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H∞ functional calculus
in real interpolation spaces, II

by

Giovanni Dore (Bologna)

Abstract. Let A be a linear closed one-to-one operator in a complex Banach space X,
having dense domain and dense range. If A is of type ω (i.e. the spectrum of A is contained
in a sector of angle 2ω, symmetric about the real positive axis, and ‖λ(λI − A)−1‖ is
bounded outside every larger sector), then A has a bounded H∞ functional calculus in
the real interpolation spaces between X and the intersection of the domain and the range
of the operator itself.

1. Introduction. In this paper we consider the H∞ functional calcu-
lus on a sector for a closed, linear, one-to-one operator A on a complex
Banach space X, having dense domain and dense range, with resolvent set
that contains R− and resolvent that decreases in a maximal way on R−
(i.e. ‖λ(λI − A)−1‖ is bounded). This is a sequel to [1], in which it was
proved that such an operator A has a bounded H∞ functional calculus in
the real interpolation spaces between X and D(A), provided that 0 ∈ %(A).
When 0 6∈ %(A) this theorem is not true, since in particular if A is bounded
(i.e. D(A) = X) then every real interpolation space between X and D(A)
coincides with X, but there are bounded operators without a bounded H∞

functional calculus on a sector.
In the present paper we consider the case 0 6∈ %(A) and we prove that

A has a bounded H∞ functional calculus in the real interpolation spaces
between X and D(A) ∩R(A).

We refer to [1] for notations and definitions, in particular for the defini-
tion of Sω, S0

ω, H∞(S0
µ), Ψ(S0

µ), operator of type ω, H∞ functional calculus,
Lp∗(R+), real interpolation space.

2. Preliminary results. Let A be a one-to-one operator of type ω
(ω ∈ [0, π[). If z ∈ C\Sω then also z−1 ∈ C\Sω, therefore it is easy to show
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that z ∈ %(A−1) and

(zI − A−1)−1 = −z−1A(z−1I −A)−1.

Thus if θ ∈ ]ω, π[ and Mθ is such that ‖(zI−A)−1‖ ≤Mθ/|z| for z ∈ C \Sθ
then

‖(zI −A−1)−1‖ = ‖z−1A(z−1I − A)−1‖
= ‖z−1(z−1I − z−1I + A)(z−1I − A)−1‖

≤ ‖z−2(z−1I − A)−1‖+ ‖z−1‖ ≤ Mθ + 1
|z| .

Therefore A−1 is an operator of type ω.
We denote by D(A;α, p) the real interpolation space (X,D(A))α,p (with

α ∈ ]0, 1[ and p ∈ [1,∞]); moreover, we denote by R(A;α, p) the real inter-
polation space (X,R(A))α,p (with ‖x‖D(A) = ‖x‖X+‖Ax‖X and ‖x‖R(A) =
‖x‖X + ‖A−1x‖X).

The norm of x in D(A;α, p) is equivalent to

‖x‖X + ‖t 7→ tαA(tI + A)−1x‖Lp∗(R+)

(see [2], Definition 1.1 and Theorem 3.1). We note that when 0 ∈ %(A) the
term ‖x‖X can be disregarded, while if A has unbounded inverse this term
is essential.

Since D(A−1) = R(A) we have R(A;α, p) = D(A−1;α, p), therefore an
equivalent norm on R(A;α, p) is ‖x‖X + ‖t 7→ tαA−1(tI +A−1)−1x‖Lp∗(R+).
But

tαA−1(tI + A−1)−1 = tαA−1t−1A(t−1I + A)−1 = tα−1(t−1I + A)−1,

therefore this norm is equivalent to ‖x‖X +‖t 7→ tα−1(t−1I+A)−1x‖Lp∗(R+).
Let E and F be Banach spaces (embedded in the same vector space).

The space E ∩ F is a Banach space if endowed with the norm ‖x‖E∩F =
‖x‖E + ‖x‖F .

From now on we will drop the subscript in the notation ‖ · ‖X .

Theorem 2.1. Let A be a one-to-one operator of type ω with dense
domain and dense range. Let α ∈ ]0, 1[ and p ∈ [1,∞]. Then the norm on
D(A;α, p) ∩R(A;α, p) is equivalent to

‖t 7→ tαA(tI + A)−1x‖Lp∗(R+) + ‖t 7→ t1−α(tI +A)−1x‖Lp∗(R+).

