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Abstract. The following properties of C[0, 1] are proved here. Let T : C[0, 1] → Y
be a disjointness preserving bijection onto an arbitrary vector lattice Y . Then the inverse
operator T−1 is also disjointness preserving, the operator T is regular, and the vector
lattice Y is order isomorphic to C[0, 1]. In particular if Y is a normed lattice, then T is
also automatically norm continuous. A major step needed for proving these properties is
provided by Theorem 3.1 asserting that T satisfies some technical condition that is crucial
in the study of operators preserving disjointness.

1. Introduction. The primary goal of this paper is to prove that the
classical Banach lattice C[0, 1] satisfies the following two remarkable proper-
ties (1).

(1) For each disjointness preserving bijection T from C[0, 1] onto an
arbitrary vector lattice Y the inverse operator T−1 : Y → C[0, 1] is also
disjointness preserving.

(2) Each operator T appearing in (1) is regular.

Later, in the comments following Definition 3.2, it will be explained that in
fact property (2) implies (1). We refer to (1) by saying that C[0, 1] is d-rigid,
and to (2) by saying that C[0, 1] is super d-rigid. If we replace C[0, 1] by a
vector lattice X, then absolutely similarly we arrive at the definition of a
(super) d-rigid vector lattice X; see Definition 3.2.

None of the classical Banach lattices Lp[0, 1], p ≥ 1, is d-rigid; see [1,
Theorem 13.14]. On the other hand, each of the discrete Banach lattices,
in particular each `p, is super d-rigid. The latter fact, however, is in some
sense trivial for the following reason: in each of the discrete vector lattices
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(1) The interval [0, 1] can, of course, be replaced by any interval [a, b].
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any two non-disjoint elements have non-zero proportional components (2),
and under this condition the proof of the super d-rigidity becomes relatively
simple (see Theorem 11.6 in [1] for details). The Banach lattice C[0, 1] is a
first non-trivial example of a super d-rigid vector lattice.

From properties (1) and (2) it follows (see the discussion after Defini-
tion 3.2) that every disjointness preserving bijection T from C[0, 1] onto an
arbitrary vector lattice Y is automatically (ru)-continuous, and that Y is
order isomorphic to C[0, 1]. Furthermore, if Y is a normed vector lattice,
then T is also automatically norm continuous.

The automatic regularity and/or continuity of operators is not a new
topic in the framework of operators preserving disjointness. Without trying
to be complete, we mention here only a few articles containing results on
automatic continuity of such operators: [1, 4, 5, 7–10]. Most of these results
have been proven for broad classes of domain vector lattices, but at the price
of some restrictions on the image Y . We emphasize that as we will show,
the domain C[0, 1] does not require any restrictions on Y .

Our proof that C[0, 1] is d-rigid depends heavily on Theorem 3.1, our
first main result, asserting that each disjointness preserving bijection T :
C[0, 1] → Y satisfies condition (t) (see Definition 2.1 below). It is worth
pointing out that in spite of the fact that there are no topological assump-
tions on the operator T in Theorem 3.1, the proof utilizes the completeness of
the space and depends heavily on rather involved functional-analytical con-
siderations. Combining Theorem 3.1 with Theorem 4.1 in [2] stating that
if T : C[0, 1]→ Y is a disjointness preserving bijection satisfying (t), then
the operator T−1 is also disjointness preserving, we deduce immediately in
Theorem 3.3 that C[0, 1] is d-rigid. The remaining (more sophisticated) part
of Theorem 3.3 establishes that C[0, 1] is super d-rigid.

The last section, Section 4, contains some further generalizations. For
example, Corollary 4.4 describes a rather large class of d-rigid vector sub-
lattices of C[0, 1]. It should be pointed out, however, that this class is not
as large as the class we erroneously proclaimed in [2, Theorem 4.5].

All necessary terminology and notations related to operators preserving
disjointness can be found in [1, 2]. The general terminology regarding oper-
ators and vector lattices is standard and follows [6]. All vector lattices under
consideration are assumed to be Archimedean.

2. Some lemmas. We begin by recalling the definition of property (t)
that was introduced in [1].

(2) In the case of the discrete vector lattices this condition is obvious, but there are
also non-discrete Banach lattices satisfying this condition; for instance, C(βN \ N), see
[1, p. 85].
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2.1. Definition. A disjointness preserving operator T : X → Y be-
tween vector lattices satisfies condition (t) if for each x ∈ X and for each
band U in X the following implication holds:

Tx ⊥ TU ⇒ x ⊥ U.
We express the fact that T satisfies condition (t) by writing T ∈ (t).

The next lemma is a special case of Proposition 3.2 in [2].

2.2. Lemma. For a disjointness preserving bijection T : X → Y the
following two statements are equivalent.

1) T ∈ (t).
2) For each band U in X we have {TU}dd = TU , that is, TU is a band

in Y .

A function f ∈ C[a, b] is said to be locally constant at a point t ∈ [a, b]
if there exists an open neighborhood V = (α, β) of t such that f is constant
on V , that is, f(t′) = f(t) for each t′ ∈ V . We refer to the open (3) interval
V = (α, β) as an interval of constancy of f . The union of all intervals of
constancy of f will be denoted by const(f). Equivalently, const(f) is the
open set of all those points in [a, b] at which f is locally constant. If the
set const(f) is dense in [a, b], then f is known as a (continuous) essentially
constant function.

The standard uniform norm on the space of continuous functions is de-
noted by ‖ · ‖ and, as usual, for each f ∈ C[a, b] its support set, supp(f), is
the closure of the set {t ∈ [a, b] : f(t) 6= 0}.

