
STUDIA MATHEMATICA 145 (1) (2001)

On the powers of Voiculescu’s circular element

by

Ferenc Oravecz (Budapest)

Abstract. The main result of the paper is that for a circular element c in a C∗-
probability space, (cn, cn

∗
) is an R-diagonal pair in the sense of Nica and Speicher for

every n = 1, 2, . . . The coefficients of the R-series are found to be the generalized Catalan
numbers of parameter n− 1.

0. Introduction. Circular elements of a C∗-probability space play a
central role in Voiculescu’s free probability theory, and they provide one of
the most frequently used ∗-distributions (see e.g. [11]). An important char-
acterization of non-commutative random variables is based on the R-series
of certain pairs. The R-series of a pair is an infinite power series in two
non-commuting indeterminates, and can be taken as the free analogue of
the Fourier transform [6]. Now an element c is circular if the R-series of the
pair (c, c∗) is of the form

R(c,c∗)(z1, z2) = z1z2 + z2z1.

As a natural extension of the notion of circular element, we will call
a pair (a1, a2) of non-commutative random variables a circular pair if its
R-series is

R(a1,a2)(z1, z2) = z1z2 + z2z1.

In [7] Nica and Speicher introduced the notion of R-diagonal pairs in
the following way. The pair (x, y) of non-commutative random variables is
R-diagonal if the R-series of (x, y) is of the form

R(x,y)(z1, z2) =
∞∑

k=1

αk(z1z2)k +
∞∑

k=1

αk(z2z1)k

for some sequence {αk}∞k=1 of complex coefficients. The aim of this definition
was to establish a class of pairs of non-commutative random variables which
contains the pair (c, c∗) obtained from a circular element c, and (u, u∗)
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obtained from a Haar unitary element u. Haar unitary elements form another
important type of non-commutative random variables [10], characterized by
the R-series of the pair (u, u∗) having the form

R(u,u∗)(z1, z2) =
∞∑

k=1

(−1)k−1ck−1(z1z2)k +
∞∑

k=1

(−1)k−1ck−1(z2z1)k,

where ck = 1
k+1

(2k
k

)
is the kth Catalan number [3].

In [8] and [2] various other conditions equivalent to R-diagonality are
given.

The main result of this paper (stated as Theorem 3.2) is that for any
circular pair (b1, b2), the pair (bn1 , b

n
2 ) is R-diagonal for every n ≥ 1. The

sequence {αk}∞k=1 of coefficients of the R-series of (bn1 , b
n
2 ) is found to be

{n−1ck}∞k=1, the generalized Catalan numbers of parameter n − 1 (see [3]),
given by the formula

n−1ck =
1

(n− 2)k + 1

(
(n− 1)k

k

)
(k = 0, 1, . . . ; n = 2, 3, . . .).

The structure of the paper is the following. In Section 1 we review the
necessary elements of non-commutative probability theory. In Section 2 we
state and prove some combinatorial lemmas concerning rather special types
of partitions of certain sets. These lemmas are used for the proof of our
main result, Theorem 3.2, which can be found in Section 3, along with some
remarks and consequences.

Soon after this paper was completed, F. Larsen obtained some more
general results on powers of R-diagonal pairs. These results can be found
in [5].

1. Preliminaries. In this section we briefly review some basic elements
of non-commutative probability theory used throughout the paper. For fur-
ther details see e.g. [2, 12] and the references listed there.

If A is a unital algebra over C and ϕ : A → C is a linear functional
normalized by ϕ(1) = 1, then we call the pair (A, ϕ) a non-commutative
probability space. In this case the elements of A are called non-commutative
random variables and for a ∈ A, ϕ(an) is called the nth moment of a. If we
require in addition that A is a C∗-algebra and ϕ is positive, then (A, ϕ) is
called a C∗-probability space.

In the rest of this section (A, ϕ) stands for a non-commutative probability
space.

We denote the set of all infinite power series in the non-commuting in-
determinates X1, . . . ,Xk by C∞〈X1, . . . ,Xk〉. For F ∈ C∞〈X1, . . . ,Xk〉,
[coef(i1, . . . , im)](F ) means the coefficient of Xi1 . . .Xim in F (m ≥ 1 and
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1≤ i1, . . . , im ≤ k). If V = {h1, . . . , hr} ⊂ {1, . . . ,m} for some h1 < . . . < hr,
then let (i1, . . . , im |V ) mean (ih1 , . . . , ihr).

