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Reflexivity and approximate fixed points

by

Eva Matoušková (Praha) and Simeon Reich (Haifa)

Abstract. A Banach space X is reflexive if and only if every bounded sequence {xn}
in X contains a norm attaining subsequence. This means that it contains a subsequence
{xnk} for which supf∈SX∗ lim supk→∞ f(xnk) is attained at some f in the dual unit
sphere SX∗ . A Banach space X is not reflexive if and only if it contains a normalized
sequence {xn} with the property that for every f ∈ SX∗ , there exists g ∈ SX∗ such
that lim supn→∞ f(xn) < lim infn→∞ g(xn). Combining this with a result of Shafrir,
we conclude that every infinite-dimensional Banach space contains an unbounded closed
convex set which has the approximate fixed point property for nonexpansive mappings.

1. Introduction. Let M be a complete metric space and let T :M→M
be a strict contraction, that is, let T be Lipschitz with a constant less than
one. By a classical theorem of Banach, T has a fixed point x = T (x). For
contractions this need not be so. For example, it is readily checked that

C = {x ∈ C[0, 1] : 0 ≤ x ≤ 1, x(0) = 0, x(1) = 1}
is a closed, convex and bounded subset of the space C[0, 1] of all real con-
tinuous functions on [0, 1] and that T : C → C defined by

Tx(t) = tx(t)

satisfies ‖T (x) − T (y)‖ < ‖x− y‖ for x 6= y in C. However, T has no fixed
points. It does have, though, approximate fixed points. If xn is the nth power
xn(t) = tn, then ‖xn−T (xn)‖ → 0. This turns out to be the case in general,
even for nonexpansive mappings.

Let C be a closed convex subset of a Banach space X. Recall that a
mapping T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
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x, y ∈ C. The subset C is said to have the approximate fixed point property
(AFPP) for nonexpansive mappings if inf{‖x − Tx‖ : x ∈ C} = 0 for all
nonexpansive self-mappings of C. It is easy to see that every closed con-
vex and bounded C has this property. However, there are also unbounded
C with this property. For instance, it is shown in [R2] that a closed convex
subset of a reflexive Banach space has the AFPP if and only if it does not
contain any half-line. For example, {(x1, x2, . . .) ∈ `2 : |xn| ≤ n} is such
an unbounded closed convex set. In [Sh], Shafrir shows that the “half-line
test” works exactly in reflexive spaces. That is, a Banach space X is re-
flexive if and only if every closed convex C ⊂ X which does not contain
any half-lines has the AFPP. In the same paper, Shafrir also character-
izes those closed convex subsets of a Banach space (or, more generally, a
complete hyperbolic metric space) which have the AFPP as those which,
roughly speaking, do not contain any “approximate metric half-line”. Using
this characterization, he proves that every infinite-dimensional Banach space
which does not contain an isomorphic copy of `1 contains an unbounded
closed convex subset with the AFPP. He also constructs such a subset in `1.
However, he has left open the question whether every infinite-dimensional
Banach space contains such a subset. (Note that if X is finite-dimensional
and a convex C ⊂ X does not contain any half-lines, then C is bounded.
Hence in this case either C is bounded and has the fixed point property
for nonexpansive mappings, or it is unbounded and does not even have the
AFPP.)

In Corollary 4.4, we answer Shafrir’s question in the affirmative. This
is done by providing a characterization of reflexive Banach spaces in Theo-
rem 4.3. We show there that a Banach space is reflexive if and only if every
bounded sequence {xn} in X contains a norm attaining subsequence. That
is, it contains a subsequence {xnk} for which supSX∗ lim supk→∞ f(xnk) is
attained at some f from the dual unit sphere SX∗ . Also, a Banach space
X is not reflexive if and only if it contains a normalized sequence {xn}
with the property that for every f ∈ SX∗ , there exists g ∈ SX∗ such that
lim supn→∞ f(xn) < lim infn→∞ g(xn). In [Sh] Shafrir calls sequences with
this property (P)-sequences. He proves that if {xn} is a (P)-sequence, then
conv{nxn : n ∈ N} has the AFPP.

When characterizing reflexive Banach spaces, we make use of the proof
of the nonseparable case of James’s theorem as presented in [S]. For more
information on the approximate fixed point property for nonexpansive map-
pings see, for example, [GR], [GK], [EK], [K] and the references mentioned
therein.