2.3. Lemma. Consider a bounded interval [a, b] in R. Then for each
ε > 0 and each t0 ∈ (a, b) there exist non-negative functions F,G,H ∈ C[a, b]
with the following properties:

1) F (a) = G(a) = H(a) = F (b) = G(b) = H(b) = 0.
2) ‖F‖ = ‖G‖ = ‖H‖ = F (t0) = G(t0) = H(t0) = 1.
3) ‖F −G‖+ ‖G−H‖ ≤ ε.
4) Each of the functions F,G,H is essentially constant.
5) For any two of the functions F,G,H the union of their intervals of

constancy is the whole interval [a, b].

Proof. Without loss of generality we can assume that a = 0, b = 1, and
t0 = 1/2. Let C be a Cantor set (i.e., a closed, nowhere dense subset of
[0, 1] without isolated points) of measure zero and let f be a (continuous,
increasing from 0 to 1) Cantor function associated with C, i.e., f is constant
on each open interval complementary to C.

(3) If α = a or β = b, then, of course, we are talking about [a, β) or (α, b], respectively.
We adhere to the same agreement about the endpoints throughout the paper.
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From a familiar description of a Cantor set C and the uniform continuity
of f it follows easily that there exist a finite number of pairwise disjoint open
intervals (ak, bk), k = 1, . . . , n, such that their closures are also pairwise
disjoint, C ⊂ ⋃n

k=1(ak, bk), and the oscillation of f on each interval (ak, bk)
is less than ε/3.

Therefore we can easily find pairwise disjoint open intervals (a′k, b
′
k) such

that [ak, bk] ⊂ (a′k, b
′
k) and the oscillation of f on (a′k, b

′
k) is less than ε/2.

Next, we will construct a function g ∈ C[0, 1] satisfying the following
four conditions:

(i) g ≡ f on [0, 1] \⋃n
k=1(a′k, b

′
k).

(ii) g ≡ f((ak + bk)/2) on [ak, bk].
(iii) On each of the intervals [a′k, ak] we define g to be a monotone

essentially constant (Cantor like) function taking the values f(a′k) and
f((ak + bk)/2) at the endpoints, respectively.

(iv) On each of the intervals [bk, b′k] we define g to be a monotone essen-
tially constant (Cantor like) function taking the values f((ak + bk)/2) and
f(b′k) at the endpoints, respectively.

This definition guarantees that g is a continuous essentially constant
function. Clearly ‖f − g‖ ≤ ε/2, g(1) = 1, and the union of the intervals of
constancy of f and g is [0, 1].

Let B be the complement to the union of the intervals of constancy of g.
Then C∪B is a nowhere dense closed subset of [0, 1] without isolated points,
C ∪B has measure zero and we can repeat the arguments above to produce
a third continuous essentially constant function h such that the union of the
intervals of constancy of h and f (and of h and g) is [0, 1].

Next, let us extend the functions f , g, and h from [0, 1] to [0, 2] by
symmetry about the point 1, that is, for each t ∈ [1, 2] we simply let f(t) =
f(2− t), g(t) = g(2− t), and h(t) = h(2− t).

Finally, for t ∈ [0, 1] we define F (t) = f(2t), G(t) = g(2t), and H(t) =
h(2t). A straightforward verification shows that these functions are as re-
quired.

2.4. Lemma. Assume that a disjointness preserving bijection T : C[0, 1]
→ Y onto a vector lattice does not satisfy (t). Then for any two sequences
{εn} and {An} of positive scalars satisfying εn ↘ 0 and An ↗ ∞ there
exist pairwise disjoint intervals (an, bn) ⊂ (0, 1), points tn ∈ (an, bn), and
non-negative functions fn, gn, hn ∈ C[0, 1] such that

1) supp(|fn|+ |gn|+ |hn|) ⊂ (an, bn).
2) max(‖fn − gn‖, ‖fn − hn‖, ‖gn − hn‖) ≤ εn.
3) fn(tn) = gn(tn) = hn(tn) = An.
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4) max(‖fn‖, ‖gn‖, ‖hn‖) ≤ 2An.
5) For each n the elements Tfn, Tgn, and Thn are pairwise disjoint in Y .

Proof. Since the operator T does not satisfy condition (t), a simple
argument shows that we can find a function u ∈ C[0, 1] and a closed interval
[c, d] ⊂ [0, 1] such that u > 0 on the whole interval [c, d] and Tu ⊥ Tv for
each v ∈ C[0, 1] with supp(v) ⊆ [c, d]. Reducing the size of the interval [c, d] if
necessary, we can assume additionally that maxt∈[c,d] u(t) ≤ 2 mint∈[c,d] u(t).
Fix any δ > 0. By Lemma 2.3 there exist essentially constant functions
F,G,H ∈ C[0, 1] with support in (c, d) and such that 0 ≤ F,G,H ≤ 1,
‖F − G‖ + ‖G −H‖ < δ, for any two of these functions the union of their
intervals of constancy is [0, 1], and F (t0) = G(t0) = H(t0) = 1, where
t0 = (c+ d)/2.

Let f = Fu, g = Gu and h = Hu. Our lemma will be proved if we
establish that the elements Tf , Tg, and Th are pairwise disjoint in Y .

We will verify that Tf ⊥ Tg. Let x be an arbitrary function in C[0, 1].
Since the intervals of constancy of F and G cover [0, 1], there exists a finite
subcover consisting of these intervals. Therefore, using a partition of unity
subordinate to this finite cover, we can find functions xi ∈ C[0, 1] such that
x = x1 + . . .+ xm and the support of each xi is contained in an interval of
constancy of either F or G. In the first case we have F ≡ c on suppxi and so
cu−f ⊥ xi, implying that T (cu−f) ⊥ Txi. This guarantees that Tf ⊥ Txi
because Tu ⊥ Tf in view of our condition on u and on the interval [c, d].
In the second case, we obtain Tg ⊥ Txi, and thus |Tf | ∧ |Tg| ⊥ Txi. This
is true for each i and consequently |Tf | ∧ |Tg| ⊥ Tx. This guarantees that
Tf ⊥ Tg because x ∈ C[0, 1] is arbitrary and T (C[0, 1]) = Y . Similarly one
can verify that Tf ⊥ Th and Tg ⊥ Th.