Let a1, . . . , ak ∈ A. A series M(a1,...,ak) ∈ C∞〈X1, . . . ,Xk〉 is called the
moment generating series of the k-tuple (a1, . . . , ak) if

[coef(i1, . . . , im)](M(a1,...,ak)) = ϕ(ai1 . . . aim)

for m ≥ 1 and 1 ≤ i1, . . . , im ≤ k (see [9]).
Let Ek consist of the formal infinite sums

T =
∞∑

m,n=0

ci1,...,im;j1,...,jn li1 . . . lim l
∗
j1 . . . l

∗
jn ,

where ci1,...,im;j1,...,jn ∈ C, i1, . . . , im, j1, . . . , jn ∈ {1, . . . , k}, l1, . . . , lk,
l∗1, . . . , l

∗
k are non-commuting formal symbols (one can think of them as

creation and annihilation operators), and there exists an N ∈ N such that
ci1,...,im;j1,...,jn = 0 whenever n > N . Multiplication of the sums is governed
by the computational rules l∗i li = 1 and l∗i lj = 0 when i 6= j, while we add
the elements of Ek in the usual way. The condition on the coefficients ensures
that when multiplying two infinite sums we have to add only finitely many
numbers. On Ek we define a normalized linear functional ω by ω(T ) = c,
where c is the constant term of the infinite sum T .

Let a1, . . . , ak ∈ A. A series R(a1,...,ak) ∈ C∞〈z1, . . . , zk〉 is called the
R-series of the k-tuple (a1, . . . , ak) if for T ∈ Ek,

T = 1 +
∞∑

m=0

[coef(i1, . . . , im)](R(a1,...,ak))lim lim−1 . . . li1

and ω(l∗i1T . . . l
∗
il
T ) = ϕ(ai1 . . . ail) for l ≥ 1 and 1 ≤ i1, . . . , il ≤ k (see [6]).

It is important that for any k-tuple (a1, . . . , ak) the moment generating
series Ma1,...,ak and the R-series Ra1,...,ak exist and are uniquely determined;
moreover, according to the so-called moment-cumulant formula [9] we have

(1.1) [coef(i1, . . . , im)](M(a1,...,ak))

=
∑

π∈NC(k)

∏

V ∈π
[coef(i1, . . . , im|V )](R(a1,...,ak)),

where the summation is over all non-crossing partitions of {1, . . . , k} and
the product is over the blocks of the partition π. (The notions concerning
non-crossing partitions are described at the beginning of Section 2.) One
easily verifies that the moment-cumulant formula is invertible, that is, the
coefficients of the R-series of any k-tuple can also be expressed uniquely by
the coefficients of the moment generating series of the k-tuple (though that
formula is somewhat more complicated; see e.g. [7]).
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Let a1, a2 ∈ A. The pair (a1, a2) is an R-diagonal pair if the R-series
of the pair is R(a1,a2)(z1, z2) =

∑∞
k=1 αk(z1z2)k +

∑∞
k=1 αk(z2z1)k for some

sequence {αk}∞k=1 of complex coefficients (see [7]).
An element c of a C∗-probability space (A, ϕ) is called circular if the

R-series of the pair (c, c∗) is R(c,c∗)(z1, z2) = z1z2 + z2z1.

2. Combinatorial background. For a finite set S, π = {V1, . . . , Vp}
is a partition of S if the (non-empty) sets Vi are disjoint and their union
is S. The sets Vi are called blocks of the partition. The number of blocks
in a partition π is denoted by |π|, the number of elements in a block Vi
is denoted by |Vi|. For a linearly ordered set S we call the partition π of
S crossing if in π there are two blocks Vi 6= Vj and elements v1, v2 ∈ Vi,
w1, w2 ∈ Vj such that v1 < w1 < v2 < w2; otherwise π is non-crossing .
A partition π of S is called a pair-partition if every block of π contains
exactly two elements of S. The sets of all non-crossing partitions and of all
non-crossing pair-partitions of {1, . . . , k} are denoted by NC(k) and NCP(k),
respectively.

For further details of the theory of partitions see e.g. [1, 4] and the ref-
erences listed there.