By SX we denote the unit sphere of a Banach space X; by X∗ we denote
the dual of X. By ζ, η, . . . we denote subsequences of the sequence of natural
numbers.
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2. Preliminaries. The following definition appears in [Sh].

Definition 2.1. Let X be a Banach space. A sequence {xn}∞n=1 ⊂ SX
is called a (P)-sequence if for every f ∈ SX∗ , there exists g ∈ SX∗ such that
lim supn→∞ f(xn) < lim infn→∞ g(xn).

Clearly, a subsequence of a (P)-sequence is again a (P)-sequence. The
following is a straightforward consequence of the Hahn–Banach theorem.

Lemma 2.2. Suppose Y is a closed subspace of a Banach space X and
{xn}∞n=1 ⊂ SY is a (P)-sequence in Y . Then {xn}∞n=1 is a (P)-sequence in
X as well.

Proof. Let f ∈ SX∗ be given. Denote by a the norm of f when re-
stricted to Y . Clearly, a ≤ 1. If a = 0, we choose any g ∈ SY ∗ with
lim infn→∞ g(xn) > 0; the existence of such a functional g follows directly
from the definition of a (P)-sequence. If 0 < a ≤ 1, we choose g ∈ SY ∗

so that lim supn→∞ f(xn)/a < lim infn→∞ g(xn). In both cases we use the
Hahn–Banach theorem to extend g to a norm-one functional on X.

Quite often, we will make use of the following description of (P)-se-
quences. Note that a sequence {xn} satisfying (1) is called a Pryce sequence
on p. 264 of [Sch].

Lemma 2.3. Let X be a Banach space and let {xn} ⊂ SX satisfy

sup
f∈SX∗

lim sup
n→∞

f(xn) = sup
f∈SX∗

lim inf
n→∞

f(xn).(1)

If the supremum on the left-hand side is not attained , then {xn} is a (P)-
sequence. Conversely , if {xn} is a (P)-sequence, then (1) is satisfied and
neither of the suprema is attained.

Proof. Suppose (1) is satisfied and the supremum on the left-hand side
is not attained. Let f ∈ SX∗ . Then

lim sup
n→∞

f(xn) < sup
h∈SX∗

lim sup
n→∞

h(xn) = sup
h∈SX∗

lim inf
n→∞

h(xn).

Therefore there exists a functional g ∈ SX∗ such that lim supn→∞ f(xn) <
lim infn→∞ g(xn).

For the converse, observe that, trivially, for any bounded sequence {xn}
and f ∈ X∗,

lim sup
n→∞

f(xn) ≥ lim inf
n→∞

f(xn).(2)

Hence supf∈SX∗ lim supn→∞ f(xn) ≥ supf∈SX∗ lim infn→∞ f(xn). The def-
inition of a (P)-sequence provides the other inequality needed for (1). By
(1) and (2), if suph∈SX∗ lim infn→∞ h(xn) is attained at some f ∈ SX∗ , then
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suph∈SX∗ lim supn→∞ h(xn) is attained at this f as well. But for this par-
ticular f , this fact contradicts the existence of the functional g from the
definition of a (P)-sequence.

If X is a Banach space and x ∈ X, then x attains its norm on the unit
ball of X∗. If every f ∈ X∗ attains its norm on the unit ball of X, then X is,
according to the James theorem [J], reflexive. In Theorem 4.3 we establish a
parallel to this result. Suppose that every bounded sequence in X contains
a subsequence which “attains its norm” on the unit ball of X∗. Then X is
reflexive.

Definition 2.4. Let X be a Banach space. We call a bounded sequence
{xn}∞n=1 in X norm attaining if supf∈SX∗ lim supn→∞ f(xn) is attained
on SX∗ .

The following lemma shows that (P)-sequences and sequences which do
not attain their norm are closely related.

Lemma 2.5. Let X be a Banach space and let {xn} ⊂ SX . If {xn} is
a (P)-sequence, then no subsequence thereof is norm attaining. Conversely ,
if {xn} contains no norm attaining subsequences, then it contains a (P)-
sequence.

Consequently , a Banach space X contains no (P)-sequences if and only
if every bounded sequence in X contains a norm attaining subsequence.