Finally, substituting for (c, d) a sequence of disjoint intervals (an, bn) and
letting fn = Anf , gn = Ang, and hn = Anh we complete the proof.

For each a ∈ (0, 1) we define the following two bands La and Ra in
C[0, 1]:

La = {f ∈ C[0, 1] : f ≡ 0 on [a, 1]},
Ra = {f ∈ C[0, 1] : f ≡ 0 on [0, a]}.

2.5. Lemma. If T : C[0, 1] → Y is a disjointness preserving bijection
onto a vector lattice, then for each a ∈ (0, 1) either TLa or TRa is neces-
sarily a band in Y .

Proof. Because La ⊥ Ra we have TLa ⊥ TRa, and codim(La ⊕Ra) = 1
implies codim(TLa ⊕ TRa) = 1. Therefore if, say, TLa ( {TLa}dd, then it
must be true that TRa = {TRa}dd.

Our next lemma provides more delicate information.
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2.6. Lemma. If T : C[0, 1] → Y is a disjointness preserving bijection,
then for each subinterval [c, d] of [0, 1] there exists a non-empty open subin-
terval (p, q) ⊆ [c, d] such that either TLt = {TLt}dd for each t ∈ (p, q) or
TRt = {TRt}dd for each t ∈ (p, q).

Proof. If TLt = {TLt}dd for each t ∈ (c, d), then there is nothing to
prove. So suppose that for some a ∈ (c, d) we have TLa 6= {TLa}dd. Fix
u ∈ C[0, 1] such that Tu 6∈ TLa but Tu ∈ {TLa}dd. In particular, Tu ⊥ TRa.
Observe that necessarily u(a) 6= 0. Indeed, if u(a) = 0, then u = u1 ⊕ u2
with u1 ∈ La and u2 ∈ Ra. Since Tu ⊥ TRa and Tu1 ⊥ Tu2 it would follow
that Tu2 = 0, whence u2 = 0, and consequently u = u1 ∈ La, contradicting
our assumption that Tu 6∈ TLa. Without loss of generality we can assume
that u(a) > 0.

Fix a small δ > 0 such that u(t) > 0 for each t ∈ (a, a+δ). For each such
t the band Rt is smaller than Ra and so Tu ⊥ TRt. At the same time, the
band Lt is larger than La and so Tu ∈ {TLt}dd. Also, u 6∈ Lt since u(t) 6= 0.
Hence TLt 6= {TLt}dd. Therefore, by Lemma 2.5, we have TRt = {TRt}dd
for each t ∈ (a, a+ δ).

Similarly, if for some a ∈ (c, d) we have TRa 6= {TRa}dd, then there
exists some δ > 0 such that TLt = {TLt}dd for each t ∈ (a− δ, a).

The next lemma follows immediately from Lemma 2.6.

2.7. Lemma. Under the conditions of Lemma 2.4 we can choose intervals
(an, bn) in such a way that either

(i) bn < an+1 and TRt = {TRt}dd for any t ∈ (a1, supn bn), or
(ii) bn+1 < an and TLt = {TLt}dd for any t ∈ (infn an, b1).

Observe that the second case in Lemma 2.7 can always be reduced to
the first one. Indeed, consider the order isomorphism S : C[0, 1] → C[0, 1]
defined for f ∈ C[0, 1] by Sf(t) = f(1 − t) and notice that the operators
T−1 and (TS)−1 either both preserve disjointness or both do not. Therefore
in what follows we will always assume that case (i) holds.

2.8. Definition. Let T : C[0, 1] → Y be a disjointness preserving bi-
jection onto a vector lattice. For every f ∈ C[0, 1] the elements T−1((Tf)+)
and T−1((Tf)−) in C[0, 1] will be denoted by f ′T and f ′′T , respectively,

Clearly f ′T −f ′′T = f and f ′T +f ′′T = T−1|Tf |. Also, it follows easily that if
Tf ⊥ Tg for some f, g ∈ C[0, 1], then (f+g)′T = f ′T +g′T , (f+g)′′T = f ′′T +g′′T
and (f − g)′T = f ′T + g′′T .

2.9. Lemma. Assume that a disjointness preserving bijection T : C[0, 1]
→ Y , where Y is an arbitrary vector lattice, does not satisfy (t), and let
intervals (an, bn) in (0, 1) satisfy case (i) of Lemma 2.7. Assume also that
we have a sequence of functions fn ∈ C[0, 1] with supp(fn) ⊆ (an, bn) and
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‖fn‖ ↘ 0 so that the series u =
∑∞

n=1 fn converges in C[0, 1]. Then for each
t ∈ (0, an+1) we have

u′T (t) =
n∑

k=1

(fk)′T (t), u′′T (t) =
n∑

k=1

(fk)′′T (t).

Proof. Fix any n and any point t ∈ (0, an+1). We have u = v+w, where
v =

∑n
k=1 fk and w =

∑∞
k=n+1 fk. Clearly v ⊥ w, whence Tv ⊥ Tw and so

u′T = v′T + w′T .
Since {TRt}dd = TRt and Tw ∈ TRt it follows that (Tw)+ also belongs

to TRt and therefore w′T ∈ Rt. Hence w′T (t) = 0. It remains to notice that

v′T (t) =
n∑

k=1

(fk)′T (t),

because the elements Tf1, . . . , Tfn are pairwise disjoint in Y . The proof for
u′′T (t) is identical.

3. Main results. We are now ready to prove our main result. Recall
that if {αn} and {βn} are two real sequences and βn > 0, then the notation
αn = O(βn) means that the sequence {αn/βn} is bounded. The notation
αn � βn means that c ≤ αn/βn ≤ C for some constants c and C satisfying
0 < c ≤ C.