Definition 2.1. Fix a function i : N→ {1, 2} and k, n ∈ N. Let

Hi(1),...,i(k) = {π ∈ NC(k) | for every V = {p1, . . . , p|V |} ∈ π,
|V | is even and i(pj) 6= i(pj+1) for j = 1, . . . , |V | − 1}

(n)H̃i(1),...,i(k) = {ν ∈ NCP(nk) | for every V = {p, q} ∈ ν,
i(]p/n[) 6= i(]q/n[)}

where ]x[ means the smallest integer not smaller than x.
Moreover we call a partition π of {1, . . . , k} an n-partition if every block

of π contains exactly n elements. We denote the set of all non-crossing
n-partitions of {1, . . . , k} by NCn(k).

The cardinality of NCn(ln) is known to be the lth generalized Catalan
number of parameter n given by

ncl =
1

(n− 1)l + 1

(
nl

l

)
(n, l ∈ N)

(see e.g. [10]). Concerning the generalized Catalan numbers see also [3].

Lemma 2.2. Let i : N→ {1, 2} be either

i(j) =
{

1 if j is odd ,
2 if j is even,

or i(j) =
{

2 if j is odd ,
1 if j is even.

Then the cardinality of (n)H̃i(1),...,i(2k) equals that of NCn+1(k(n+ 1)).
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Proof. We define a bijection T : (n)H̃i(1),...,i(2k) → NCn+1(k(n+ 1)).
First let b be the function defined by

b : {1, . . . , 2kn} → {1, . . . , k(n+ 1)},

s 7→ b(s) =

{
1
2j(n+ 1) + l if j is even,
1
2j + 1(n+ 1) if j is odd,

where j = [(s− 1)/n] and l = s − jn; here [x] stands for the integer part
of x.

For any ν ∈ (n)H̃i(1),...,i(2k) let T (ν) be the partition of {1, . . . , k(n+ 1)}
whose blocks are defined in the following way.

(1) If {s1, s2} ∈ ν, then let b(s1) and b(s2) be in the same block of T (ν).
(2) If r1 is in the same block as r2, and r2 is in the same block as r3,

then let r1 and r3 be also in the same block (transitivity).

Conditions (1) and (2) clearly define an equivalence relation, which gives
a partition of {1, . . . , k(n+ 1)}.

We show that T (ν) ∈ NCn+1(k(n+ 1)) for every ν ∈ (n)H̃i(1),...,i(2k).

From the definition of (n)H̃i(1),...,i(2k) for our special function i :
N → {1, 2} it follows that if {s1, s2} ∈ ν, then one of j1 = [(s1 − 1)/n],
j2 = [(s2 − 1)/n], say j1, is odd, while the other is even. Then for every
sl ∈ {1, . . . , 2kn} of the form sl = j1n + l (l = 1, . . . , n) we have b(sl) =
1
2 (j1 + 1)(n+ 1). Take the block V of T (ν) that contains 1

2 (j1 + 1)(n+ 1) ∈
{1, . . . , k(n+1)}. Let the pair of sl in ν be rl (that is, let rl ∈ {1, . . . , 2kn} be
(unique) such that {rl, sl} ∈ ν; ν is a pair-partition). As [(sl − 1)/n] = j1
is odd, jl = [(rl − 1)/n] must be even. Let the “decomposition” of rl be
rl = jln + hl. Then by (1), b(rl) = 1

2jl(n + 1) + hl is also in V for ev-
ery l = 1, . . . , n. This means that V has at least n + 1 elements, namely
b(sl) (which is the same for every l) and b(rl) (which is different for dif-
ferent l). Take any x ∈ {1, . . . , 2kn} for which b(x) = 1

2 (j1 + 1)(n + 1) or
b(x) = 1

2 (jl + 1)(n+ 1) + hl (l = 1, . . . , n); the element b(y) defined by the
pair of x is already in V because of (1), so (2) cannot put any other element
in V . This means that V has exactly n+ 1 elements. By the same argument
every block of T (ν) consists of exactly n + 1 elements. It is also clear that
in every block V in T (ν) there is exactly one element of the form 1

2j(n+ 1)
(call it b-odd), while the remaining ones are of the form of 1

2j(n+ 1) + l for
some l = 1, . . . , n (we will call them b-even).

