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Abstract. We show that n-dimensional spaces with maximal projection constants
exist not only as subspaces of lso but also as subspaces of [1. They are characterized by
a rigid set of vector conditions. Nevertheless, we show that, in general, there are many
non-isometric spaces with maximal projection constants. Several examples are discussed
in detail.

1. Spaces with maximal projection constants. In this paper we
study the question of non-uniqueness of finite-dimensional spaces with max-
imal projection constant and their imbeddings into [l and l;. Given a
(closed) subspace X of a Banach space Z, the relative projection constant
of X in Z is

MX,Z) :=inf{||P|| | P: Z — X is a linear projection onto X},
and the (absolute) projection constant of X is
AMX) :=sup{A(X, Z) | Z a Banach space containing X as a subspace}.

The scalar field K will be either the reals R or the complex numbers C.
Any separable Banach space can be imbedded into l..; for any such imbed-
ding A(X) = M(X, ), leo is the natural superspace. For finite-dimensional
spaces, A(X) < v/dim X by Kadets—Snobar [KS].
In fact, more is known: Let 1 <n < N < oo and
fx(n,N) = sup{A\(X,2) | X C Z,dim X =n, dimZ = N},
gr(n) := sup{\(X) | dim X = n}.
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Further, let us introduce
F(n,N) := vn([Vn+ /(N —1)(N —n)]/N),
Gr(n) =12+ (n—-1)vn+2]/(n+1),
Ge(n) ==[1+ (n—1)vn+1]/(n).
Then by [KLL] and [KT2| for all n < N one has

(1'1) fK(n7N) gF(TL,N),

(1.2) gr(n) < Gx(n).

We note that F(n, N),Gg(n) < y/n and, in fact,

(1.3) Gr(n) = F(n,n(n+1)/2), Gec(n) = F(n,n?).

An n-dimensional subspace X,, C I can be given by a basis ( f]) _, where
fi = (fis)Y, € K. Writing the coordinates of 7 = =Y 7if; € Xy as
z = (x;)j—1, we have

(1.4) uxn—HZ%f]H = sup_[(z,2)| = |

where x5 = (fjs)j—; € K" and (-, ) is the usual scalar product in K". We
identify in the following (K", || - ||) with X,, C Y and write ||z|| instead of
[IZ||, both spaces being isometric.

A very rigid set of conditions needs to be imposed on the vectors z, € K"
(s =1,...,N) to have equality in (1.1) or (1.2), i.e. A\(Xp, 1Y) = F(n, N)
or AM(X) = Gg(n): the vectors have to form a tight spherical 4-design
(see [KT?2]). In spite of this being a very strong assumption, we will show
that—in general—there are many non-isometric spaces with maximal pro-
jection constant, some of them even being realized as subspaces of /1. In
a recent paper, Chalmers and Lewicki [CL| show that among the symmet-
ric sequence spaces with maximal projection constants there are symmetric
subspaces of 1. This result motivated a part of the current paper.

We use standard Banach space terminology (see e.g. [TJ]). In partic-
ular, lZ])V denotes KV with the p-norm if N € N and 1 < p < oo. Given
a measure g on {1,...,N}, I ( ) denotes KV, equipped with the norm

lz|| = (ZS 1 |x5|pus)1/p, x = (xs) V., € KN. The Banach-Mazur distance
between two n-dimensional normed spaces X and Y is given by

A(X,Y) =inf{||T|||T7Y| | T: X — Y is a linear isomorphism}.
Our main results are:

THEOREM 1. Let n € N, N € NU {oco} and X,, C 1Y be a space such
that X,, has maximal projection constant among all n-dimensional spaces.
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Thus M(X,,) = gr(n). Then there is Y, C IV also having mazximal projection
constant

(1.5) AYn) = A(Yn, 1Y) = A(Xp) = gx(n).

A corresponding fact holds for relative projection constants: if X, C I
satisfies N( Xy, 1Y) = fx(n, N) for N € N, there is Y,, C I with

(1.6) MY, 1Y) = XN X,0, 1Y) = fx(n, N).

ny Yoo

In the real two-dimensional case, A\(X2) = ¢(2) = f(2,3) = 4/3 is
uniquely attained by the space X9 having the regular hexagon as its unit
ball, and Y5 = X5 holds isometrically. Both spaces are represented in R?
with the | - [|loo- or || - l1-norm by the hyperplane H = {z = (z;)3_, € R? |
Z?:l z; = 0}. In general, however, spaces X,, C I and Y,, C [ with max-
imal projection constant are not isometric. This already occurs for n = 3 in
the real and n = 2 in the complex case.

