its norm in $\mathcal{L}(X)$. By interpolation, taking into account Theorem 2.3, the same is true in $\mathcal{L}(\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p))$. Since *A* is of type ω we can conclude that $A_{\alpha,p}$ is of type ω .

Suppose that $p < \infty$ and that $\mathcal{D}(A)$ and $\mathcal{R}(A)$ are dense in X. In order to prove the density of $\mathcal{D}(A_{\alpha,p})$ and $\mathcal{R}(A_{\alpha,p})$ we shall prove that $\mathcal{D}(A^2) \cap \mathcal{R}(A^2)$ is dense in $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ and that it is included in $\mathcal{D}(A_{\alpha,p})$ and in $\mathcal{R}(A_{\alpha,p})$.

By Theorem 2.2, $\mathcal{D}(B)$ is dense in X, therefore (see the proof of Theorem 2.2 of [1]) $\mathcal{D}(B^2)$ is dense in $\mathcal{D}(B; \alpha, p)$. We have

$$\begin{aligned} x \in \mathcal{D}(B^2) &\Leftrightarrow x \in \mathcal{D}(B) \text{ and } Bx \in \mathcal{D}(B) \\ &\Leftrightarrow x \in \mathcal{D}(A) \cap \mathcal{R}(A) \text{ and } (2I + A + A^{-1})x \in \mathcal{D}(A) \cap \mathcal{R}(A) \\ &\Leftrightarrow x \in \mathcal{D}(A) \cap \mathcal{R}(A) \text{ and } Ax + A^{-1}x \in \mathcal{D}(A) \cap \mathcal{R}(A) \\ &\Leftrightarrow x \in \mathcal{D}(A) \cap \mathcal{R}(A) \text{ and } Ax \in \mathcal{D}(A) \text{ and } A^{-1}x \in \mathcal{R}(A) \\ &\Leftrightarrow x \in \mathcal{D}(A^2) \cap \mathcal{R}(A^2), \end{aligned}$$

thus $\mathcal{D}(B^2) = \mathcal{D}(A^2) \cap \mathcal{R}(A^2)$; therefore $\mathcal{D}(A^2) \cap \mathcal{R}(A^2)$ is dense in the space $\mathcal{D}(B; \alpha, p)$, that is, in $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$.

If $x \in \mathcal{D}(A^2) \cap \mathcal{R}(A^2)$ then $x \in \mathcal{D}(A)$ and $x \in \mathcal{R}(A) \subseteq \mathcal{R}(A; \alpha, p)$. Hence $x \in \mathcal{D}(A) \cap \mathcal{R}(A; \alpha, p)$, and $Ax \in \mathcal{D}(A) \subseteq \mathcal{D}(A; \alpha, p)$, therefore $\mathcal{D}(A^2) \cap \mathcal{R}(A^2) \subseteq \mathcal{D}(A_{\alpha,p})$. If we consider the operator A^{-1} then the domain and the range are interchanged and $A_{\alpha,p}^{-1} = (A^{-1})_{\alpha,p}$, therefore we also have $\mathcal{D}(A^2) \cap \mathcal{R}(A^2) \subseteq \mathcal{R}(A_{\alpha,p})$.

In this way we have proved that $\mathcal{D}(A_{\alpha,p})$ and $\mathcal{R}(A_{\alpha,p})$ are dense in $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$.

3. H^{∞} functional calculus

THEOREM 3.1. Let A be a one-to-one operator of type ω with dense domain and dense range. Let $\mu \in]\omega, \pi[, \alpha \in]0, 1[$ and $p \in [1, \infty]$. If $f \in \Psi(S^0_{\mu})$ and $x \in \mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$, then $f(A)x \in \mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$ and there exists $C_{\alpha, p} \in \mathbb{R}^+$ (independent of f and x) such that

$$\|f(A)x\|_{\mathcal{D}(A;\alpha,p)\cap\mathcal{R}(A;\alpha,p)} \le C_{\alpha}\|f\|_{\infty}\|x\|_{\mathcal{D}(A;\alpha,p)\cap\mathcal{R}(A;\alpha,p)}$$

Proof. First of all we consider the case $p = \infty$.