Suppose that T (ν) is crossing for some ν ∈ (n)H̃i(1),...,i(2k). Then there
are V,U ∈ T (ν) (V 6= U), v1, v2 ∈ V , u1, u2 ∈ U such that v1 <u1 <v2 <u2.
If one of v1 and v2 and one of u1 and u2 is b-odd, then there are blocks
{sV , rV } and {sU , rU} of ν such that b(sV ) = v1, b(rV ) = v2, b(sU ) = u1 and
b(rU ) = u2, where sV < sU < rV < rU . This means that ν is also crossing,
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which contradicts the fact that ν ∈ (n)H̃i(1),...,i(2k). If among v1, v2, u1, u2

there is only one b-odd element (say one of v1 and v2), then if the (unique)
b-odd element u0 of U is smaller than v1 or greater than v2, then instead of
u2 we can take u0 to get the “crossing elements” v1, v2, u1, u0 (if u0 < v1 then
u0 < v1 < u1 < v2, if u0 > v2 then v1 < u1 < v2 < u0); while if u0 is between
v1 and v2, then v1, v2, u0, u2 will be good crossing elements containing two
b-odd elements, leading to the same contradiction. If none of v1, v2, u1, u2 is
b-odd, then if u0 < v1 or u0 > v2 then v1, v2, u1, u0, while if v1 < u0 < v2

then v1, v2, u0, u2 are good crossing elements with one b-odd among them,
leading again to the same contradiction. This finally shows that T (ν) is
non-crossing for every ν ∈ (n)H̃i(1),...,i(2k), that is, T (ν) ∈ NCn+1(k(n+ 1))
for every ν ∈ (n)H̃i(1),i(2),...,i(2k).

Next we show that T is injective.
Let ν1, ν2 ∈ (n)H̃i(1),...,i(2k). We call s ∈ {1, . . . , 2kn} j-odd (resp. j-even)

if in the decomposition s = jn + l, j is odd (resp. even). The definition of

(n)H̃i(1),...,i(2k) shows that every block of ν ∈ (n)H̃i(1),...,i(2k) contains exactly
one j-odd and one j-even element. So if ν1 6= ν2, then there is at least one
j-even s ∈ {1, . . . , 2kn} whose pairs in ν1 and in ν2 are different. Suppose
that {s, r1} ∈ ν1, {s, r2} ∈ ν2 and r1 = j1n+ l1, r2 = j2n+ l2, where j1 6= j2.
In this case in T (ν1), b(s) is in the same block as b(r1) = 1

2 (j1 + 1)(n+ 1),
while in T (ν2), b(s) is in the same block as b(r2) = 1

2 (j2 + 1)(n+ 1) 6= b(r1).
As b(r1) and b(r2) are both b-odd, they cannot be in the same block, so
T (ν1) and T (ν2) are different.

Next we show that if there is no j-even s ∈ {1, . . . , 2kn} such that
in the decompositions of its pairs in ν1 and in ν2, j1 = [(r1 − 1)/n] and
j2 = [(r2 − 1)/n] are different, then ν1 must be identical to ν2. In this case
the set {s1, . . . , sn} of the pairs of the n j-odd elements of the form rl = jn+l
(l = 1, . . . , n) in ν1 is the same as that in ν2, for every j = 1, . . . , 2k − 1.
But, as can easily be checked, there is only one pair-partition of the subset
{s1, . . . , sn, r1, . . . , rn} ⊂ {1, . . . , 2kn} which is non-crossing and in which
every pair contains one sl and one rl, i.e. which can be a “subpartition” of
a ν ∈ (n)H̃i(1),...,i(2k). This means that all the blocks of ν1 are the same as
the blocks of ν2, proving the injectivity of T .

Finally we show that T is surjective, by induction on k.
For k = 1 the only element of NCn+1(n + 1) is π = {1, . . . , n + 1}.

The partition ν = {{1, 2n}, {2, 2n− 1}, . . . , {n, n+ 1}} ∈ (n)H̃i(1),i(2) clearly
satisfies T (ν) = π. Suppose that T is surjective for k. We show that this
implies the same for k + 1. As π ∈ NCn+1((k + 1)(n + 1)) is non-crossing
and every block of π contains exactly n + 1 elements, at least one block of
π contains the elements {p, p+ 1, . . . , p+ n} for some p ∈ {1, . . . , k(n+ 1)}.
Among these elements there is exactly one of the form j(n + 1) for some
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j = 1, . . . , k + 1. We denote it by q. Deleting the block {p, p+ 1, . . . , p+ n}
from π, we get a shorter partition π̃ ∈ NCn+1(k(n + 1)). By assumption
there exists a ν̃ ∈ (n)H̃i(1),...,i(2k) such that π̃ = T (ν̃). Consider the set
{1, . . . , 2kn} with its partition ν̃. Let

s =





[
p

n+ 1

]
2n+

(
p−

[
p

n+ 1

]
(n+ 1)

)
if q 6= p,

p

n+ 1
2n− (n− 1) if q = p.