3.1. Theorem. Let T : C[0, 1] → Y be a disjointness preserving bijec-
tion onto an arbitrary vector lattice. Then T satisfies condition (t).

Proof. Assume, contrary to our claim, that T 6∈ (t). In view of Lem-
ma 2.6 and the comment after Lemma 2.7 there exists a non-empty open
interval (p, q) ⊂ (0, 1) such that

〈1〉 TRt = {TRt}dd for each t ∈ (p, q).

Fix a sequence of pairwise disjoint non-empty intervals (an, bn) ⊂ (p, q)
satisfying

〈2〉 bn < an+1 for each n.

The midpoint of (an, bn) will be denoted by tn.
Next for each n ∈ N we will construct inductively some constants γn and

An, some functions fn, gn, hn ∈ C[0, 1] with

〈3〉 supp(|fn|+ |gn|+ |hn|) ⊆ (an, bn),

and also some auxiliary constant δn > 0 and a function en ∈ C[0, 1] with
the properties indicated below.

Consider first n = 1. Let γ1 = 1 and A1 = γ2
1 . By Lemma 2.4 there are

functions f1, g1, h1 in C[0, 1] with supports in (a1, b1) and such that
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〈41〉 Tf1, Tg1, and Th1 are pairwise disjoint in Y ,

〈51〉 ‖f1 − g1‖+ ‖f1 − h1‖ ≤ 1/2,

〈61〉 f1(t1) = g1(t1) = h1(t1) = A1,

〈71〉 max(‖f1‖, ‖g1‖, ‖h1‖) ≤ 2A1.

Consider the six functions |(f1)′T |, |(f1)′′T |, |(g1)′T |, |(g1)′′T |, |(h1)′T |, |(h1)′′T |
in C[0, 1]. In view of 〈1〉 each of them is zero on [0, a1]. The continuity of
these functions coupled with condition 〈2〉 guarantees the existence of a
small scalar δ1 > 0 such that

〈81〉 b1 + δ1 < a2 − δ1,

〈91〉 the oscillation of each of the six functions on [b1, b1 + δ1] is less than
1/2.

Finally, we denote by e1 a function in C[0, 1] satisfying:

〈101〉 0 ≤ e1 ≤ 1, e1 is 1 on [a1, b1] and is 0 off (a1 − δ1, b1 + δ1).

For the induction hypothesis assume that for each i ≤ n − 1 we have
already defined constants γi, Ai and constructed functions fi, gi, hi ∈ C[0, 1]
such that their supports lie in (ai, bi) and

〈4i〉 Tfi, Tgi, and Thi are pairwise disjoint in Y ,

〈5i〉 ‖fi − gi‖+ ‖fi − hi‖ ≤ 1/(i+ 1),

〈6i〉 fi(ti) = gi(ti) = hi(ti) = Ai, and

〈7i〉 max(‖fi‖, ‖gi‖, ‖hi‖) ≤ 2Ai.

The auxiliary constants δi > 0 satisfy

〈8i〉 bi + δi < ai+1 − δi,
and are so small that

〈9i〉 the oscillation of each of |(fi)′T |, |(fi)′′T |, |(gi)′T |, |(gi)′′T |, |(hi)′T |, |(hi)′′T |
on [bi, bi + δi] is less than 1/(i+ 1).

Finally, for each i ≤ n− 1 we have also fixed a function ei ∈ C[0, 1] such
that

〈10i〉 0 ≤ ei ≤ 1, ei is 1 on [ai, bi] and ei is 0 off (ai − δi, bi + δi).

We are ready to describe the induction step for n. Let

γn = 2
n−1∑

i=1

γi
fi(ti)

(‖((fi)′T ei)′T ‖+ ‖((fi)′T ei)′′T ‖+ ‖((hi)′T ei)′T ‖+ ‖((hi)′T ei)′′T ‖)

and
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An = γ2
n

[
1 +

n−1∑

i=1

(‖(fi)′T ‖+ ‖(fi)′′T ‖+ ‖(gi)′T ‖+ ‖(gi)′′T ‖

+ ‖(hi)′T‖+ ‖(hi)′′T ‖)

+
n−1∑

i=1

(‖((fi)′T ei)′T ‖+ ‖((fi)′T ei)′′T ‖+ ‖((hi)′T ei)′T ‖+ ‖((hi)′T ei)′′T‖)
]
.

By Lemma 2.4, there are functions fn, gn, hn ∈ C[0, 1] with supports in
(an, bn) and such that

〈4n〉 Tfn, Tgn, and Thn are pairwise disjoint in Y ,
〈5n〉 ‖fn − gn‖+ ‖fn − hn‖ ≤ 1/(n+ 1),
〈6n〉 fn(tn) = gn(tn) = hn(tn) = An,
〈7n〉 max(‖fn‖, ‖gn‖, ‖hn‖) ≤ 2An.

We proceed with a delicate thing as to how to define δn > 0. To this end,
consider the continuous functions |(fn)′T |, |(fn)′′T |, |(gn)′T |, |(gn)′′T |, |(hn)′T |,
and |(hn)′′T |. In view of condition 〈1〉 each of them is zero to the left of an.
The continuity implies that we can find a scalar δn ∈ (0, δn−1) such that

〈8n〉 bn + δn < an+1 − δn,
〈9n〉 the oscillation of each of these six functions on [bn, bn + δn] is less

than 1/(n+ 1).

Finally, we fix a function en ∈ C[0, 1] such that

〈10n〉 0 ≤ en ≤ 1, en is 1 on [an, bn] and en is 0 off (an − δn, bn + δn).

This concludes the induction.
Consider next the following three series:

u =
∞∑

n=1

(fn − gn), v =
∞∑

n=1

(fn − hn), w =
∞∑

n=1

(gn − hn).

In view of 〈5n〉 each of these series converges in C[0, 1], and so the functions
u, v, and w do exist in C[0, 1]. Also we will need the functions u′T , u

′′
T , v′T , v

′′
T ,

w′T , and w′′T . Let C be a constant that is greater than or equal to the norm
of each of these six functions.

