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Abstract. For a precompact subset K of a Hilbert space we prove the following
inequalities:

n1/2cn(cov(K)) ≤ cK
(

1 +
n∑

k=1

k−1/2ek(K)
)
, n ∈ N,

and

k1/2ck+n(cov(K)) ≤ c
[

log1/2(n+ 1)εn(K) +
∞∑

j=n+1

εj(K)

j log1/2(j + 1)

]
,

k, n ∈ N, where cn(cov(K)) is the nth Gelfand number of the absolutely convex hull
of K and εk(K) and ek(K) denote the kth entropy and kth dyadic entropy number of
K, respectively. The inequalities are, essentially, a reformulation of the corresponding
inequalities given in [CKP] which yield asymptotically optimal estimates of the Gelfand
numbers cn(cov(K)) provided that the entropy numbers εn(K) are slowly decreasing. For
example, we get optimal estimates in the non-critical case where εn(K) � log−α(n+ 1),
α 6= 1/2, 0 < α < ∞, as well as in the critical case where α = 1/2. For α = 1/2 we
show the asymptotically optimal estimate cn(cov(K)) � n−1/2 log(n + 1), which refines
the corresponding result of Gao [Ga] obtained for entropy numbers. Furthermore, we
establish inequalities similar to that of Creutzig and Steinwart [CrSt] in the critical as
well as non-critical cases. Finally, we give an alternative proof of a result by Li and Linde
[LL] for Gelfand and entropy numbers of the absolutely convex hull of K when K has the
shape K = {t1, t2, . . .}, where ‖tn‖ ≤ σn, σn ↓ 0. In particular, for σn ≤ log−1/2(n+ 1),
which corresponds to the critical case, we get a better asymptotic behaviour of Gelfand
numbers, cn(cov(K)) � n−1/2.

1. Introduction and basic tools. The main aim of this paper is to
complement existing results concerning the behaviour of Gelfand numbers
of absolutely convex hulls cov(K) of precompact subsets K of a Hilbert
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space H when the entropy numbers of K decay slowly. This enables us to
refine results of Gao [Ga], Creutzig and Steinwart [CrSt] in the so-called
critical case. The upper estimates, which we establish in the critical case,
are already implicitly contained in [CKP]. By using an ingenious example
of Gao we prove that in the critical case the estimates are asymptotically
optimal. Moreover, we show that there is a difference between the behaviour
of Gelfand numbers of absolutely convex hulls cov(K) generated by sets
K ⊂ H consisting of “many” and those with “few” extremal points. For
more information and references about the behaviour of the metric entropy
of convex hulls we refer to the papers [C2], [CKP] and [St].

For our purposes we use the following notation and quantities. Let (M,d)
be a metric space and B(s, ε) := {t ∈M | d(s, t) ≤ ε} be the closed ε-ball in
M with centre s. For a bounded set K ⊂M and ε > 0 the covering number
of K is defined by

N(K; ε) := inf
{
n
∣∣∣ ∃s1, . . . , sn ∈M : K ⊂

n⋃

i=1

B(si, ε)
}
.

We denote the entropy numbers of K by

εn(K) := inf{ε > 0 | N(K; ε) ≤ n}
and its dyadic entropy numbers by

en(K) := ε2n−1(K), n ∈ N.
Moreover, the entropy numbers of a (bounded linear) operator T : E → F
from a Banach space E into a Banach space F are defined by

εn(T ) := εn(T (BE))

and its dyadic entropy numbers by

en(T ) := ε2n−1(T ), n ∈ N,
where BE is the closed unit ball of E. Furthermore, the nth approximation,
Gelfand and Kolmogorov numbers of T are defined by

an(T ) := inf{‖T − A‖ | rank(A) < n},
cn(T ) := inf{‖T |M‖ |M ⊂ E, codim(M) < n},
dn(T ) := inf{‖QFNT‖ | N ⊂ E, dimN < n},

respectively, where QF
N : F → F/N is the quotient map. We have cn(T ) =

dn(T ′), where T ′ is the dual operator of T .
If l1(K) denotes the Banach space of all summable families of real num-

bers (ξt)t∈K over the index set K with the norm given by

‖(ξt)‖ =
∑

t∈K
|ξt|,
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then the entropy numbers and Gelfand numbers of the absolutely convex
hull cov(K) of a bounded set K ⊂ E of a Banach space E are expressed
in terms of entropy and Gelfand numbers of operators: en(cov(K)) = en(T )
and cn(cov(K)) = cn(T ), where T : l1(K) → E is the operator defined on
the canonical basis (et)t∈K of l1(K) by Tet := t.