This ensures that b(s) = p. Now put 2n extra elements between s− 1 and s,
and renumber the whole set to get {1, . . . , 2(k + 1)n}. Let ν be the follow-
ing pair-partition of this set. For the elements that came from our original
set {1, . . . , 2kn}, their pairs in ν are defined by ν̃, while for the 2n new
elements we define their pairs to be {sh0,j , sh0−j} for j = 1, . . . , h0 and
{sh0,n−j̃,sh0+1+j̃

} for j̃ = 0, 1, . . . , n− h0 − 1, where h0 = q − p,

sh =
[
p+ h

n+ 1

]
2n+

(
p+ h−

[
p+ h

n+ 1

]
(n+ 1)

)
for h = 0, 1, . . . , n, h 6= h0,

and

sh0,l = 2
(
p+ h0

n+ 1
− 1
)
n+ l (l = 1, . . . , n).

As the given pair-partition of the 2n new elements is non-crossing and
so is ν̃ ∈ (n)H̃i(1),...,i(2k), ν is non-crossing. Moreover (as can be verified
easily) the pair of every j-odd element of {1, . . . , 2(k+ 1)n} is j-even, which
ensures that ν ∈ (n)H̃i(1),...,i(2(k+1)). In T (ν) the block that contains q is
clearly {p, p + 1, . . . , p + n}, while all the other blocks of T (ν) are defined
by ν̃ (taken as a subpartition of ν), so T (ν) = π, which means that T is
surjective for k + 1, and so for all k.

We conclude that T : (n)H̃i(1),...,i(2k) → NCn+1(k(n + 1)) is a bijection,
which proves our statement.

Lemma 2.3. For any function i : N → {1, 2} and for all k ∈ N, n =
2, 3, 4, . . . ,

#(n)H̃i(1),...,i(k) =
∑

π∈Hi(1),...,i(k)

∏

V ∈π
n−1c|V |/2.

Proof. For any ν ∈ (n)H̃i(1),...,i(k) let L(ν) be the partition of {1, . . . , k}
whose blocks are defined the following way.

(1) If {s1, s2} ∈ ν, then let p1 = ](s1 − 1)/n[ and p2 = ](s2 − 1)/n[ be
in the same block of L(ν), where ]x[ means the smallest integer no smaller
than x.

(2) If r1 is in the same block as r2, and r2 is in the same block as r3,
then let r1 and r3 be in the same block too (transitivity).
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Conditions (1) and (2) clearly define an equivalence relation, which gives
a partition of {1, . . . , k}.

Let sl(p) = (p − 1)n + l (l = 1, . . . , n, p = 1, . . . , k). We show that
for every ν ∈ (n)H̃i(1),...,i(k) if V = {p1, . . . , p|V |} (p1 < . . . < p|V |) is
a block of L(ν), then {sn(pj), s1(pj+1)} ∈ ν for j = 1, . . . , |V − 1|, and
{sn(p|V |), s1(p1)} ∈ ν. As ν is a non-crossing pair-partition and as i(]s1/n[)
6= i(]s2/n[) for {s1, s2} ∈ ν, the pair of s1(p) must be sn(q) for some
q = 1, . . . , k, and the pair of sn(p) must be s1(q̃ ) for some q̃ = 1, . . . , k,
for any p = 1, . . . , k. (Otherwise the number of elements s between s1(p)
and its pair for which i(]s/n[) = 1 would differ from the number of those for
which i(]s̃/n[) = 2, so ν could not belong to (n)H̃i(1),...,i(k).) Now, if the pair
of sn(pj) is not s1(pj+1), then pj and pj+1 could not be in the same block
of L(ν) (again because ν is non-crossing).