Proof. From the above observations it follows immediately that the norm
of D(A;α, p) ∩R(A;α, p) is equivalent to

‖x‖+ ‖t 7→ tαA(tI + A)−1x‖Lp∗(R+) + ‖t 7→ t1−α(tI +A)−1x‖Lp∗(R+),

therefore in order to prove the theorem it is sufficient to show that there
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exists C ∈ R+ such that for every x ∈ D(A;α, p) ∩R(A;α, p) we have

‖x‖ ≤ C(‖t 7→ tαA(tI + A)−1x‖Lp∗(R+) + ‖t 7→ t1−α(tI + A)−1x‖Lp∗(R+)).

If p <∞, then since
�

R+

(e−α|log t|)p
dt

t
=

2
αp

and for every t ∈ R+, x ∈ X,

x = A(tI + A)−1x+ t(tI + A)−1x,

we have

‖x‖ =
(
αp

2

�

R+

‖e−α|log t|x‖p dt
t

)1/p

≤
(
αp

2

�

R+

‖e−α|log t|A(tI + A)−1x‖p dt
t

)1/p

+
(
αp

2

�

R+

‖e−α|log t|t(tI + A)−1x‖p dt
t

)1/p

≤
(
αp

2

�

R+

‖tαA(tI + A)−1x‖p dt
t

)1/p

+
(
αp

2

�

R+

‖t1−α(tI + A)−1x‖p dt
t

)1/p

.

If p =∞, then

‖x‖ ≤ ‖1αA(I + A)−1x‖+ ‖11−α(I + A)−1x‖
≤ sup
t∈R+

‖tαA(tI + A)−1x‖+ sup
t∈R+

‖t1−α(tI + A)−1x‖.

This concludes the proof.

Theorem 2.2. Let A be a one-to-one operator of type ω. Let B be the
operator from D(A)∩R(A) to X such that Bx = (2I+A+A−1)x. Then B
is a closed operator of type ω0 (for a suitable ω0) and 0 ∈ %(B). Moreover ,
if A has dense domain and dense range then D(B) is dense.

Proof. Obviously, B = (I + A)2A−1 but (I + A)2 has bounded inverse
and A−1 is closed, therefore B is closed and its inverse is A(I+A)−2, hence
0 ∈ %(B).

For t ∈ R+ put

τt =
t+ 2 +

√
t2 + 4t

2
.
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We have

((t+ 2)I + A+A−1)−1 = τt(τtI +A)−1(τtI + A−1)−1.

Indeed, t+ 2 = τt + τ−1
t , thus for x ∈ D(A) ∩R(A) we have

τt(τtI + A)−1(τtI + A−1)−1((t+ 2)I + A+ A−1)x

= τt(τtI +A)−1(τtI + A−1)−1((τt + τ−1
t )I + A+ A−1)x

= (τtI + A)−1(τtI + A−1)−1((τ2
t + 1)I + τtA+ τtA

−1)x

= (τtI + A)−1(τtI + A−1)−1(τtI + A−1)(τtI + A)x = x

and analogously, for every x ∈ X,

((t+ 2)I +A+ A−1)τt(τtI +A)−1(τtI +A−1)−1x = x;

therefore R− ⊆ %(B). Moreover, we have

‖(tI +B)−1‖ = ‖τt(τtI + A)−1(τtI +A−1)−1‖

= ‖(τtI + A)−1A(τ−1
t I + A)−1‖ ≤ C

τt
≤ C

t+ 1
,

therefore B is of type ω0 for some ω0.
Suppose now that D(A) and R(A) are dense in X. Then for every x ∈ X

we have

‖tA(tI + A)−1(t−1I + A)−1x− x‖
≤ ‖tA(tI + A)−1(t−1I + A)−1x− t(tI + A)−1x+ t(tI + A)−1x− x‖
≤ ‖t(tI +A)−1‖ · ‖A(t−1I + A)−1x− x‖+ ‖t(tI + A)−1x− x‖ −−→

t→0+
0.

But
tA(tI + A)−1(t−1I +A)−1x ∈ D(A) ∩R(A),

so x is a limit of elements of D(A) ∩R(A), therefore D(B) = D(A) ∩R(A)
is dense in X. This proves the theorem.

Note that

‖x‖D(B) = ‖x‖+ ‖Bx‖ = ‖x‖+ ‖(2I +A+ A−1)x‖
≤ 3‖x‖+ ‖Ax‖+ ‖A−1x‖ = ‖x‖X + ‖x‖D(A) + ‖x‖R(A)

≤ ‖x‖D(A)∩R(A).