By the same argument of the proof of Theorem 3.1 of [1] we find that there exists $C_{\alpha} \in \mathbb{R}^+$ such that for $x \in \mathcal{D}(A; \alpha, \infty)$ we have

$$\sup_{t\in\mathbb{R}^+} \|t^{\alpha}A(tI+A)^{-1}f(A)x\| \le C_{\alpha}\|f\|_{\infty}\|x\|_{\mathcal{D}(A;\alpha,\infty)}.$$

Analogously, for $x \in \mathcal{R}(A; \alpha, \infty)$ and $t \in \mathbb{R}^+$ we have $\|t^{1-\alpha}(tI+A)^{-1}f(A)x\|$

$$\begin{split} &= \left\| t^{1-\alpha} \frac{1}{2\pi i} \int_{\Gamma_{\theta}} \frac{f(\lambda)}{t+\lambda} (\lambda I - A)^{-1} x \, d\lambda \right\| \\ &\leq \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{t^{1-\alpha} \|f\|_{\infty}}{|t+\varrho e^{i\theta}|} \| (\varrho e^{i\theta} I - A)^{-1} x \| \, d\varrho \\ &\quad + \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{t^{1-\alpha} \|f\|_{\infty}}{|t+\varrho e^{-i\theta}|} \| (\varrho e^{-i\theta} I - A)^{-1} x \| \, d\varrho \\ &\leq \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{t^{1-\alpha}}{\varrho^{1-\alpha} |t+\varrho e^{i\theta}|} \, d\varrho \, \|f\|_{\infty} \sup_{\varrho \in \mathbb{R}^{+}} \| \varrho^{1-\alpha} (\varrho e^{i\theta} I - A)^{-1} x \| \\ &\quad + \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{t^{1-\alpha}}{\varrho^{1-\alpha} |t+\varrho e^{-i\theta}|} \, d\varrho \, \|f\|_{\infty} \sup_{\varrho \in \mathbb{R}^{+}} \| \varrho^{1-\alpha} (\varrho e^{-i\theta} I - A)^{-1} x \| \\ &= \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{1}{\sigma^{1-\alpha} |1+\sigma e^{i\theta}|} \, d\sigma \, \|f\|_{\infty} \sup_{\varrho \in \mathbb{R}^{+}} \| \varrho^{1-\alpha} e^{-i\theta} (\varrho I - e^{-i\theta} A)^{-1} x \| \\ &\quad + \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{1}{\sigma^{1-\alpha} |1+\sigma e^{i\theta}|} \, d\sigma \, \|f\|_{\infty} \sup_{\varrho \in \mathbb{R}^{+}} \| \varrho^{1-\alpha} e^{i\theta} (\varrho I - e^{-i\theta} A)^{-1} x \| \\ &\quad + \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{1}{\sigma^{1-\alpha} |1+\sigma e^{-i\theta}|} \, d\sigma \, \|f\|_{\infty} \sup_{\varrho \in \mathbb{R}^{+}} \| \varrho^{1-\alpha} e^{i\theta} (\varrho I - e^{i\theta} A)^{-1} x \|. \end{split}$$

The operators A, $-e^{i\theta}A$ and $-e^{-i\theta}A$ have the same range and for every $x \in \mathcal{R}(A)$ we have $||A^{-1}x|| = ||(-e^{i\theta}A)^{-1}x|| = ||(-e^{-i\theta}A)^{-1}x||$ so that the spaces $\mathcal{R}(A)$, $\mathcal{R}(-e^{i\theta}A)$ and $\mathcal{R}(-e^{-i\theta}A)$ coincide and have equal norms. Therefore $\mathcal{R}(A; \alpha, \infty) = \mathcal{R}(-e^{i\theta}A; \alpha, \infty) = \mathcal{R}(-e^{-i\theta}A; \alpha, \infty)$ (with equal norms). It follows that there exists a constant C such that for $x \in \mathcal{R}(A; \alpha, \infty)$ we have

$$\sup_{\varrho \in \mathbb{R}^+} \|\varrho^{\alpha} e^{i\theta} A(\varrho - e^{i\theta} A)^{-1} x\| \le C \|x\|_{\mathcal{R}(A;\alpha,\infty)},$$
$$\sup_{\varrho \in \mathbb{R}^+} \|\varrho^{\alpha} e^{-i\theta} A(\varrho - e^{-i\theta} A)^{-1} x\| \le C \|x\|_{\mathcal{R}(A;\alpha,\infty)},$$

therefore there exists $C_{\alpha} \in \mathbb{R}^+$ such that for $x \in \mathcal{R}(A; \alpha, \infty)$ we have

$$\sup_{t \in \mathbb{R}^+} \|t^{1-\alpha}(tI+A)^{-1}f(A)x\| \le C_{\alpha}\|f\|_{\infty}\|x\|_{\mathcal{R}(A;\alpha,\infty)}$$