The pair of sn(p|V |) cannot be s1(p) for p > p|V | or p < p|V |, because
in this case p|V | would not be the largest, or p1 would not be the smallest
element in V . But if the pair of sn(p|V |) is s1(p) for some p1 < p < p|V |,
then—as ν is non-crossing—p1 and p|V | could not be in the same block
of L(ν). It follows that the pair of sn(p|V |) is necessarily s1(p1).

Next we show that L(ν) is non-crossing for every ν ∈ (n)H̃i(1),...,i(k).
Suppose that some L(ν) is crossing. Then there are V,U ∈ L(ν) (V 6= U),
v1, v2 ∈ V , u1, u2 ∈ U such that v1 < u1 < v2 < u2. Let ṽ1 be the largest
element of V which is still smaller than u1; let ṽ2 be the smallest element of V
which is still greater than u1; let ũ1 be the largest element of U which is still
smaller than ṽ2, and let ũ2 be the smallest element of U which is still greater
than ṽ2 (such elements clearly exist). This implies that there is no element
of V between ṽ1 and ṽ2 nor an element of U between ũ1 and ũ2, and still
ṽ1 < ũ1 < ṽ2 < ũ2. But, as we saw above, in this case {sn(ṽ1), s1(ṽ2)} ∈ ν
and {sn(ũ1), s1(ũ2)} ∈ ν. As sn(ṽ1) < sn(ũ1) < s1(ṽ2) < s1(ũ2), ν would
also be crossing, a contradiction.

Next we show that for every ν ∈ (n)H̃i(1),...,i(k) and for every block V =
{p1, . . . , p|V |} (p1 < . . . < p|V |) of L(ν), |V | is even and i(pj) 6= i(pj+1)
(j = 1, . . . , |V | − 1). We saw above that {sn(pj), s1(pj+1)} ∈ ν, which yields

i(pj) = i

(]
sn(pj)− 1

n

[)
6= i

(]
s1(pj+1)− 1

n

[)
= i(pj+1)

while {sn(p|V |), s1(p1)} ∈ ν gives

i(p1) = i

(]
s1(p1)− 1

n

[)
6= i

(]
sn(p|V |)− 1

n

[)
= i(pj+1),

which proves our statement. This means that L(ν) ∈ Hi(1),...,i(k) for every
ν ∈ (n)H̃i(1),...,i(k).
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We show that L is surjective, that is, for any π ∈ Hi(1),...,i(k) there exist
(several) ν ∈ (n)H̃i(1),...,i(k) such that L(ν) = π. Let π = {V1, . . . , V|π|}, and

let Vj = {p(j)
1 , . . . , p

(j)
|Vj |} (p(j)

1 < . . . < p
(j)
|Vj |, j = 1, . . . , |π|). Let ν be the

pair-partition of {1, . . . , kn} which consists of the blocks {s1(p(j)
1 ), sn(p(j)

|Vj |)},
{sn(p(j)

m ), s1(p(j)
m+1)} and {sl(p(j)

2t−1), sn+1−l(p
(j)
2t )}, where j = 1, . . . , |π|,

m = 1, . . . , |Vj | − 1, t = 1, . . . , |Vj |/2 and l = 2, . . . , n − 1. Clearly ν ∈
(n)H̃i(1),...,i(k) and L(ν) = π.

Note that the blocks {s1(p(j)
1 ), sn(p(j)

|Vj |)} and {sn(p(j)
m ), s1(p(j)

m+1)} (m =
1, . . . , |Vj | − 1, j = 1, . . . , |π|) of ν already define all the blocks of L(ν);
and the fact that ν is non-crossing ensures that the rest of the blocks of ν
do not define any other elements in any of the blocks of L(ν). This means
that on the elements {sl(p(j)

t )} (where l = 2, . . . , n − 1, t = 1, . . . , |Vj |
and j = 1, . . . , |π|) any other non-crossing pair-partition ν̃—given in such
a way that if {s1, s2} ∈ ν̃, then i(](s1 − 1)/n[) 6= i(](s2 − 1)/n[)—satisfies
L(ν̃) = π. If we take into account that for any π ∈ Hi(1),...,i(k) and for every

block Vj = {p(j)
1 , . . . , p

(j)
|Vj |} of π we have i(p(j)

m ) 6= i(p(j)
m+1), and that the

subpartitions of ν̃ that define different blocks of π = L(ν̃) are independent
of each other, Lemma 2.2 completes the proof.