Finally, we recall the l-norm of an operator T : E → F (or πγ summing
norm in [LP]). Let ln2 be the n-dimensional Euclidean space and S : ln2 → F
an operator; then the l-norm of S is defined by

l(S) :=
( �

Rn
‖Sx‖2 dγn(x)

)1/2
,

where γn is the canonical Gaussian probability measure of Rn; and for an
operator T : E → F we define

l(T ) := sup{l(TA) | ‖A : ln2 → E‖ ≤ 1, n ∈ N}.
If A : E0 → E and B : F → F0 are operators between Banach spaces, then
l has the ideal property (cf. [LP]),

l(BTA) ≤ ‖B‖l(T )‖A‖.

Now we give diverse tools for estimating Gelfand and entropy numbers
of absolutely convex hulls in Hilbert spaces. We start with two general in-
equalities of [CKP].

Theorem A. There is a universal constant c > 0 such that for each
precompact subset K of the unit ball BH of a Hilbert space H and for all
n ∈ N we have

n1/2cn(cov(K)) ≤ c inf
ε>0

{ 1�

ε/4

log1/2(N(K; s)) ds+ n1/2ε
}
.

(ii) There is a universal constant c > 0 such that for each precompact
subset K of a Hilbert space H and for all k, n ∈ N we have

k1/2ck+n(cov(K)) ≤ c
εn(K)�

0

log1/2(N(K; s)) ds.

The next theorem is a reformulation of Theorem A.

Theorem B. Let K be a precompact subset of a Hilbert space H. Then
the following inequalities hold:

(i) n1/2cn(cov(K)) ≤ cK
(

1 +
n∑

k=1

k−1/2ek(K)
)

for n ∈ N,
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where cK ≤ c(1 + supt∈K ‖t‖) and c > 0 is an absolute constant;

(ii) k1/2ck+n(cov(K)) ≤ c
[

log1/2(n+ 1)εn(K) +
∞∑

j=n+1

εj(K)

j log1/2(j + 1)

]

for k, n ∈ N, where c > 0 is an absolute constant.

Proof. (i) First we assume that K is contained in BH . By Theorem A
we get, with an absolute constant c > 0,

n1/2cn(cov(K)) ≤ c
( 1�

ε/4

log1/2
2 (N(K; s)) ds+ n1/2ε

)

for n ∈ N and ε > 0 .
We suppose en(K) > 0; the case en(K) = 0 can be treated more easily.

Put ε := 4en(K). Then we have, with e0(K) := 1,

1�

en(K)

log1/2
2 (N(K; s)) ds =

n∑

k=1

ek−1(K)�

ek(K)

log1/2
2 (N(K; s)) ds

≤
n∑

k=1

ek−1(K)�

ek(K)

k1/2 ds =
n∑

k=1

k1/2(ek−1(K)− ek(K))

= 1 +
n−1∑

k=1

((k + 1)1/2 − k1/2)ek(K)− n1/2en(K)

≤ 1 +
1
2

n∑

k=1

k−1/2ek(K)− n1/2en(K).

Thus
1�

ek(K)

log1/2
2 (N(K; s)) ds+ 4n1/2en(K)

≤ 1 +
1
2

n−1∑

k=1

k−1/2ek(K) + 3n1/2en(K)

≤ 1 +
7
2

n∑

k=1

k−1/2ek(K).

This implies, with an absolute constant c > 0, the desired inequality for
K ⊂ BH :

n1/2cn(cov(K)) ≤ c
(

1 +
n∑

k=1

k−1/2ek(K)
)
.(1)
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If K ⊂ H is a precompact set with d := supt∈K ‖t‖ ≥ 1, then by the previous
inequality and the equalities

cn(cov(K)) = dcn(cov(B)), en(K) = den(B),

where B := {t/d | t ∈ K} ⊂ BH , we get the estimate

n1/2cn(cov(K)) ≤ cd
(

1 +
n∑

k=1

k−1/2ek(K)
)
.(2)

Combining (1) and (2) we obtain inequality (i) of the theorem with cK ≤
c(1 + supt∈K ‖t‖).