In view of Lemma 2.9, for each t ∈ [an, bn] we have

u′T (t) =
n∑

i=1

(fi − gi)′T (t), v′T (t) =
n∑

i=1

(fi − hi)′T (t),

w′T (t) =
n∑

i=1

(gi − hi)′T (t).
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The first equality implies that

(fn − gn)′T (t) = u′T (t)−
n−1∑

i=1

(fi − gi)′T (t),

and hence

|(fn − gn)′T (t)| ≤ C +
n−1∑

i=1

|(fi − gi)′T (t)|.

Similarly

|(fn − gn)′′T (t)| ≤ C +
n−1∑

i=1

|(fi − gi)′′T (t)|.

Since Tfi ⊥ Tgi for each i, we know that (fi − gi)′T (t) = (fi)′T (t) + (gi)′′T (t)
and (fi − gi)′′T (t) = (fi)′′T (t) + (gi)′T (t), and therefore the previous two in-
equalities can be rewritten as

|(fn)′T (t) + (gn)′′T (t)| ≤ C +
n−1∑

i=1

|(fi)′T (t) + (gi)′′T (t)|,(1)

|(fn)′′T (t) + (gn)′T (t)| ≤ C +
n−1∑

i=1

|(fi)′′T (t) + (gi)′T (t)|.(2)

Similar estimates are true for the pair |(fn)′T (t) + (hn)′′T (t)|, |(fn)′′T (t) +
(hn)′T (t)|, and for the pair |(gn)′T (t) + (hn)′′T (t)|, |(gn)′′T (t) + (hn)′T (t)|.

To simplify what follows, let us introduce the following constant:

Mn = max
t∈[an,bn]

[|(fn)′T (t) + (gn)′′T (t)|+ |(fn)′′T (t) + (gn)′T (t)|

+ |(fn)′T (t) + (hn)′′T (t)|+ |(fn)′′T (t) + (hn)′T (t)|
+ |(gn)′T (t) + (hn)′′T (t)|+ |(gn)′′T (t) + (hn)′T (t)|].

Using estimates (1), (2) above, their four analogues for |(fn)′T (t) +
(hn)′′T (t)|, |(fn)′′T (t) + (hn)′T (t)|, |(gn)′T (t) + (hn)′′T (t)|, and |(gn)′′T (t) +
(hn)′T (t)|, as well as the definition of the constant An, we obtain

Mn ≤ 6C + max
t∈[an,bn]

n−1∑

i=1

[|(fi)′T (t) + (gi)′′T (t)|+ |(fi)′′T (t) + (gi)′T (t)|

+ |(fi)′T (t) + (hi)′′T (t)|+ |(fi)′′T (t) + (hi)′T (t)|

+ |(gi)′T (t) + (hi)′′T (t)|+ |(gi)′′T (t) + (hi)′T (t)|]

≤ 6C + 2An/γ2
n = 6C + 2fn(tn)/γ2

n.
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In other words, we have

Mn = O(fn(tn)/γ2
n).

Using the obvious identity

(fn)′T + (fn)′′T = ((fn)′T + (gn)′′T )− ((gn)′′T + (hn)′T ) + ((fn)′′T + (hn)′T ),

we immediately see that

(3) max
t∈[an,bn]

|(fn)′T (t) + (fn)′′T (t)| = O(fn(tn)/γ2
n).

At the same time, for each t ∈ [an, bn] (in fact, for each t ∈ [0, 1]) we have

(4) (fn)′T (t)− (fn)′′T (t) = fn(t).

Estimates (3) and (4) imply easily that

(5) max
t∈[an,bn]

|(fn)′T (t)− fn(t)/2| = O(fn(tn)/γ2
n).

By symmetry we also have

(6) max
t∈[an,bn]

|(hn)′T (t)− hn(t)/2| = O(hn(tn)/γ2
n).

Recalling that hn(tn) = fn(tn) and that ‖fn − hn‖ → 0, we can rewrite (6)
as

(7) max
t∈[an,bn]

|(hn)′T (t)− fn(t)/2| = O(fn(tn)/γ2
n).

From (5) and (7) it follows that

max
t∈[an,bn]

|(fn)′T (t) + (hn)′T (t)− fn(t)| = O(fn(tn)/γ2
n)

and so, in particular,

|(fn)′T (tn) + (hn)′T (tn)− fn(tn)| = O(fn(tn)/γ2
n).

This implies immediately that

(8) (fn)′T (tn) + (hn)′T (tn) � fn(tn).

From (5) and (7) it also follows that

max
t∈[an,bn]

|(fn)′T (t)− (hn)′T (t)| = O(fn(tn)/γ2
n).

Moreover, in view of 〈9n〉 we have

max
t∈[an−δn,bn+δn]

|(fn)′T (t)− (hn)′T (t)| = O(fn(tn)/γ2
n).

This implies that the disjoint sequence
{ γn
fn(tn)((fn)′T − (hn)′T )en

}
converges

in norm to zero, and therefore the function

x =
∞∑

i=1

γi
fi(ti)

((fi)′T − (hi)′T )ei
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exists in C[0, 1]. Let

x̂ = T−1(|Tx|), x̂n = T−1
(∣∣∣∣T

( n∑

i=1

γi
fi(ti)

((fi)′T − (hi)′T )ei

)∣∣∣∣
)
.

We will arrive at a contradiction by showing that the function x̂ ∈ C[0, 1] is
unbounded. From condition 〈1〉 it follows at once that

(9) x̂(tn) = x̂n(tn),

and from the pairwise disjointness of the terms in the last sum above it
follows that

x̂n = T−1
( n∑

i=1

∣∣∣∣T
(

γi
fi(ti)

((fi)′T − (hi)′T )ei

)∣∣∣∣
)
.