PROPOSITION 2. Let D be the dodecahedron in R® and I be the icosahe-
dron having as its vertices the midpoints of the faces of D. Let K = DN ¢l
where ¢ = (1 +/5)/2. Let X3 and Y3, respectively, be the 3-dimensional
spaces having D and K as their unit balls. Then X3 C 1., Y3 C 1§ and both
have mazimal projection constant

AMX3) = A(V3) = \(Y3,18) = Gr(3) = F(3,6) = ¢.
A similar example exists for K= C and n = 2.

Clearly Y3 and X3 are non-isometric, Y3 having 12 regular pentagons
and 20 regular triangles as its faces. There are infinitely many non-isometric
spaces with unit balls between K and D having maximal projection con-
stant ¢.

Known examples of n-dimensional spaces with maximal projection con-
stant are often realized as subspaces of [ where N ~ n2. In this kind
of situation we can always find many non-isometric spaces with extremal
projection constant, n being sufficiently large.

THEOREM 3. Let n > 2 and 8 < N < eVn/(8e) If X, C lO]\é 18 an n-
dimensional space with maximal projection constant, \(X,) = gk(n), there
are infinitely many mutually non-isometric n-dimensional spaces Y, with

A(Xn) = A(Yn) = gr(n).
These spaces are constructed by probabilistic methods. There is, how-
ever, an asymptotic sequence of spaces defined more explicitly exhibiting a
similar property to the one in Proposition 2.

PROPOSITION 4. Let n = p™ be an odd prime power and set N =

n% —n+1. Then there exist complex n-dimensional subspaces of CV, which
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we call X,, and Y,, when considered as subspaces of lévo and Z{V, respectively,
satisfying:

(a) X, and Y, have extremal relative projection constant \(X,,IY) =
MY, 1Y) = fe(n,N) = F(n,N),

(b) Xy, and Y, are non-isometric. In fact, the Banach—Mazur distance
to 13 satisfies d(Xn,15) = /n, d(Yp,15) < V2.

We note that the absolute projection constants of X, are almost the max-

imal possible ones since A\(X,,) < G(n) always holds and G(n) — F(n,N) <
1/(20%?), F(n, N) > v/ — 1/(2y/).

2. Characterization of extremal cases. The proofs of our theorems
rely on the following duality result:

PROPOSITION 5. Let N € NU{oo} and n € N, n < N. Then
(2.1)  sup{\Zn, 1Y) | Z,, is an n-dimensional subspace of I}

N
:nsup{ Z Lhs Jht ‘ \(xs,xt)]} = A

s,t=1
where the second supremum is taken over all discrete probability measures
po= (us)Ny on {1,...,N} or N, ||ull1 = 1, and over all sets of vectors
rs € S 1K), s=1,...,N, such that

N
(2.2) Id, =nY el z)ze  (onK").
t=1

Both suprema are, in fact, mazima. Given extremal elements (x¢, ) attain-
ing A, let S := suppu and M :=|S| < N. Then an n-dimensional space
X, C 1M with mazimal projection constant A is given by its norm
|z|| :=sup [{(z,zs)|, x€K"
ses

The dual unit ball of X, is the absolutely convex hull of the vectors (s)ses-
Further, A = N il (zg, x4)| is independent of s € S, and the formula
u = (sgn({ws, 7)) pt)sses defines a map on I with ulx, = (A/n)1dx,.

Proposition 5 is essentially a consequence of proofs in [KT2] except
for some lemma which was formulated there under an additional but un-

necessary condition. To formulate the improved version, for n € N and
N eNU{oo} set T={1,...,N} and

o0, T) =sup > |3 fi(5) (0

steT  j=1

st
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where the supremum is extended over all probability measures p = (,us)i,\f:l
on T and all orthonormal systems (f;)_; of length n in 13 ().