(ii) This time the starting point is inequality (ii) of Theorem A for a
precompact set K ⊂ H:

k1/2ck+n(cov(K)) ≤ c
εn(K)�

0

log1/2(N(K; s)) ds.

Indeed, the right-hand side of the inequality can be estimated as follows:
εn(K)�

0

log1/2(N(K; s)) ds =
∞∑

j=n

εj(K)�

εj+1(K)

log1/2(N(K; s)) ds

≤
∞∑

j=n

log1/2(N(K, εj+1(K)))(εj(K)− εj+1(K))

≤
∞∑

j=n

log1/2(j + 2)(εj(K)− εj+1(K))

= log1/2(n+ 2)εn(K) +
∞∑

j=n+1

(log1/2(j + 2)− log1/2(j + 1))εj(K)

≤ log1/2(n+ 2)εn(K) +
1
2

∞∑

j=n+1

εj(K)

(j + 1) log1/2(j + 1)
.

This estimate yields the desired inequality (ii).

The following inequality of Theorem 1.3 in [CKP] is a version of the
corresponding inequality in [C1].

Theorem C. Let (sn) be a positive and increasing sequence with the
property that there exists a constant γ ≥ 1 such that s2n ≤ γsn for all n ∈ N.
Then there exists a constant cγ ≥ 1 such that for all operators T : E → F
between Banach spaces E,F and all n ∈ N,

sup
1≤k≤n

skek(T ) ≤ cγ sup
1≤k≤n

skck(T ).
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Finally, we need a refined version of the Sudakov-type inequality due to
A. Pajor and N. Tomczak-Jaegermann.

Theorem D ([PT]). There is a constant c ≥ 1 such that for all oper-
ators T : E → H from a Banach space E into a Hilbert space H and all
n ∈ N,

n1/2cn(T ) ≤ cl(T ′).
By Gordon [Go] we know that c ≤

√
2.

2. Results. In this section we give several propositions, which will be
proved in Section 3. The first result refines an inequality by Creutzig and
Steinwart [CrSt] in the critical case which was originally given in terms of
entropy numbers of absolutely convex hulls.

Proposition 1. Let −∞ < β < 1 and let K be a precompact subset of
a Hilbert space H. Then for all n ∈ N,

sup
1≤k≤n

k1/2 logβ−1(k+ 1)ck(cov(K)) ≤ cK,β(1 + sup
1≤k≤n

k1/2 logβ(k+ 1)ek(K)),

where

cK,β ≤ c
(

1 +
1

1− β

)
(1 + sup

t∈K
‖t‖)

and c > 0 is an absolute constant.

Moreover, by using the basic tools we also get the following result of
Steinwart [St].

Proposition 2. Let 0 < α < 1/2 and K be a precompact subset of a
Hilbert space H. Then for all n ∈ N,

sup
1≤k≤n

kαck(cov(K)) ≤ cK,α(1 + sup
1≤k≤n

kαek(K)),

where
cK,α ≤

c

1− 2α
(1 + sup

t∈K
‖t‖)

and c > 0 is an absolute constant.

The next result gives the asymptotic behaviour of Gelfand numbers of
absolutely convex hulls, which in the non-critical case 0 < α <∞, α 6= 1/2
can already be found in [CKP].

Proposition 3. Let 0 < α < ∞, −∞ < β < ∞ and let K be a pre-
compact subset of a Hilbert space H. If en(K) � n−α log−β(n+ 1), then we
have, in the non-critical case α 6= 1/2,

cn(cov(K)) �





n−α log−β(n+ 1) for 0 < α < 1/2, −∞ < β <∞,

n−1/2 log1/2−α(n+ 1) log−β(log(n+ 1) + 1)

for 1/2 < α <∞, −∞ < β <∞,
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and in the critical case α = 1/2, −∞ < β < 1,

cn(cov(K)) � n−1/2 log1−β(n+ 1).

The estimates are asymptotically optimal.

Remark. From the estimates of the previous proposition it is interest-
ing to see that the asymptotic behaviour of Gelfand numbers of absolutely
convex hulls has a sudden jump if α crosses the point 1/2. This is why we
call α = 1/2 the critical case.