Therefore the vector spaces D(A) ∩R(A) and D(B) are equal and the first
space is continuously embedded in the second one; by the open mapping
theorem the reverse embedding is continuous and the two norms are equiv-
alent.

It follows that (X,D(A)∩R(A))α,p = D(B;α, p) with equivalent norms.
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Theorem 2.3. Let A be a one-to-one operator of type ω with dense
domain and dense range. Let α ∈ ]0, 1[ and p ∈ [1,∞]. Then D(A;α, p) ∩
R(A;α, p) = (X,D(A) ∩R(A))α,p with equivalent norms.

Proof. Since D(A) ∩ R(A) is continuously embedded in D(A) and in
R(A), by interpolation we deduce that (X,D(A)∩R(A))α,p is continuously
embedded in D(A;α, p) and in R(A;α, p) and also in their intersection.

As we have already observed, D(A) ∩R(A) = D(B) (with B as in The-
orem 2.2); therefore, in order to prove the inverse embedding, it is sufficient
to prove that D(A;α, p)∩R(A;α, p) is continuously embedded in D(B;α, p).

Let x ∈ D(A;α, p) ∩R(A;α, p); we have

‖t 7→ tαB(tI +B)−1x‖Lp∗(R+)

≤ ‖t 7→ tα(2I +A+ A−1)(tI +B)−1x‖Lp∗(R+)

≤ ‖t 7→ tα2(tI +B)−1x‖Lp∗(R+)

+ ‖t 7→ tαA(tI + A)−1(tI + A)(tI +B)−1x‖Lp∗(R+)

+ ‖t 7→ tαA−1(tI + A−1)−1(tI + A−1)(tI +B)−1x‖Lp∗(R+)

≤ C
∥∥∥∥t 7→

tα

t+ 1

∥∥∥∥
Lp∗(R+)

‖x‖

+ sup
t∈R+

‖(tI +A)(tI +B)−1‖ · ‖t 7→ tαA(tI + A)−1x‖Lp∗(R+)

+ sup
t∈R+

‖(tI +A−1)(tI +B)−1‖ · ‖t 7→ tαA−1(tI + A−1)x‖Lp∗(R+).

For t ∈ R+ we have

‖(tI + A)(tI +B)−1‖
= ‖(tI +A)A(I + A)−2B(tI +B)−1‖
≤ ‖(tI +A)(I + A)−1‖ · ‖A(I + A)−1‖ · ‖B(tI +B)−1‖ ≤ C

since A and B are of type ω and ω0 respectively. In a similar way one can
estimate the term ‖(tI+A−1)(tI+B)−1‖; thus the second summand is less
than or equal to a constant times ‖t 7→ tαA(tI+A)−1x‖Lp∗(R+) and the third
one is less than or equal to a constant times ‖t 7→ tαA−1(tI+A−1)x‖Lp∗(R+).
We can conclude that if x ∈ D(A;α, p) ∩R(A;α, p) then

‖t 7→ tαB(tI +B)−1x‖Lp∗(R+) ≤ C(‖x‖+ ‖t 7→ tαA(tI +A)−1x‖Lp∗(R+)

+ ‖t 7→ tαA−1(tI + A−1)x‖Lp∗(R+))

≤ C‖x‖D(A;α,p)∩R(A;α,p) <∞.
This proves that the space D(A;α, p)∩R(A;α, p) is continuously embedded
in (X,D(A) ∩R(A))α,p.
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We denote by Aα,p the part of the operator A in D(A;α, p)∩R(A;α, p),
i.e. the operator such that

D(Aα,p) = {x ∈ D(A) ∩ D(A;α, p) ∩R(A;α, p) :
Ax ∈ D(A;α, p) ∩R(A;α, p)}

= {x ∈ D(A) ∩R(A;α, p) : Ax ∈ D(A;α, p)},
Aα,px = Ax.

We note that if 0 ∈ %(A) then D(A;α, p) ∩R(A;α, p) = D(A;α, p) and this
definition of Aα,p coincides with the one in [1].

Theorem 2.4. If A is a one-to-one operator of type ω, then for α ∈ ]0, 1[
and p ∈ [1,∞], Aα,p is a one-to-one operator of type ω in D(A;α, p) ∩
R(A;α, p). Moreover , if A has dense domain and dense range and p < ∞
then Aα,p has dense domain and dense range.

Proof. Obviously, Aα,p is a closed operator and it is one-to-one. If λ ∈
%(A) then (λ− A)−1 restricted to D(A;α, p) ∩ R(A;α, p) is the inverse op-
erator of λ− Aα,p, thus λ ∈ %(Aα,p), therefore σ(Aα,p) ⊆ Sω.