Proof. Every subsequence of a (P)-sequence is also a (P)-sequence, so it
is not norm attaining by Lemma 2.3.

Suppose the sequence {xn} contains no norm attaining subsequences. By
Lemma 3.1 below, it contains a subsequence {xnk} such that

sup
f∈SX∗

lim sup
k→∞

f(xnk) = sup
f∈SX∗

lim inf
k→∞

f(xnk).

By Lemma 2.3, {xnk} is a (P)-sequence.
The last statement of the lemma for norm-one sequences is just a refor-

mulation of the previous two. Hence, to finish the proof it is enough to ob-
serve that if there is a bounded sequence {xn} with no norm attaining subse-
quences, then there is a normalized sequence which has this property as well.
Clearly, {xn} contains a subsequence {xnk} with limk→∞ ‖xnk‖ = a > 0.
Then lim supk→∞ f(xnk/‖xnk‖) = lim supk→∞ f(xnk)/a for all f ∈ X∗.
Hence, if the supremum supSX∗ lim supk→∞ f(xnk) is not attained, then
supSX∗ lim supk→∞ f(xnk/‖xnk‖) is not attained either.

3. Tools from the proof of the James theorem. Recall that ac-
cording to the James theorem [J], a Banach space X is reflexive if and only
if every f ∈ X∗ attains its norm. In this section we reproduce two lemmata
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which can be used to prove this theorem. For the convenience of the reader,
we also provide proofs.

The first lemma is taken from [P]. The following trivial observation might
help to understand its statement and the proof. Suppose {xn} is a bounded
sequence in `∞(S) such that supS lim supxn is attained at some s ∈ S.
Choose a subsequence ζ of N so that limxζ(n)(s) = lim supxn(s). Then for
any subsequence η of ζ we have supS lim supxζ(n) = supS lim supxη(n) and
supS lim supxζ(n) = supS lim inf xζ(n). In the lemma, the existence of points
where either the supremum or the infimum are attained is not assumed and
the equalities are required at separably many translates. In the proof, the
resulting difficulty is overcome by diagonalization arguments.

Lemma 3.1. Let S be a set , {xn} a bounded sequence in `∞(S), and let
X be a separable subset of `∞(S). Then

(i) there exists a subsequence ζ of N such that for every subsequence η
of ζ and every x ∈ X, we have

sup
s∈S

lim sup
n→∞

(x− xζ(n))(s) = sup
s∈S

lim sup
n→∞

(x− xη(n))(s),

sup
s∈S

lim inf
n→∞

(x− xζ(n))(s) = sup
s∈S

lim inf
n→∞

(x− xη(n))(s);

(ii) if ζ is a sequence as in (i), then for all x ∈ X, we have

inf
s∈S

lim sup
n→∞

(x− xζ(n))(s) = inf
s∈S

lim inf
n→∞

(x− xζ(n))(s),

sup
s∈S

lim sup
n→∞

(x− xζ(n))(s) = sup
s∈S

lim inf
n→∞

(x− xζ(n))(s).

Proof. (i) We show that it is possible to ensure the first equality of (i); to
ensure the second one as well, one repeats the argument in a similar fashion.

First, we show that for a fixed x ∈ X, there is a subsequence ζ satisfying
the first equality of (i). We fix some sequence {εi}, εi > 0, with lim εi = 0.
We choose inductively sequences N = ζ0 ⊃ ζ1 ⊃ . . . and si ∈ S so that there
exists

lim
n→∞

(x− xζi+1(n))(si+1) ≥ sup lim sup(x− xζi)− εi+1.

Let ζ(n) = ζn(n) be the diagonal of {ζi}. Let η be a subsequence of ζ. Then
for any i ∈ N, we have

sup lim sup(x− xη) ≤ sup lim sup(x− xζ) ≤ sup lim sup(x− xζi)
≤ lim(x− xζi+1)(si+1) + εi+1

= lim(x− xη)(si+1) + εi+1

≤ sup lim sup(x− xη) + εi+1.

The first inequality follows from η ⊂ ζ, while the second follows from the
fact that except for the first i members, ζ ⊂ ζi; similarly, the equality follows
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from the fact that except for the first i+1 members, η ⊂ ζi+1. Consequently,
sup lim sup(x− xη) = sup lim sup(x− xζ).