Finally we turn to Gelfand numbers of absolutely convex hulls generated
by “few” extremal points. In [LL], Li and Linde studied the Gelfand num-
bers and metric entropy of cov(K) via certain quantities originating in the
theory of majorizing measures. Among other results, they obtained some
finer estimates of cn(cov(K)) for absolutely convex hulls generated by few
extremal points which lead to sharper results in the critical case α = 1/2.
The result is stated in the next proposition. Moreover, we are going to give
an alternative proof of it.

Proposition 4. Let K = {t1, t2, . . .} ⊂ H be a precompact set such that
‖tn‖ ≤ σn, where σ1 ≥ σ2 ≥ . . . ≥ 0 and limn→∞ σn = 0. Then the following
estimates hold :

(i) If log1/2(n+ 1)σn is decreasing , then for all n ∈ N,

n1/2c2n−1(cov(K)) ≤ c log1/2(n+ 1)σn,

where c > 0 is an absolute constant.
(ii) If log1/2(n+ 1)σn is increasing , then for all n ∈ N,

cn(cov(K)) ≤ c σ2n ,

where c > 0 is an absolute constant.

The estimates are asymptotically optimal for slowly decreasing sequences
(σn). In particular , for σn � log−α(n+ 1), 0 < α <∞, we have

cn(cov(K)) �
{
n−α for 0 < α < 1/2,

n−1/2 log1/2−α(n+ 1) for 1/2 ≤ α <∞.
From the previous estimate we see that in the case α = 1/2 we have

en(K) � n−1/2 and cn(cov(K)) � n−1/2.

If we compare this result with the general result of Proposition 3 for
α = 1/2 and β = 0, then we observe that the additional logarithmic term
does not appear. So we have in the critical case a difference between the
asymptotic behaviour of Gelfand numbers of absolutely convex hulls al-
though the (dyadic) entropy numbers have the same asymptotic behaviour:
en(K) � n−1/2 . This phenomenon depends on the fact that the precompact
set K either contains “many” extremal or “few” extremal points.
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Concluding remarks. (a) From the inequality of Theorem C we see
that the estimates of Propositions 1–3 remain valid for the dyadic entropy
numbers en(cov(K)) instead of the Gelfand numbers cn(cov(K)) of the ab-
solutely convex hull of K. In particular, for a precompact subset K of a
Hilbert space H we recover the estimate of Gao [Ga],

en(cov(K)) � n−1/2 log(n+ 1) for en(K) � n−1/2.

(b) Moreover, from the proof of Proposition 6.4 in [CKP] we can also
conclude that for a precompact subset K of a Banach space E of type p the
asymptotic estimate

en(cov(K)) � n−(1−1/p) log(n+ 1) for en(K) � n−(1−1/p)

is valid. This estimate is the critical case for a Banach space of type p. It has
been recently obtained by Creutzig and Steinwart in a more general setting
[CrSt]. They also showed that this estimate is asymptotically optimal, thus
extending the Hilbert space result of Gao [Ga].

3. Proofs of the results

Proof of Proposition 1. The inequality of Proposition 1 is an easy conse-
quence of inequality (i) of Theorem B. Indeed, if β < 1 the right-hand side
of (i) can be estimated by

n∑

k=1

k−1/2ek(K) ≤
( n∑

k=1

k−1 log−β(k + 1)
)

sup
1≤k≤n

k1/2 logβ(k + 1)ek(K)

≤ 2
n�

0

ds

(s+ 1) logβ(s+ 1)
sup

1≤k≤n
k1/2 logβ(k + 1)ek(K)

≤ 2
1− β log1−β(n+ 1) sup

1≤k≤n
k1/2 logβ(k + 1)ek(K).

Thus, by (i) of Theorem B we get the estimate

n1/2cn(cov(K)) ≤ cK
(

1 +
2

1− β log1−β(n+ 1) sup
1≤k≤n

k1/2 log(k+ 1)en(K)
)
,

yielding the inequality

n1/2 logβ−1(n+ 1)cn(cov(K)) ≤ cK,β(1 + sup
1≤k≤n

k1/2 logβ(k + 1)ek(K))

for n ∈ N, where

cK,β ≤ c
(

1 +
1

1− β

)
(1 + sup

t∈K
‖t‖)

and c > 0 is an absolute constant. This implies the desired inequality of
Proposition 1.