Consequently,

|x̂n(tn)| ≥ γn
fn(tn)

|T−1(|T ((fn)′T − (hn)′T )en)|)(tn)|

−
n−1∑

i=1

∣∣∣∣T−1
(∣∣∣∣T

(
γi

fi(ti)
((fi)′T − (hi)′T )ei

)∣∣∣∣
)

(tn)

∣∣∣∣

≥ γn
fn(tn)

|T−1(|T ((fn)′T − (hn)′T )en)|)(tn)|

−
n−1∑

i=1

γi
fi(ti)

[‖((fi)′T ei)′T ‖+ ‖((fi)′T ei)′′T ‖

+ ‖((hi)′T ei)′T ‖+ ‖((hi)′T ei)′′T ‖].
Since the last sum is simply γn/2, we have

(10) |x̂n(tn)| ≥ γn
fn(tn)

|T−1(|T ((fn)′T − (hn)′T )en)|)(tn)| − γn/2.

We claim that

|T−1(|T (((fn)′T − (hn)′T )en)|)(tn)| = |T−1(|T ((fn)′T − (hn)′T )|)(tn)|.
To prove this, set for brevity α := ((fn)′T − (hn)′T )en and β := (fn)′T −

(hn)′T , and note that the functions α and β coincide on [0, bn] and so their
difference α − β is in Rt for any t ≤ bn. Since, by 〈1〉, TRt is a band,
we have |T (α − β)| ∈ TRt, implying that T−1(|T (α − β)|) also belongs
to Rt and so, in particular, T−1(|T (α − β)|)(tn) = 0. It remains to notice
that |T−1(|Tα|) − T−1(|Tβ|)| ≤ |T−1(|T (α − β)|)|, which guarantees that
T−1(|Tα|)(tn) = T−1(|Tβ|)(tn).

Next observe that T ((fn)′T − (hn)′T ) = T (fn)′T − T (hn)′T = (Tfn)+ −
(Thn)+ and hence, since the last two terms are disjoint, |T ((fn)′T−(hn)′T )| =
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(Tfn)+ + (Thn)+. Taking into consideration (8) now yields

|T−1(|T ((fn)′T − (hn)′T )|)(tn)| = |T−1((Tfn)+ + (Thn)+)(tn)|
= (fn)′T (tn) + (hn)′T (tn) � fn(tn).

In other words, the first term in (10) is equivalent to γn, that is,
γn

fn(tn)
|T−1(|T ((fn)′T − (hn)′T )en)|)(tn)| � γn.

Using this and returning back to inequality (10), we see that x̂n(tn) ≥
cγn/2 for some constant c > 0 that is independent of n. But then, in view
of (9), we get x̂(tn) ≥ cγn/2, which is impossible since the function x̂ must
be bounded.

We are ready to prove our second main result. It establishes important
order properties of C[0, 1]. We precede it with a formal definition of (super)
d-rigidity already discussed in the introduction. The notion of d-rigidity was
introduced in [2], and its strengthening, super d-rigidity, is considered here
for the first time.

3.2. Definition. A vector lattice X is said to be d-rigid if for each
disjointness preserving bijection T from X onto an arbitrary vector lattice
Y the inverse operator T−1 : Y → X is also disjointness preserving. If,
additionally, each such operator T is regular, then X is said to be super
d-rigid.

It should be noticed that according to Theorem 4.12 of [1] the regularity
of a disjointness preserving bijection T : X → Y guarantees that T−1 is
disjointness preserving, and thus the latter condition in Definition 3.2 implies
the former. Moreover, T−1 is also regular and the vector lattices X and Y
are necessarily order isomorphic.

It is interesting to notice that the super d-rigidity of a vector lattice
X implies that the Boolean algebra B(X) of all bands in X completely
determines the order structure of X in the following sense: If T : X → Y
is a bijection onto an arbitrary vector lattice Y such that the mapping
B 7→ T (B), B ∈ B(X), defines a Boolean isomorphism from B(X) onto
B(Y ), then Y is order isomorphic to X.

3.3. Theorem. The vector lattice C[0, 1] is super d-rigid , i.e., if Y is
an arbitrary vector lattice and T : C[0, 1] → Y is a disjointness preserving
bijection, then the inverse operator T−1 is also disjointness preserving and
the operator T is necessarily regular.

Proof. Let T : C[0, 1] → Y be a disjointness preserving bijection onto
an arbitrary vector lattice.

The d-rigidity of C[0, 1] follows easily from our previous theorem and a
theorem in [2]. Indeed, by Theorem 3.1 the operator T satisfies condition (t).



350 Y. A. Abramovich and A. K. Kitover

Under this condition the desired conclusion that T−1 preserves disjointness
is proved in [2, Theorem 4.1].

It is harder to prove that the operator T is also regular, and so C[0, 1]
is super d-rigid. As before, for each t ∈ (0, 1) we consider the bands Lt and
Rt introduced prior to Lemma 2.5, and let Ut = T (Lt) and Vt = T (Rt) be
their images in Y . Clearly Ut and Vt are disjoint bands in Y .

Notice that if some y ∈ Y belongs to Ut ⊕ Vt for each t ∈ (0, 1), then
necessarily y = 0. Indeed, let x = T−1y ∈ C[0, 1]. Because T−1 preserves
disjointness, it follows that x ∈ Lt ⊕ Rt, i.e., x(t) = 0 for each t ∈ (0, 1).
Thus x = 0 and so y = Tx = 0.

Since the constantly one function 1 does not have non-trivial components
in C[0, 1] and since T−1 preserves disjointness, the element T1 does not
have non-trivial components in Y either, and therefore either |T1| = T1 or
|T1| = −T1. Replacing (if necessary) T by −T we can always assume that
the former case holds, i.e., |T1| = T1. Clearly T1 is a weak unit in Y .