LEMMA 6. Assume that p° = (u2)N, and f7,..., fS attain the supre-
mum
n —_—
1) = > |2 ) 0.
s;teT j=1
Then for all I,m = 1,...,n, there exists a sequence 1 <ly,...,lp < n such

that lg =1, I = m and for any 1 < r < k we have

supp f;_, Nsupp f; Nsupp p° # (.

Proof. For 0 < 1 <1, let M, denote the set of all discrete measures on
T such that u(T) = 7. By ¢(n,T,7) we denote the supremum analogous to
@(n,T) except that u € M, the orthonormalization of the f;’s being taken
with respect to /7. Then ¢(n, T) = o(n, T, 1) and p(n, T, 7) = 720(n, T, 1).
Further p(n1,71,1) < p(n,T,1) if ny <n and 71 C T. Assume that x° and
f1, ..., fr attain the supremum ¢(n,T). Let J; C {1,...,n} be a maximal
set with the following property: J; = {ji,...,Jo} and for every 1 < r < p

we have
r—1

(2.3) supp f5. N U supp f;, Nsupp pu® # 0.

=1
Let J, = {1,...,n}\ Ji. Moreover, put T3 = Ujejl supp f; M supp p° and
T2 =T — Tl. Then

(2.4) f;(s)us =0 if (S,j) € (Tg X Jl) U (Tl X JQ).
Indeed, for j € J; and s € T this follows from the definition of T5. For j € Jo
and s € 717 this is a consequence of the maximality of J; since otherwise
J1 U{j} would satisfy (2.3).

The definition of J; and an easy induction show that m € Jp if and only
if there exists a finite sequence joining j; and m, i.e. a sequence lg, ..., [ in
Jp with lg = j; and I = m such that

supp fi, Nsupp fi,_, Nsupppu® #0 forall 1 <r <k.

If I,m € J; are arbitrary, a similar sequence satisfying the conclusion of
the lemma is obtained by concatenating sequences joining [ with j; and j;
with m.

Finally, we show that the maximality assumption defining J; implies
that J; = {1,...,n}. Let n; := |J;| and 7 := > 7 pg for i = 1,2. Thus
n=ny+ngand 74+ =1.For I CJ:={1,...,n} and U C T define

o1LU) = > |3 f )

s,;teU i€l

:u’sut
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Then, by (2.4),
o(n,T) =¢(J,T) = ¢(J1,T1) + ¢(J2, T3)
< @(n1, Ty, 1) + @(na, To, 72) = i 0(n1, Th) + 7350(na, To)
< (2 +71)p(n,T).

Thus 7'12+7'22 > 1 and hence 71 = 1, 79 = 0 since 71 +7 = 1, and 7 > 0 since
J1 # 0 and Ty # (). This implies that 77 = supp u° and, by the maximality
of Jy, that Jy =J. m

We will need the nuclear norm v on spaces of finite rank operators be-
tween Banach spaces and the fact that the trace of a finite rank operator
T € L(X) can be estimated by |tr(s)| < v(s); cf. e.g. [TJ].

Proof of Proposition 5. We indicate how the statements in Proposition 5
follow from the results and proofs in [KT2] and Lemma 6.

Let T ={1,...,N}if Ne Nor T =N if N = oco. Let X,, C Y be an
n-dimensional subspace. By Proposition 2.2 of [KT2], the left side of (2.1) is
bounded by ¢(n, T') since A(X,,, [Y) < ¢(n, T) is proved there using a duality
argument. The supremum in ¢(n,T) is attained (see Section 4 of [KT2]),
say by a probability measure p° = (ug)fj:l and a p-orthonormal system
foyo o e KN Let fo = (> =1 1£i1)1/2 € KN denote the square func-
tion. It is shown in Proposition 3.1 of [KT2] by use of Lagrange multipliers
that the square function f° is constant u-a.e.; then from the orthonormality,
fo(s) = v/nif pug # 0. (If pg = 0, nothing can be said about f°(s); in gen-
eral f°(s) may be non-zero, contrary to what is stated in [KT2|.) The proof
there relies on an analogue of Lemma 6 derived there under an additional
assumption. The crucial point where this is needed is (3.28) of [KT2]. The
notation used there is zg, := f(s)/lts- The Lagrange equations of the first
kind yield an eigenvalue equation for the map