Another diagonalization allows us to choose ζ which will work for a dense
countable subset {yj} of X. Such a ζ then works for all x ∈ X.

We now choose inductively sequences ζ1 ⊃ ζ2 ⊃ . . . so that for all subse-
quences η of ζj , sup lim sup(yj−xζj ) = sup lim sup(yj−xη). Let ζ(n) = ζn(n)
be the diagonal of {ζj}. If j ∈ N and η is a subsequence of ζ, then

sup lim sup(yj − xη) ≤ sup lim sup(yj − xζ) = sup lim sup(yj − xζj )
= sup lim sup(yj − xη).

Here the inequality holds because η ⊂ ζ, the first equality holds since except
for the first j members, ζ ⊂ ζj, and similarly, the last equality holds because
except for the first j members, η ⊂ ζj .

(ii) We show that the second equality of (i) implies the second equality
of (ii). That the first equality of (i) implies the first equality of (ii) can be
proved similarly.

Let ζ be as in (i) and let ε > 0. Choose s ∈ S and a subsequence η of ζ
so that there exists

lim(x− xη)(s) ≥ sup lim sup(x− xζ)− ε.
Then for x ∈ X,

sup lim sup(x− xζ) ≥ sup lim inf(x− xζ) = sup lim inf(x− xη)
≥ lim(x− xη)(s) ≥ sup lim sup(x− xζ)− ε;

the equality above is a consequence of the second equality of (i). As ε > 0
was arbitrary, we conclude that sup lim sup(x− xζ) = sup lim inf(x− xζ).

The following technical lemma appears in [S]. It can be used, for example,
to prove the inequality presented by Simons in [Si]. It should be understood
as an upper estimate of a certain smallest supremum. In the proofs it is
used, roughly speaking, as follows. Assume that y = (1 − ε)∑∞k=1 ε

k−1yk
attains its supremum on S. Then α1 is, up to a small error, bounded from
above by supS lim supn→∞ zn.

Lemma 3.2. Let S be a set and let {zn} be a bounded sequence in `∞(S).
Let 0 < δ, ε < 1, and let An = conv{zi : i ≥ n}. Choose y1 ∈ A1 such that

α1 = sup
S
y1 ≤ inf

y∈A1
sup
S
y + δ(ε/2)

and ym+1 ∈ Am+1 such that

αm+1 = sup
S

(m+1∑

k=1

εk−1yk

)
≤ inf

y∈Am+1
sup
S

( m∑

k=1

εk−1yk + εmy
)

+ δ(ε/2)m+1.
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Then for each m ∈ N we have

lim
n→∞

αn ≥ αm +
εm

1− ε (α1 − (1 + ε)δ).(3)

Proof. Set α0 = 0. Since (ym+εym+1)/(1+ε) ∈ Am, the definition of αm
implies that

(1 + ε)αm ≤ sup
[
(1 + ε)

m−1∑

k=1

εk−1yk + εm−1ym + εmym+1

]

+ δ(1 + ε)(ε/2)m

≤ sup
(m+1∑

k=1

εk−1yk

)
+ ε sup

(m−1∑

k=1

εk−1yk

)
+ δ(ε/2)m(1 + ε)

= αm+1 + εαm−1 + δ(ε/2)m(1 + ε).

Consequently,

αm+1 − αm ≥ ε(αm − αm−1)− δ(ε/2)m(1 + ε).(4)

By iterating this inequality we obtain

αm+1 − αm ≥ ε(αm − αm−1)− (1 + ε)δ(ε/2)m

≥ ε2(αm−1 − αm−2)− (1 + ε)δεm(1/2m + 1/2m−1)

≥ . . .
≥ εm(α1 − α0)− (1 + ε)δεm(1/2m + 1/2m−1 + . . .+ 1/2)

≥ εm(α1 − (1 + ε)δ).

Hence for n > m,

αn − αm =
n−1∑

k=m

αk+1 − αk ≥ (α1 − (1 + ε)δ)
n−1∑

k=m

εk.

Thus

αn ≥ αm + εm
1− εn−m

1− ε (α1 − (1 + ε)δ)

and (3) follows by letting n→∞.