Assume contrary to our claim that the operator T is not regular. Then by
the McPolin–Wickstead theorem (see [11] or Theorem 5.1 in [1]) there exists
a sequence {xn} of non-negative functions in C[0, 1] such that ‖xn‖ → 0 and
|Txn| ≥ y for all n ∈ N and some 0 < y ∈ Y . We will assume that ‖xn‖ ≤ 1
for each n.

Next we will show that without loss of generality we can assume addi-
tionally that

(11) Txn ≥ 0 for all n ∈ N.
To this end, let x′n = T−1|Txn|, whence Tx′n = |Txn|. As |Txn| =

(Txn)+ + (Txn)− and T−1 preserves disjointness, we see that ‖x′n‖ = ‖xn‖
and so ‖x′n‖ → 0. Consider finally x′′n = x′n + ‖x′n‖1. Clearly x′′n ≥ 0 and
‖x′′n‖ → 0. It remains to notice that

Tx′′n = Tx′n + ‖x′n‖T1 = |Txn|+ ‖x′n‖T1 ≥ |Txn| ≥ y.
Therefore, replacing if necessary the initial sequence {xn} by the sequence
{x′′n}, we can indeed assume that {xn} satisfies additionally condition (11).

Because T1 is a weak unit in Y we have y∧T1 6= 0. Consequently, there
is some t ∈ (0, 1) such that

(12) y ∧ T1 6∈ Ut ⊕ Vt.
Fix such a t. Obviously xn − xn(t)1 ∈ Lt ⊕Rt and so

(13) Txn − xn(t)T1 ∈ Ut ⊕ Vt.
We will prove next that it follows from (13) that

(14) Txn ∧ T1− xn(t)T1 ∈ Ut ⊕ Vt.
To this end, consider in Y the principal ideal Y (v) generated by

the element v(= vn) = Txn + T1. By the Krein–Kakutani theorem there
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exists a compact Hausdorff space K such that Y (v) can be identified with
an order dense vector sublattice of C(K) in such a way that v is identified
with χK .

Since the elements Txn and T1 belong to Y (v) (and hence to C(K)),
the elements f := Txn− xn(t)T1 and g := Txn ∧ T1− xn(t)T1 also belong
to Y (v).

Clearly Ut ∩ Y (v) and Vt ∩ Y (v) are the bands in Y (v). Therefore (since
Y (v) is order dense in C(K)) there exist two unique bands U ′t and V ′t in C(K)
that correspond to the bands Ut and Vt, respectively. To establish (14), that
is, that g ∈ U ′t ⊕ V ′t , it suffices to show that g(k) = 0 provided f(k) = 0 for
k ∈ K. So, assume that f(k) = (Txn)(k)−xn(t)(T1)(k) = 0 at some k ∈ K.
That is, (Txn)(k) = xn(t)(T1)(k) and hence, since 0 ≤ xn(t) ≤ ‖xn‖ ≤ 1, it
follows that (Txn)(k) ≤ (T1)(k). Therefore, (Txn)(k)∧(T1)(k) = (Txn)(k),
and hence

g(k) = (Txn ∧ T1)(k)− xn(t)(T1)(k) = Txn(k)− xn(t)(T1)(k) = f(k) = 0,

as claimed. This proves (14).
Since xn(t)T1 → 0 with the regulator of convergence T1 ∈ Ut ⊕ Vt and

since 0 < y ∧ T1 ≤ Txn ∧ T1, it follows from (14) that y ∧ T1 ∈ Ut ⊕ Vt.
This contradicts (12). The proof is complete.

We single out some useful consequences of the previous theorem.

3.4. Corollary. Let T : C[0, 1]→ Y be a disjointness preserving bijec-
tion onto an arbitrary vector lattice. Then Y is order isomorphic to C[0, 1].

Proof. By Theorem 3.3 the disjointness preserving operator T is regular.
Then Theorem 4.12 in [1] guarantees that C[0, 1] is order isomorphic to Y .

3.5. Corollary. Let T : C[0, 1] → Y be a disjointness preserving
bijection onto an arbitrary vector lattice. Then T is automatically (ru)-
continuous.

3.6. Corollary. Let T : C[0, 1] → Y be a disjointness preserving bi-
jection onto an arbitrary normed vector lattice. Then Y is necessarily norm
complete and T is norm continuous.

4. Some generalizations and remarks. An inspection of the proof of
Theorem 3.1 shows that its statement remains true for a large class of vector
sublattices of C[0, 1]. To describe this class precisely, we need to introduce
two definitions.

4.1. Definition. A unital subalgebra A of C[0, 1] is said to be EC-
rich if for any interval (a, b) ⊂ (0, 1) the algebra A contains an essentially
constant function f such that 0 ≤ f ≤ 1, f ≡ 0 on [0, a], and f ≡ 1 on [b, 1].
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4.2. Definition. A vector sublattice X of C[0, 1] is c0-complete if for
every disjoint sequence {xn} in X satisfying ‖xn‖ → 0 the element

∑∞
n=1 xn

belongs to X.
A vector sublattice X of C[0, 1] is weakly c0-complete if there exists a

sequence {εn} of positive scalars such that εn ↘ 0 and for any disjoint
sequence {xn} in X satisfying ‖xn‖ ≤ γεn for some constant γ > 0 the
element

∑∞
n=1 xn belongs to X.

The proof of the next result repeats, practically verbatim, that of The-
orem 3.1.

4.3. Theorem. Let X be an order dense vector sublattice of C[0, 1] sat-
isfying the following two conditions.

1) X is weakly c0-complete.
2) AX ⊆ X for some EC-rich subalgebra A of C[0, 1].

Then each disjointness preserving bijection T : X → Y satisfies condition
(t).

Using this theorem we can now describe a large class of d-rigid vector
lattices. We would like to repeat that, as mentioned in the introduction,
this class is not as large as the class we erroneously proclaimed in [2, Theo-
rem 4.5].