(2.5) wi= (sgn(zn: f,:(s)%) u;)s I E <
k=1 ’

of the form p°(s)(ufi(s) — arfi(s)) = 0 for k =1,...,n, s € T (which
is a reformulation of (3.16) in [KT2]). Thus with S := supp u°, (ufg)(s) =
aifr(s) for s € S. By (3.27) and the next two lines of [KT2], for each
1<Il,m <nand s €T one has

(2.6) 0= (am — a)zsmzst = (um — ) fro () J7 (8) .-

By Lemma 6 there exists a sequence [ = Iy, l1,...,l = m with
supp fi,_, Nsupp f;, Nsupp u® # 0

for all 1 <7 < k. Thus (2.6) implies that a; = oy, = oy, = ... =, = .
Hence all values ay coincide, a1 = ... = a, =: «a; this is (3.28) of [KT2].
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The second Lagrange equation (3.15) in [KT2] means that

(2.7) S |S RETO

teT k=1

i=¢nT)=A

is constant in s € S. Multiplying uf; = af7 pointwise by f_,j and summing
over k = 1,...,n, one deduces from (2.5) and (2.7), using zsgnz = |z| for

z= 4 1fk() fo(t), that for s € S,

—aZm —azufk - fo(s)
S i)

teT k=1

Hence the square function f° is constant p°-a.e., f°(s) = y/A/a for s € S.
Since the fi’s were orthonormal, f°(s) = /n for s € S Hence a = A/n and
ufy = A/n- fi for k =1,...,n. Introducing z; = n=/2(f2(t))7_, € K", we
have z; € S }(K) and for any s € S,

o, T) =nY [(w,x)|ug =n Y [(wo ) ugps.
teTl s,teT

The vectors z, satisfy (2.2) since the f; are p-orthonormal. This proves “<”
n (2.1).

As for the reverse inequality, the Lagrange multiplier approach outlined
above (with details in [KT2]) yields a sequence of points z5 € S"~(K) and
a probability measure p with (2.2) and

A=n " [we ) |psin
s,teT
and an operator u similar to (2.5), with S :=supppu, M = |S| < N,
u = (sgn((ws, x1))pit)spes - KM — KY

with (ufg)(s) = (A/n) fr(s) for k=1,...,n, s € S. Consider the space X,
spanned by the vectors (fx(s))ses € 1M in M. Then u|x, = (A/n)1dy,,
and for any projection P : 1Y — X,

A=tr(ulx,) <vl(ulx,) < [|Plv(u) = ||P|

since v(u) = Zt (e = 1. Hence A < (X, 1Y), which proves “>" in
(2.1). =

Proof of Theorem 1. Assume that X,, C [ has maximal projection
constant among n-dimensional subspaces of N-dimensional superspaces. By
Proposition 5, we find points z, € S" ! and ps > 0, s = 1,..., N, with
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SN | jus = 1 satisfying (2.2) such that

N
/\(Xn) = )‘(Xmlévo) =A= Zﬂt’<xs,$t>‘a s € 5 := supp pu.
t=1

Let M :=|S|<N. By Proposition 5, too, suppose u=(sgn((zs, T¢))it)s tes :
1M — 1M maps X, into itself where X,, = span(fi,..., fn), fj = (zsj)ses €
KM for j =1,...,n, and in fact u\f(n = (A/n) ldg . (If suppp ={1,...,N},

we may take X, = X,.) Hence tr(ulg ) = A and v(u) = 3o sup, [us| =
> ies ts = 1. For any projection @ : 137 — 121 onto X,,
A=tr(ulg,) < viulg,) < Q1w = QI
with the lé”(u)—ort}iogonal projection P attaining || P|| = A.
Consider now X,, as a subspace of [} (u), i.e. KM equipped with the
norm given by |1, = > ,cq pe|(z, 7¢)|, and denote this space by Y;,. Let

Dy, : 1M () — 17 be the diagonal map (ys) — (ksys); it is an isometry. The
map

My Puovr wt o Pel o

W) — " — 0 — 0" (n)
has as its matrix representation (uglutsut)&teg = (ust)stes = u since
ust = sgn((zs, xe)) e Since v(u*)pr = v(u) =1 and Dy, is an isometry,
v(u: M (u) — 1M (u)) = 1. Hence as above, for any projection @ : 1M (u) —
1M (1) onto Yy,