Moreover, if x ∈ D(A) ∩R(A) then (λ− A)−1x ∈ D(A) ∩R(A) and

‖(λI − A)−1x‖D(A)∩R(A) ≤ C‖B(λI − A)−1x‖X = C‖(λI −A)−1Bx‖X
≤ C1‖(λI − A)−1‖L(X)‖Bx‖X
≤ C2‖(λI − A)−1‖L(X)‖x‖D(A)∩R(A)

(with B as in Theorem 2.2); this proves that the restriction of (λI−A)−1 to
D(A) ∩R(A) belongs to L(D(A) ∩R(A)) and its norm in this space is less
than or equal to a constant times its norm in L(X). By interpolation, taking
into account Theorem 2.3, the same is true in L(D(A;α, p) ∩ R(A;α, p)).
Since A is of type ω we can conclude that Aα,p is of type ω.

Suppose that p <∞ and that D(A) andR(A) are dense in X. In order to
prove the density of D(Aα,p) andR(Aα,p) we shall prove that D(A2)∩R(A2)
is dense in D(A;α, p) ∩ R(A;α, p) and that it is included in D(Aα,p) and
in R(Aα,p).

By Theorem 2.2, D(B) is dense in X, therefore (see the proof of Theo-
rem 2.2 of [1]) D(B2) is dense in D(B;α, p). We have

x ∈ D(B2) ⇔ x ∈ D(B) and Bx ∈ D(B)

⇔ x ∈ D(A) ∩R(A) and (2I + A+ A−1)x ∈ D(A) ∩R(A)

⇔ x ∈ D(A) ∩R(A) and Ax+ A−1x ∈ D(A) ∩R(A)

⇔ x ∈ D(A) ∩R(A) and Ax ∈ D(A) and A−1x ∈ R(A)

⇔ x ∈ D(A2) ∩R(A2),

thus D(B2) = D(A2)∩R(A2); therefore D(A2)∩R(A2) is dense in the space
D(B;α, p), that is, in D(A;α, p) ∩R(A;α, p).
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If x ∈ D(A2)∩R(A2) then x ∈ D(A) and x ∈ R(A) ⊆ R(A;α, p). Hence
x ∈ D(A) ∩ R(A;α, p), and Ax ∈ D(A) ⊆ D(A;α, p), therefore D(A2) ∩
R(A2) ⊆ D(Aα,p). If we consider the operator A−1 then the domain and
the range are interchanged and A−1

α,p = (A−1)α,p, therefore we also have
D(A2) ∩R(A2) ⊆ R(Aα,p).

In this way we have proved that D(Aα,p) and R(Aα,p) are dense in
D(A;α, p) ∩R(A;α, p).

3. H∞ functional calculus

Theorem 3.1. Let A be a one-to-one operator of type ω with dense do-
main and dense range. Let µ ∈ ]ω, π[, α ∈ ]0, 1[ and p ∈ [1,∞]. If f ∈ Ψ(S0

µ)
and x ∈ D(A;α, p) ∩ R(A;α, p), then f(A)x ∈ D(A;α, p) ∩ R(A;α, p) and
there exists Cα,p ∈ R+ (independent of f and x) such that

‖f(A)x‖D(A;α,p)∩R(A;α,p) ≤ Cα‖f‖∞‖x‖D(A;α,p)∩R(A;α,p).

Proof. First of all we consider the case p =∞.
By the same argument of the proof of Theorem 3.1 of [1] we find that

there exists Cα ∈ R+ such that for x ∈ D(A;α,∞) we have

sup
t∈R+

‖tαA(tI + A)−1f(A)x‖ ≤ Cα‖f‖∞‖x‖D(A;α,∞).