4.4. Corollary. Let X be an order dense vector sublattice of C[0, 1]
satisfying the following two conditions:

1) X is weakly c0-complete.
2) AX ⊆ X for some EC-rich subalgebra A of C[0, 1].

Then the vector lattice X is d-rigid.

Proof. Let T : X → Y be a disjointness preserving bijection onto a
vector lattice Y . By the previous theorem T satisfies (t). Assume, contrary
to our claim, that T−1 does not preserve disjointness. Then, using Lemma 5.3
of [2], we can find positive elements u, v ∈ X such that

(i) Tu ⊥ Tv,
(ii) for each ε > 0 there exist linear combinations sε and tε of u and v,

respectively, such that |sε − v| ≤ εu and |tε − u| ≤ εv.

A straightforward argument shows that for continuous functions u and
v on [0, 1] condition (ii) implies that the functions u and v must be pro-
portional. However, this contradicts condition (i). Consequently, the inverse
T−1 preserves disjointness, and so X is d-rigid.

4.5. Remark. (i) Theorem 4.3 does not hold if no additional assump-
tions on the order dense vector sublattice X of C[0, 1] are imposed. Namely,
in the absence of both assumptions in Theorem 4.3 there even exists a band
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preserving bijection T : X → Y , where X is an order dense vector sublattice
of C[0, 1] and Y is a vector sublattice of the universal completion Xu of X,
such that the inverse operator T−1 : Y → X does not preserve disjointness
(see [3, Example 4.7]).

(ii) It follows from [3, Theorem 4.2] that Condition 2 in Theorem 4.3
guarantees that for any invertible band preserving operator T : X → Xu

the inverse operator T−1 : TX → X is also band preserving. Nevertheless,
this condition alone does not guarantee that X is d-rigid. A corresponding
counterexample will be presented elsewhere. Note incidentally that our coun-
terexample also settles in the negative one more open problem regarding the
possibility of range-domain exchange in the Huijsmans–de Pagter–Koldunov
Theorem (see Section 9 in [1]).

(iii) We do not know if Condition 1 in Theorem 4.3 is enough to guarantee
that T−1 is disjointness preserving. It seems that it might, especially in view
of Theorem 4.6 below.

The situation becomes much simpler if one assumes additionally that
the range vector lattice Y is (ru)-complete.

4.6. Theorem. Let X be a weakly c0-complete order dense vector sublat-
tice of C[0, 1] and let Y be an (ru)-complete vector lattice. If T : X → Y is
a disjointness preserving bijection, then the inverse operator T−1 : Y → X
preserves disjointness.

Proof. Assume contrary to our claim that T−1 does not preserve dis-
jointness. Using Lemma 5.3 of [2] we can conclude that T does not satisfy
(t) either. (Otherwise, as in the proof of Corollary 4.4, it would follow that
T−1 were disjointess preserving.) Therefore, exactly as at the very beginning
of the proof of Lemma 2.4, there exists an element f ∈ X and an interval
(a, b) ⊂ (0, 1) such that

f > 0 on [a, b] and Tf ⊥ Tg for any g ∈ X with supp(g) ⊆ [a, b].

As said before, we can always assume that TRt = {TRt}dd for any
t ∈ (a, b). Let (an, bn) be disjoint intervals in (a, b) such that bn < an+1.

Fix n for a moment. BecauseX is order dense in C[0, 1], for anym ∈ N we
can find m functions fn,1, . . . , fn,m ∈ X and a point tn ∈ (an, bn) satisfying
the following conditions:

• supp(fn,1) ⊂ (an, bn) and 0 ≤ fn,1 ≤ f ,
• 0 < fn,i+1 ≤ fn,i and supp(fn,i+1) ⊆ {t : fn,i(t) = f(t)}, i = 1, . . . ,

m− 1,
• fn,1(tn) = . . . = fn,m(tn) = f(tn).

We claim that Tfn,1, . . . , Tfn,m are pairwise disjoint in Y . Indeed, pick
any i, j ∈ N satisfying 1 ≤ i < j ≤ m and consider Tfn,i and Tfn,j .
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Obviously f − fn,i ⊥ fn,m and so T (f − fn,i) ⊥ Tfn,j as T preserves
disjointness. But T (f−fn,i) = Tf−Tfn,i and Tf ⊥ Tfn,i, since supp(fn,i) ⊆
[a, b]; therefore it follows that Tfn,i ⊥ Tfn,i.

Let {εn} be a null sequence of positive scalars guaranteed by Defini-
tion 4.2, and fix an increasing sequence mn ∈ N such that

mnεn
n
→∞ as n→∞.

Next, for each n, we produce the functions fn,1, . . . , fn,mn ∈ X, as explained
above. Let gn =

∑mn
i=1(−1)i+1fn,i. Then Tgn =

∑mn
i=1(−1)i+1Tfn,i, and

hence |Tgn| =
∑mn

i=1 |Tfn,i|, since Tfn,1, . . . , Tfn,mn are pairwise disjoint.
The functions g1, . . . , gn, . . . are pairwise disjoint in X and clearly ‖gn‖ ≤

‖f‖. Therefore, since X is weakly c0-complete, the element

u =
∞∑

n=1

εngn

exists in X. Therefore Tu ∈ Y , and so v = |Tu| also belongs to Y .
Finally, consider the element

y =
∞∑

n=1

εn
n

(mn∑

i=1

Tfn,i

)
,

which exists in Y since the vector lattice Y is (ru)-complete (we omit the
simple verification that the series defining y is indeed (ru)-Cauchy with v as
its regulator).

To obtain a contradiction, we will show that the function T−1y ∈ X is
unbounded. To get this, one should keep in mind that TRt = {TRt}dd for
each t ∈ (a, b), and then a direct calculation shows that

(T−1y)(tn) =
εn
n
mnf(tn) ≥ c εn

n
mn →∞ as n→∞,

where c = min{f(t) : t ∈ [a, b]} > 0 in view of our assumption that f is
strictly positive on [a, b].
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