Gelfand numbers and metric entropy 399

Proof of Proposition 2. The inequality of Proposition 2 again easily fol-
lows from (i) of Theorem B. Indeed, for 0 < α < 1/2 we have

n1/2cn(cov(K)) ≤ cK
(

1 +
n∑

k=1

k−1/2ek(K)
)

≤ cK
(

1 +
( n∑

k=1

k−1/2−α
)

sup
1≤k≤n

kαek(K)
)

≤ cK
(

1 +
1

1/2− α n
1/2−α sup

1≤k≤n
kαek(K)

)
,

yielding, for all n ∈ N,

nαcn(cov(K)) ≤ cK
2

1− 2α
(1 + sup

1≤k≤n
kαen(K)).

This estimate implies the inequality of Proposition 2.

Proof of Proposition 3. The estimates from above in the cases 0 < α <
1/2 and α = 1/2 easily follow from (i) of Theorem B or from Propositions 1
and 2, whereas the estimate from above in the case α > 1/2 follows from (ii)
of Theorem B. Now we show that the results are asymptotically optimal.
The optimality in the case 0 < α <∞ and α 6= 1/2 has already been proved
in [CKP]. It remains to show the optimality in the critical case α = 1/2.

For this purpose we use the ingenious example of Gao [Ga] in the ver-
sion of [CrSt]. Namely, there is a precompact subset K of a Hilbert space
H such that for n ∈ N, en(K) ≤ n−1/2 log−β(n + 1) and en(cov(K)) ≥
γn−1/2 log1−β(n + 1), where γ > 0 is an absolute constant. Fix m ∈ N.
Then from the inequality of Theorem C we get, with the sequence sn :=
n logβ−1(n+ 1),

mn logβ−1(mn+ 1)emn(cov(K)) ≤ cβ sup
1≤k≤mn

k logβ−1(k + 1)ck(cov(K))

≤ cβ[ sup
1≤k<n

k logβ−1(k+ 1)ck(cov(K)) + sup
n≤k≤mn

k logβ−1(k+ 1)ck(cov(K))].

Inserting the entropy estimate ek(cov(K)) from below and the estimate of
the Gelfand numbers ck(cov(K)) ≤ αk−1/2 log1−β(k + 1) of Proposition 3
we arrive at

γ(mn)1/2 ≤ cβ(αn1/2 + sup
1≤k≤mn

k logβ−1(k + 1)ck(cov(K)))

≤ cβ(αn1/2 +mn logβ−1(mn+ 1)cn(cov(K)))

≤ cβ(αn1/2 +mn logβ−1(n+ 1)cn(cov(K))),

yielding

(γm1/2 − αcβ)n1/2 ≤ cβmn logβ−1(n+ 1)cn(cov(K)).
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Choose m0 = m(γ, α, β) such that γm1/2
0 − αcβ ≥ 1. Then we get, with a

positive constant cα,β,γ , the estimate

cn(cov(K)) ≥ cα,β,γn−1/2 log1−β(n+ 1) for n ∈ N,
which shows that the asymptotic behaviour of cn(cov(K)) is optimal.

Finally, we turn to the proof of Proposition 4. For this purpose we need
an additional version of Pajor and Tomczak-Jaegermann’s inequality. In
order to formulate it we introduce the approximation numbers with respect
to the l-norm. For an operator T : E → F between Banach spaces E and F
the approximation numbers with respect to l are defined by

an(T ; l) := inf{l(T − A) | rank(A) < n}, n ∈ N.
Lemma A. For an operator T : E → H from a Banach space E into a

Hilbert space H we have the inequality

k1/2ck+n−1(T ) ≤
√

2 an(T ′; l) for k, n ∈ N.
Proof. For the proof of this inequality we assume l(T ′) < ∞. Let A :

H → E′ be an operator with rank(A) < n. Then

ck+n−1(T ) = dk+n−1(T ′) ≤ dk(T ′ −A) + dn(A) = dk(T ′ −A).

Thus by Theorem D we get

k1/2ck+n−1(T ) ≤ k1/2dk(T ′ − A) ≤
√

2 l(T ′ − A),

and therefore,

k1/2ck+n−1(T ) ≤
√

2 anl(T ′, l) for k, n ∈ N.
Finally, we need the following result of Linde and Pietsch [LP]. In the

following, l∞ as usual denotes the Banach space of all bounded sequences.