Analogously, for x ∈ R(A;α,∞) and t ∈ R+ we have

‖t1−α(tI + A)−1f(A)x‖

=
∥∥∥∥t1−α

1
2πi

�

Γθ

f(λ)
t+ λ

(λI − A)−1x dλ

∥∥∥∥

≤ 1
2π

�

R+

t1−α‖f‖∞
|t+ %eiθ| ‖(%e

iθI −A)−1x‖ d%

+
1

2π

�

R+

t1−α‖f‖∞
|t+ %e−iθ|‖(%e

−iθI −A)−1x‖ d%

≤ 1
2π

�

R+

t1−α

%1−α|t+ %eiθ| d% ‖f‖∞ sup
%∈R+

‖%1−α(%eiθI −A)−1x‖

+
1

2π

�

R+

t1−α

%1−α
1

|t+ %e−iθ| d% ‖f‖∞ sup
%∈R+

‖%1−α(%e−iθI − A)−1x‖

=
1

2π

�

R+

1
σ1−α|1 + σeiθ| dσ ‖f‖∞ sup

%∈R+
‖%1−αe−iθ(%I − e−iθA)−1x‖

+
1

2π

�

R+

1
σ1−α

1
|1 + σe−iθ| dσ ‖f‖∞ sup

%∈R+
‖%1−αeiθ(%I − eiθA)−1x‖.
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The operators A, −eiθA and −e−iθA have the same range and for ev-
ery x ∈ R(A) we have ‖A−1x‖ = ‖(−eiθA)−1x‖ = ‖(−e−iθA)−1x‖ so
that the spaces R(A), R(−eiθA) and R(−e−iθA) coincide and have equal
norms. Therefore R(A;α,∞) = R(−eiθA;α,∞) = R(−e−iθA;α,∞) (with
equal norms). It follows that there exists a constant C such that for
x ∈ R(A;α,∞) we have

sup
%∈R+

‖%αeiθA(%− eiθA)−1x‖ ≤ C‖x‖R(A;α,∞),

sup
%∈R+

‖%αe−iθA(%− e−iθA)−1x‖ ≤ C‖x‖R(A;α,∞),

therefore there exists Cα ∈ R+ such that for x ∈ R(A;α,∞) we have

sup
t∈R+

‖t1−α(tI + A)−1f(A)x‖ ≤ Cα‖f‖∞‖x‖R(A;α,∞).

In this way, taking into account Theorem 2.1, we have proved that for
x ∈ D(A;α,∞)∩R(A;α,∞) we have f(A)x ∈ D(A;α,∞)∩R(A;α,∞) and
there exists Cα ∈ R+ (independent of f and x) such that

‖f(A)x‖D(A;α,∞)∩R(A;α,∞) ≤ Cα‖f‖∞‖x‖D(A;α,∞)∩R(A;α,∞).

If p < ∞ choose α0 ∈ ]0, α[ and α1 ∈ ]α, 1[; then, as a consequence of
the reiteration theorem for real interpolation ([3], Theorem 1.10.2) and of
Theorem 2.3, we have

D(A;α, p) ∩R(A;α, p) = (X,D(A) ∩R(A))α,p
= ((X,D(A) ∩R(A))α0,∞, (X,D(A) ∩R(A))α1,∞)(α−α0)/(α1−α0),p

= (D(A;α0,∞)∩R(A;α0,∞),D(A;α1,∞)∩R(A;α1,∞))(α−α0)/(α1−α0),p

with equivalence of norms. Since we have proved that f(A) is a bounded
operator in D(A;α0,∞) ∩ R(A;α0,∞) and in D(A;α1,∞) ∩ R(A;α1,∞),
with norm not greater than Cα0‖f‖∞ and Cα1‖f‖∞ respectively, we can
conclude, by interpolation, that f(A) is a bounded operator in D(A;α, p)∩
R(A;α, p) with norm less than or equal to a constant (depending only on α
and p) times ‖f‖∞.

Theorem 3.2. Let A be a one-to-one operator of type ω with dense
domain and dense range. Let µ ∈ ]ω, π[, α ∈ ]0, 1[ and p ∈ [1,∞[. Then the
operator Aα,p has a bounded H∞(S0

µ) functional calculus.

Proof. By Theorem 2.4, Aα,p is a one-to-one operator of type ω with
dense domain and dense range. If f ∈ Ψ(S0

µ) then f(Aα,p) is the restriction
of f(A) to D(A;α, p) ∩R(A;α, p). From Theorem 3.1 we deduce that

‖f(Aα,p)‖L(D(A;α,p)∩R(A;α,p)) ≤ Cα‖f‖∞
and the conclusion follows from Theorem 2.1 of [1].
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As in [1], the following theorem is an immediate consequence of the
existence of a bounded H∞ functional calculus.

Theorem 3.3. Let A be a one-to-one operator of type ω with dense
domain and dense range. Let α ∈ ]0, 1[ and p ∈ [1,∞[. For every s ∈ R
the operator Aisα,p is bounded in D(A;α, p)∩R(A;α, p) and for every µ > ω

there exists Cµ such that ‖Aisα,p‖ ≤ Cµeµ|s|.
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