3. Results

Definition 3.1. Let (A, ϕ) be a non-commutative probability space, and
let b1, b2 ∈ A. We call (b1, b2) a circular pair if itsR-series isR(b1,b2)(z1, z2) =
z1z2 + z2z1.

Theorem 3.2. Let (A, ϕ) be a non-commutative probability space, b1, b2
∈ A, and let (b1, b2) be a circular pair. Then the pair (bn1 , b

n
2 ) is R-diagonal

for every n = 2, 3, . . . Moreover , the R-series of (bn1 , b
n
2 ) is given by

R(bn1 ,b
n
2 )(z1, z2) =

∞∑

k=1

n−1ck(z1z2)k +
∞∑

k=1

n−1ck(z2z1)k,

where n−1ck = 1
(n−2)k+1

((n−1)k
k

)
is the kth generalized Catalan number of

parameter n− 1.

Proof. We use the notations of Definition 2.1.
For everyR-diagonal pair (a1, a2) itsR-series is of the formR(a1,a2)(z1, z2)

=
∑∞
k=1 αk(z1z2)k+

∑∞
k=1 αk(z2z1)k for some sequence {αk}∞k=1 of complex

coefficients. According to the moment-cumulant formula (1.1) this implies

(3.1) [coef(i(1), . . . , i(m))](M(a1,a2)) =
∑

π∈Hi(1),...,i(m)

∏

V ∈π
α|V |/2

for m ≥ 1 and for every function i : N→ {1, 2}.
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From now on let a1 = bn1 , a2 = bn2 for some fixed n ∈ {2, 3, . . .}. In this
case

[coef(i(1), . . . , i(m))](M(a1,a2)) = ϕ(ai(1) . . . ai(m))

= ϕ(bni(1) . . . b
n
i(m)) = ϕ(bi(1) . . . bi(1)bi(2) . . . bi(2) . . . bi(m) . . . bi(m))

(1)
=

∑

π∈Hi(1),...,i(1),i(2),...,i(2),...,i(m),...,i(m)

∏

V ∈π
α|V |/2

(2)
=

∑

ν∈(n)H̃i(1),...,i(m)

∏

V ∈ν
1 = #(n)H̃i(1),...,i(m)

(3)
=

∑

π∈Hi(1),...,i(m)

∏

V ∈π
n−1c|V |/2.

Here the first equality comes from the definition of the moment generat-
ing series; (1) holds because (b1, b2) is a circular pair, which means that it is
also R-diagonal for some sequence {αk}∞k=1; (2) can be obtained by taking
into account that in the R-series of circular pairs the only coefficients that
do not vanish are those of z1z2 and of z2z1, which are both 1; and (3) follows
from Lemma 2.3. This means that the moment generating series of (bn1 , b

n
2 )

is given by formula (3.1) for every n ≥ 2 (m ≥ 1, i : N → {1, 2}) for the
sequence {n−1ck}∞k=1. Since the moment-cumulant formula is invertible, this
completes the proof.

Theorem 3.2 immediately yields

Corollary 3.3. For a circular element c of a C∗-probability space
(A, ϕ) the pair (cn, (c∗)n) is R-diagonal for every n ≥ 1.

Remark 3.4. If n = 2, then all the coefficients αk are 1, that is,

R(b21,b
2
2)(z1, z2) =

∞∑

k=1

(z1z2)k +
∞∑

k=1

(z2z1)k.

If n = 3, then the coefficients {αk}∞k=1 coincide with the sequence
{ck}∞k=1 of Catalan numbers, so

R(b31,b
3
2)(z1, z2) =

∞∑

k=1

ck(z1z2)k +
∞∑

k=1

ck(z2z1)k,

where ck = 2ck = 1
k+1

(2k
k

)
.

Remark 3.5. From the proof of Theorem 3.2 the following facts are
obvious for any R-diagonal pair (a1, a2):

(a) ϕ(ai(1) . . . ai(m)) = 0 whenever m is odd,
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(b) ϕ(ai(1) . . . ai(m)) = 0 whenever

#{j ∈ {1, . . . ,m} : i(j) = 1} 6= #{j ∈ {1, . . . ,m} : i(j) = 2},
(c) ϕ(ai(1) . . . ai(m)) = ϕ(ai(1) . . . ai(m)) for m ≥ 1 and for every i : N→

{1, 2}, where a1 = a2 and a2 = a1.
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