Lemma B. Let D : l∞ → l∞, D(ξi) = (σiξi), be a diagonal operator
generated by a non-negative decreasing sequence σ1 ≥ σ2 ≥ . . . ≥ 0 such
that sup log1/2(n+ 1)σn <∞. Then there is a constant c > 0 such that

l(D) ≤ c sup
n

log1/2(n+ 1)σn.

Proof of Proposition 4. It will be convenient to couch the arguments in
the language of Gelfand numbers of operators. Indeed, if

K = {t1, t2, . . .} ⊂ H with ‖tn‖ ≤ σn, σ1 ≥ σ2 ≥ . . . ≥ 0,

and limσn = 0, then we have

cn(cov(K)) = cn(SD : l1(N)→ H),

where the diagonal operator D : l1 → l1 is defined by D(ξi) = (σiξi), and
S : l1 → H by Sei := ti/σi for σi > 0 and Sei := 0 for σi = 0.
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Proof of (i). We factorize the operator D as D = D2D1, where

D1 : l1 → l1, (ξi) 7→ (log1/2(i+ 1)σiξi),

D2 : l1 → l1, (ξi) 7→ (log−1/2(i+ 1)ξi).

By Lemma 4 we get

n1/2 c2n−1(SD2D1) ≤
√

2 an(D′1D
′
2S
′; l) ≤

√
2 an(D′1)l(D′2S

′)

≤
√

2 an(D1)l(D′2)‖S′‖ ≤
√

2 an(D1)l(D′2)

because of ‖S′‖ = ‖S‖ ≤ 2.
Since log1/2(n+ 1)σn is decreasing it follows that for all n ∈ N,

an(D1) ≤ log1/2(n+ 1)σn.

Moreover, by Lemma 6 we have

l(D′2) ≤ c.
Combining the previous estimates we obtain the desired estimate (i) of
Proposition 4:

n1/2c2n−1(cov(K)) = n1/2c2n−1(SD) ≤
√

2 c log1/2(n+ 1)σn.

Proof of (ii). This time we decompose the operator D : l1 → l1 as

D = D −D2n +D2n,

where

D2n : l1 → l1, (ξi) 7→
{
σiξi, i ≤ 2n,

0, i > 2n.

Furthermore, we factorize D2n as

D2n = D
(2)
2nD

(1)
2n ,

where

D
(1)
2n : l1 → l1, (ξi) 7→

{
log1/2(i+ 1)σiξi, i ≤ 2n,

0, i > 2n,

D
(2)
2n : l1 → l1, (ξi) 7→

{
log−1/2(i+ 1)ξi, i ≤ 2n,

0, i > 2n.

Hence,

cn(SD) = cn(S(D −D2n) + SD2n) ≤ ‖S‖ · ‖D −D2n‖+ cn(SD2n)

≤ σ2n+1 + cn(SD2n) ≤ σ2n + cn(SD2n)

and

cn(SD2n) ≤ cn(SD(2)
2n )‖D(1)

2n ‖ ≤ cn(SD(2)
2n ) log1/2(2n + 1)σ2n

≤ cn(SD(2)
2n )(n+ 1)1/2σ2n.
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Moreover, by Theorem D and Lemma 6 we get

n1/2cn(SD(2)
2n ) ≤

√
2 l((D(2)

2n )′S′) ≤
√

2 l((D(2)
2n )′)‖S′‖

≤
√

2 c‖S‖ ≤
√

2 c.

Combining the previous estimates we obtain the desired estimate:

cn(cov(K)) = cn(SD) ≤ σ2n + cn(SD2n)

≤ σ2n +
√

2 c
(
n+ 1
n

)1/2

σ2n ≤ (1 + 2c)σ2n.

The results are asymptotically optimal. Indeed, by Proposition 5.5 in
[CKP] we deduce that for K = {σnen : n ∈ N} ⊂ l2, where en is the unit
vector basis of l2 and σn = log−α(n+ 1), 0 < α <∞,

cn(cov(K)) ≥
{
cn−α for 0 < α ≤ 1/2,

cn−1/2 log1/2−α(n+ 1) for α > 1/2.
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