A= tr(uly,) <v(uly,) < [Qlv(u) = Q]
Thus A(Yy,, 1M (p)) > A = M X, 1Y), But A\(X,,) was maximal among n-
dimensional subspaces of N- (hence also for M-) dimensional superspaces.
Hence (Y, 1} (1)) < A holds as well. Taking Z, = D,(Y,) C I, we can
also realize such a space as a subspace of {1, \(Z,,lI}1) = AN X, 1My =
AMXp) =4 u

In general, X,, will not be isometric to Y,, or Z,, except for K=R, n = 2
when these spaces have the regular hexagon as their unit ball. Now let us
consider the three-dimensional real case.

Proof of Proposition 2. For K = R, n = 3 we have G(3) = (1 + v/5)/2
=: @. The space X3 C (% having as its unit ball the dodecahedron attains
this bound, A\(X3) = @; cf. [KT2]. The dual unit ball, the icosahedron, is
the convex hull of its six equiangular diagonals z1,...,z¢ € S* C R3 given
by the vectors

¢ 0 +1

cl£1 ),c| ¢ |,c| O |, c:= ,
0 +1 & Vo +2
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with [(zg,2¢)| = 1/v/5 for 1 < s,t < 6. Thus ||z|/x, = SUp; <g<g [{T, 75) |-
Take ps = 1/6 for s = 1,...,6. Then 3 - Zle uel(zs, x¢)| = ¢; this attains
the sup in (2.1), (2.2) being satisfied. The map = — ({z, x,))%_; realizes the
isometric imbedding X3 < (8. The “extremal” map u : [Y — IY used in
the proof of Theorem 1 is in this case

= (sgn(ws, xe) ) )5 oy 1 15 — 1S,

By the same proof of Theorem 1, the same linear space, but considered as
a subspace of l?, denoted by Y3 C l?, has the same projection constant:
MY3) = A(Y3,18) = ¢. This holds since u is symmetric and D, = %Id@.
However, the unit ball of Y3 is not the dodecahedron; it has 12 regular
pentagons and 20 regular triangles as its faces and thus is not isomet-
ric to X3: The norm on Y3 is given by ||z|y, = %Zgzl |(x,z4)|; writing
it as

Jolls = 5 sup |z Zeszs>

one finds that only 16 combinations (e1,...,¢) of signs are needed to rep-
resent the norm and thus Y3 is isometrically imbeddable into /6. The choice
es = sgn((zs, 1)) = 6ug for fixed t yields

1Q ¢
6255%:5% (s=1,...,6).
s=1

Thus, eliminating the factor ¢/3, the points x1, ..., x¢ are again needed to
imbed Y3 into l; in addition, one needs the 10 vectors (also after multiply-

ing by 3/¢)

o +¢! 0 1 1
c 0 , C ¢ el 2ot el 21|, c:= .
-1 ¢+ 2
¢ 0 ) +1
If these 16 vectors are called z1,...,z16, one has
3
“zlly, = sup [{z,zs)], Y3 11 isometrically.
¢ 1<s<16
We remark that x7,...,x16 are one half of the vertices of the regular do-

decahedron and thus the unit ball of Y3 is the intersection of the dodec-
ahedron and a multiple of the icosahedron yielding the above-mentioned
face structure. In fact, if the vertices of the icosahedron are chosen to be
the midpoints of the faces of the dodecahedron, one has to multiply this
icosahedron by ¢ and intersect it with the dodecahedron to get the unit ball
of Y3.
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In the case of complex 2-dimensional spaces, there are four equiangular

vectors
1 1 1 012 (2ri/3)
- . = w = ex e
0 ) \/3 \/5 w] ’ .7 y Ty S p 9
in C2. If we call them z1, ..., 24 € C?, then the space with norm

Izllx, = sup [(z,2)]
1<s<4

has maximal projection constant among 2-dimensional complex spaces with
MX2) = (14++3)/2, Xo C 14 (cf. [KT2]). As a subspace Yz of [f, it also
has A(Y2) = A(Yz2,1}) = (1 + v/3)/2, but is not isometric to Xo since the
Banach—Mazur distances to Hilbert space satisfy

d(Xa,13) = \/3/2 # d(Ya,13) = (1 +/3)/V6.