In this way, taking into account Theorem 2.1, we have proved that for $x \in \mathcal{D}(A; \alpha, \infty) \cap \mathcal{R}(A; \alpha, \infty)$ we have $f(A)x \in \mathcal{D}(A; \alpha, \infty) \cap \mathcal{R}(A; \alpha, \infty)$ and there exists $C_{\alpha} \in \mathbb{R}^+$ (independent of f and x) such that

$$\|f(A)x\|_{\mathcal{D}(A;\alpha,\infty)\cap\mathcal{R}(A;\alpha,\infty)} \le C_{\alpha}\|f\|_{\infty}\|x\|_{\mathcal{D}(A;\alpha,\infty)\cap\mathcal{R}(A;\alpha,\infty)}.$$

If $p < \infty$ choose $\alpha_0 \in [0, \alpha[$ and $\alpha_1 \in [\alpha, 1[$; then, as a consequence of the reiteration theorem for real interpolation ([3], Theorem 1.10.2) and of Theorem 2.3, we have

$$\mathcal{D}(A;\alpha,p) \cap \mathcal{R}(A;\alpha,p) = (X,\mathcal{D}(A) \cap \mathcal{R}(A))_{\alpha,p}$$

= $((X,\mathcal{D}(A) \cap \mathcal{R}(A))_{\alpha_0,\infty}, (X,\mathcal{D}(A) \cap \mathcal{R}(A))_{\alpha_1,\infty})_{(\alpha-\alpha_0)/(\alpha_1-\alpha_0),p}$
= $(\mathcal{D}(A;\alpha_0,\infty) \cap \mathcal{R}(A;\alpha_0,\infty), \mathcal{D}(A;\alpha_1,\infty) \cap \mathcal{R}(A;\alpha_1,\infty))_{(\alpha-\alpha_0)/(\alpha_1-\alpha_0),p}$

with equivalence of norms. Since we have proved that f(A) is a bounded operator in $\mathcal{D}(A; \alpha_0, \infty) \cap \mathcal{R}(A; \alpha_0, \infty)$ and in $\mathcal{D}(A; \alpha_1, \infty) \cap \mathcal{R}(A; \alpha_1, \infty)$, with norm not greater than $C_{\alpha_0} ||f||_{\infty}$ and $C_{\alpha_1} ||f||_{\infty}$ respectively, we can conclude, by interpolation, that f(A) is a bounded operator in $\mathcal{D}(A; \alpha, p) \cap$ $\mathcal{R}(A; \alpha, p)$ with norm less than or equal to a constant (depending only on α and p) times $||f||_{\infty}$.

THEOREM 3.2. Let A be a one-to-one operator of type ω with dense domain and dense range. Let $\mu \in]\omega, \pi[, \alpha \in]0, 1[$ and $p \in [1, \infty[$. Then the operator $A_{\alpha,p}$ has a bounded $H^{\infty}(S^0_{\mu})$ functional calculus.

Proof. By Theorem 2.4, $A_{\alpha,p}$ is a one-to-one operator of type ω with dense domain and dense range. If $f \in \Psi(S^0_{\mu})$ then $f(A_{\alpha,p})$ is the restriction of f(A) to $\mathcal{D}(A; \alpha, p) \cap \mathcal{R}(A; \alpha, p)$. From Theorem 3.1 we deduce that

$$\|f(A_{\alpha,p})\|_{L(\mathcal{D}(A;\alpha,p)\cap\mathcal{R}(A;\alpha,p))} \le C_{\alpha}\|f\|_{\infty}$$

and the conclusion follows from Theorem 2.1 of [1].

As in [1], the following theorem is an immediate consequence of the existence of a bounded H^{∞} functional calculus.

THEOREM 3.3. Let A be a one-to-one operator of type ω with dense domain and dense range. Let $\alpha \in [0,1[$ and $p \in [1,\infty[$. For every $s \in \mathbb{R}$ the operator $A_{\alpha,p}^{is}$ is bounded in $\mathcal{D}(A;\alpha,p) \cap \mathcal{R}(A;\alpha,p)$ and for every $\mu > \omega$ there exists C_{μ} such that $||A_{\alpha,p}^{is}|| \leq C_{\mu}e^{\mu|s|}$.

References

- [1] G. Dore, H^{∞} functional calculus in real interpolation spaces, Studia Math. 137 (1999), 161–167.
- [2] H. Komatsu, Fractional powers of operators, II. Interpolation spaces, Pacific J. Math. 21 (1967), 89–111.
- [3] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

Dipartimento di Matematica Università di Bologna Piazza di Porta S. Donato 5 40127 Bologna, Italy E-mail: dore@dm.unibo.it

> Received June 7, 2000 Revised version November 27, 2000 (4541)