The distance ellipsoid here is the standard euclidean ball in C? by symmetry
reasons, the values of 1/3/2 and (1 + v/3)/v/6 are obtained by calculating
the maximum and minimum of ||z||2 subject to ||z||x, = 1 or ||z]]y, = 1; the
quotient of these maxima and minima then gives the above distance values.
The maxima and minima are attained at 4 points each, up to factors e®.
We would like to thank Prof. A. Pelczynski for some stimulating discussions
on this topic. =

REMARK. The fact that the space Y3, imbedded into lég , allows no pro-
jection of norm < ¢, can also be checked by a map u : 118 — 116 similar to
u for X3 C 15, . One may just take

U= (sgn (s, Te)e)sm © 120 — 1ol

where (75)18; C R3 are the 16 vectors given in the previous proof and where
pe = 0 for all t = 7,...,16. Again v(u) = 1 and uly; = (¢/3)Idy,. Thus
u has 10 columns of zeros; for the rows s = 7,...,16 Proposition 5 gives
no information on the square function ||z||2 as compared to |zs||3 = 1 for
s=1,...,6. In fact, ||zs]|3 =3/(¢+2) <1fors=7,...,16

Proof of Theorem 3. Let X,, C I be an n-dimensional space with maxi-
mal projection constant for n-dimensional spaces, A(X,,) = g(n), and where
N < eV/(8¢) holds. By Proposition 5, we conclude that there are unit vec-
tors (z5)N; in I3, x5 € S"71, and a probability measure p = (us)Y_; on
{1,..., N} such that:

e Using (1.4) we identify X,, with the space K", equipped with the norm
lz|| = supj<s<n [{z,xs)|. Then the dual unit ball is the absolutely convex
hull of the vectors z,.

o N:=)\X,) = nZi\ilutKa:s,:rtH forall s=1,...,N.

o Id, = nZi\Ll (-, )z on 5.

e u|x, = (A/n)Id,, where u = (sgn((ms,xt>)ut)é\jt:1 AR AR



Spaces with maximal projection constants 367

We will assume for simplicity and without loss of generality that all pg
are > 0. Thus X, in Y is spanned by the vectors f; := (x5;)™; which
are, up to the factor \/n, orthonormal vectors in 15 (1). Since tr(u|x,) = A
and the nuclear norm of u in I is 1, v(u) = Ziil ur = 1, any projection
P : 1Y — X, must have norm > A,

A=tr(ulx,) < v(ulx,) < [|Pllv(u) = ([P
We will construct a vector x 1 which is not in the absolutely convex hull of

1, ...,y such that the map x +— ({2, z4))) " yields another n-dimensional

extremal space Y, C IN*1 \(X,) = A(Y;,), which is not isometric to X,
since the unit ball of Y;, has more faces than the one of X,.

Let o :=1/(2y/log N). For any y € S" ! and ¢t € {1,..., N} let
e(y) = Vnafy,z).
Then

@

n il vn N
z(y) == 1 Z&(?/)tht =1 anzut(y, xp)xp = T
t=1 t=1

so [|z(y)]l2 = v/na/A. We estimate the average norm of z(y) in X,,. For this,
let m be the normalized Lebesgue measure on S™~!. Take p = 2. Then

V lz@lx,dmy)= | sup |{z(y).25)|dm(y)
gn—1 gn—1 1<s<N

< | <i’<z(y),xs>’p)l/l7dm(y)§(i | \(Z(y)jxsﬂpdm(y))l/p
S s=1 :

n—1 s=1 gn—1

1/p n P

< N | P am)” < 8, [
Sn—1

Here we used the generalized triangle inequality and the rotation invariance

of m. The moments (§g,—1 [y1|P dm(y))'/? are explicitly known in terms of

Gamma functions: they can be estimated by /p/n for p > 2. Choosing
p = log N, by definition of @ we get

e
| Izl x, dm(y) < =
Sn—1
By Chebyshev’s inequality,
1
) mey €S zyX<E>—.
(28) S Ik, <25 > 5

Since 2e/A < n/A%a? by assumption on N, for these vectors z(y) one has

2e n
lz()llx, < = < poﬂ =z < l2@) 1 x. 12(9) [ x5 -
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Hence [|z(y)||x: > 1, which means that z(y) is not in the absolutely convex
hull of the vectors z1,...,zy. On the other hand, we want to guarantee
that the values €¢(y) can be bounded by 1 uniformly in ¢. Integration by
polar coordinates yields the following well known tail estimate for linear
functionals (¢ being fixed):

m{y € S"7H(K ) | Ky, )| > B}

S (n—3)/2 du/s u2)(n—3)/2 du < e_n52/2 (K _ R),
B
_J1 1
Sul—u ”Qdu/Su (1 —u?)"2du
163 0
=(1- /32)71—1 < e~ nB%/2 (K =C)

forn>20< ﬁ < 1. (For integration in the complex case, C" is identified
with R?".) Choosing 8 = 1/(a/n), we get

m{y € "1 | {y,z)| > 1/(av/n)} < e 2 < 1/N? <1/(2N).
Letting ¢ vary from 1 to NV, one finds for the complement
(2.9) m{ye S| |{y, )| <1/(a/n) forallt =1,... N} > 1/2.
By (2.8) and (2.9) we can find a vector 7 € S"~! such that

¢ (@) x, < 2e/4, implying [[2(7)x; > 1.
o |e:(7)] = Vnal{,a)| < lforallt=1,...,N.

Put zny1+1 = 2(7). Then ||zni1l2 = vVrna/A < 2a < 1 (A is close to y/n)
and x4 € absolutely convex hull of (x1,...,zyN). Define Y, by ||z]y, =
SUP1<s<n+1 (7, 25)], @ € K", and let pny1 = 0. Then [[z]y, > ||z[|x, and
there are points x € K" with ||z|ly;, > ||z||x,. The unit ball of Y;, thus

has more faces than X,,, and Y,, is not isometric to X,,. Let f] (zgj) N1

Then Y,, = span(fl, .. ,fn) - lévo“; these vectors are homothetic to an
orthonormal basis in Y;, as a subspace of 13 T1(11). We define an extension
w IV — [N+ of the map w : 1Y) — 1Y by putting g = ug if 1 < 5, < N,
usnt1 = 0 for s =1,...,N +1 and unt1¢ = e(y)u for t = 1,...,N.
Then (Uf])s = (Uf])s = (A/n)(fj)s = (A/n)(fj) for s =1,..., N, and by
definition of z(7y),

(Ufj)ni1 = E Uns14(fj)e = E et () peve

t+1
A A A~
= 2(9)j = —IN+L = (fj)N+1-

We thus found that |y, = (4/n) Idy,. The nuclear norm of @ : [ +1 — [V+1
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is (in view of pp4+1 = 0)
N+1

v(u) = Z sup [us| = ZM =1

—1 1<s<N-+1

If P:IN*! — Y, is any projection,
A =tr(aly,) <wv(aly,) < |[Pllv(a) = [|P].

Thus A(Y,) > A = AX,). However, A(X,,) was maximal among all n-
dimensional spaces. Hence A(Y,) = A(X,,) = 4 and Y,, is not isometric to
X,,. Obviously, the construction yields infinitely many non-isometric spaces
with maximal projection constant A. m

Proof of Proposition 4. (a) As subspaces of [YY | these spaces have already
been considered in [KT1]. For n = p™ + 1 there exist numbers dy,...,d, €
{0,..., N — 1} such that the differences d; — d; modulo N are all different
and yield all n(n — 1) = N — 1 integers between 1 and N — 1; see [HR].
Define x4 := n_1/2(exp((27ri/N)djs))?:1 € S Y(C) for s = 1,...,N and
let f; = (w5;)Y.; € C". Then

m
i fi) = Zexp( )= du)s) = (/)b

and hence

o

Id,, = N 2(-,%):1:3 (on C").
s=

The vectors (z5)Y; are equiangular as the evaluation of |(xs, )
(see [KT1]). One finds

[{xs,z)] =vn—1/n for1 <s#t<N.

Let Z, = span(fi,..., fn) € CN. As a subspace of 1YY, (\/n/N fj)?zl is an
orthonormal basis in Z,,, dimZ, = n, and P := (n/N)((zs, 1)), 1s a

|2 shows

projection onto Z,, (the orthogonal projection in 13').
Let X,, and Y,, denote the linear space Z,, considered as a subspace of l]ovO
and Z{V , respectively. Then

vn—1

n

N
n n
AV < 1P = s Y lpal = 3 (14 (V- DY) = PG )
s=1

The last equality is verified by calculation (F is given in Section 1). Similarly
AMX,) < F(n,N) since P is hermitean.

Let
vn—1

n

U= (<5657ﬂ7t>)£,[t:1 - <1 - ) Idy : CV — V.
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Then for all 1 < s,t < N,

luse| =

Hence the trace of v on Z, is tr(u|z,) = (N —n + +/n —1). On the other
hand, the nuclear norm of the hermitean map u, considered in either l{v
or [N is

al vn—1
:Zsup|ust|:N :
s=1 t n

This implies, for any projection @ : Z{V —Y,,

N —nt V=T = trluly,) < vluly,) < [Qlv(n) = @I N

Thus
N—-n++vn—-1 n

N vn—1
the last equality again being the result of a calculation. Similarly A\(X,,) >
F(n,N). We showed that A(X,,) = A(Y,,) = F(n, N), which is the maximal
possible value (see [KLL]).

(b) We show that the Banach-Mazur distance of X,, to I} is v/n. (By
John’s theorem, this is extremal since for any n-dimensional space Z,, one
has d(Zy,,15) < \/_ ) The proof is similar to the one in [KT1].

Let §; := exp((2mi/N)d;) for j =1,...,n and I : X,, — X,, be defined
by ijl a;f; — ZFl ﬂ]ajf] Clearly I is an isometry and IV = Id. Any
inner product [+, -] on X,, which is invariant under I is diagonal in the basis
(f;) of Xy,. In fact, if

n n n
v = twarb,  w=Y_ axfe, y=>_ bif,
k=1 =1

k=1

)\(Yn) > = F(”? N)v

[Iz,Iy] = [z,y] for all 2,y € X,, implies ty; = t3;B:0,. For k # I, clearly
BrB; # 1, hence ty; = 0 for k # 1.

Now let (-,-) be an inner product on X,, which determines the Banach—
Mazur distance d = d(X,, [5), normalized so that

(1/d)|z|? < (,2) < |l2]®, € X,
Define the inner product [, ] by
1 N

[CUQ_NZ ‘, I’y), x,y € Xp.

Then [Iz, Iy] = [z, y], and also
(1/d) ||z < [w,2] < ||z]?, @ € X,
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By the preceding remark, there are Ay, ..., A\, € C such that

n n n
W= Magbe, w=Y apfi,y=> bif.
k=1 n=1 k=1
Since [z, z] < ||z A < || fell? =1/nforallk=1,...,n. Let z := >} _; f.
Then [z,z] = > ;_; A\; and, taking s = 0, we find

_ 271
_ ;exp (W djs>’ = /n.

|2l = sup
0<s<N

So

vn
d > sup |z /[, 2]/? > s > V.
x#0 [ ] (Zk:l )‘k)l/z

Since by John’s theorem, d < y/n, we find d = \/n.

As a subspace of l{v , the distance of the space Y, to [y, however, is
uniformly bounded by V2 as we now show. Thus X,, and Y,, cannot be
isometric. In fact, for large n, they have very different distances to [i. For
1<p<ooandzxzeC let

1 N 1/p
— p
Ity = (g X el

We calculate the 4-norm:

N
3l )
s=1

N .
1 - _ _ 271
=2 Y. wpTprTi Y exp <T (djy — dj, +djs — dj4)8>-

J1,J2,33,J4=1 s=1
Since (d; — d;)(N) for i # j runs over all numbers from 1 to N — 1 exactly
once, dj, — dj, + dj, —d;, is 0 modulo n if and only if either (j; = j2 and
Js = ja) or (j1 = ja and ja = js).
In this case, the inner sum is N, else it is 0. Hence

e = (% i ez "
< Z |93J| ’xk’2+2|$3|)

jAk=1

(Z 2512) 7 = Vel

%I

%\
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where the last equality is easy. A standard interpolation argument now yields
the distance estimate of Y, to [5: By Holder’s inequality

1/3 2/3 1/3 2/3
lzllo < ll=lh/? 2l < (V2)23 )27 Jel3”,

and thus ||z|l2 < v2||z|1. Since trivially ||z|l; < ||«||2 holds, we find that
d(Yn,13) < V2. u
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