4. Reflexivity and (P)-sequences. If X is an infinite-dimensional
reflexive Banach space, then according to [R2] and [Sh], X contains a closed,
convex and unbounded set with the AFPP. Shafrir [Sh] shows that if a
Banach space X contains a (P)-sequence {xn}, then C = conv{nxn : n ∈ N}
has the AFPP. He also observes that a sequence {xn} ⊂ SX which converges
pointwise on SX∗ to some z ∈ X∗∗ which does not attain its norm is a
(P)-sequence. According to a theorem of Odell and Rosenthal (see, e.g., [D,
p. 236]), such sequences are always present in separable nonreflexive Banach
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spaces which do not contain an isomorphic copy of `1. In this section we will
show that a Banach space is not reflexive if and only if it contains a (P)-
sequence. Consequently, all infinite-dimensional Banach spaces contain an
unbounded closed convex set with the AFPP.

The following lemma strengthens one of the statements of Lemma 2.5 in
the case of a separable Banach space.

Lemma 4.1. Suppose X is a separable Banach space that contains no
(P)-sequence. Let {xn} be a bounded sequence in X. Then {xn} contains a
subsequence {xnk} such that for every x ∈ X,

sup
SX∗

(x− lim sup
k→∞

xnk) = sup
SX∗

(x− lim inf
k→∞

xnk),

inf
SX∗

(x− lim sup
k→∞

xnk) = inf
SX∗

(x− lim inf
k→∞

xnk),
(5)

and supSX∗ (x− lim supk→∞ xnk) is attained.

Proof. First assume that {xn} contains a converging subsequence; using
Lemma 3.1, choose a subsequence {xnk} of this converging subsequence so
that (5) is satisfied. Then x − lim supk→∞ xnk = x − limk→∞ xnk = y ∈ X
and the supremum, that is, the norm of y, is attained.

Assume now that {xn} does not contain any converging subsequences.
Define S = SX∗ and consider X as a subset of `∞(S). Then X is separable
and {xn} is bounded. Choose a subsequence ζ = {nk} of N so that (i) of
Lemma 3.1 is satisfied. By (ii) of Lemma 3.1, both the equalities of (5) hold.
Suppose there is some x ∈ X such that

sup
SX∗

(x− lim sup
k→∞

xnk) is not attained.(6)

Since {xn} is bounded, there is a subsequence ξ of ζ such that lim ‖x− xξ‖
= a exists. Since {xn} does not contain norm-convergent subsequences,
a > 0. Put zn = (x − xξ(n))/‖x − xξ(n)‖. We will show that {zn} is a
(P)-sequence and this will be a contradiction. Since ξ is a subsequence of ζ,
(i) of Lemma 3.1 continues to be satisfied when ζ is replaced with ξ. Hence
by (ii) of the same lemma, we have

sup
f∈SX∗

lim sup
n→∞

f(zn) = a−1 sup
s∈S

lim sup
n→∞

(x− xξ(n))(s)(7)

= a−1 sup
s∈S

lim inf
n→∞

(x− xξ(n))(s)

= sup
f∈SX∗

lim inf
n→∞

f(zn).

We claim that supf∈SX∗ lim supn→∞ f(zn) is not attained. When combined
with (7), this implies by Lemma 2.3 that {zn} is a (P)-sequence. Suppose
that supf∈SX∗ lim supn→∞ f(zn) is attained. We will show that then also
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supSX∗ (x− lim supk→∞ xnk) is attained and this will contradict (6). To this
end, let s ∈ S be such that

sup
f∈SX∗

lim sup
n→∞

f(zn) = a−1 sup
S

lim sup
n→∞

(x− xξ(n))

= a−1 lim sup
n→∞

(x− xξ(n))(s).

Since ξ is a subsequence of ζ and ζ satisfies (i) of Lemma 3.1, we have

sup
S

lim sup
n→∞

(x− xζ(n)) = sup
s∈S

lim sup
n→∞

(x− xξ(n)) = lim sup
n→∞

(x− xξ(n))(s)

≤ lim sup
n→∞

(x− xζ(n))(s).

Hence supS lim supn→∞(x− xζ(n)) is indeed attained, contradicting (6).
Here is a variation of the above proof, perhaps slightly more efficient.

Assume again that {xn} does not contain any converging subsequences.
A simple diagonalization argument (see, e.g., [R1]) allows us to choose a
subsequence η of N so that for all x ∈ X there exists limn→∞ ‖x−xη(n)‖ > 0.
Next we choose a subsequence ζ = {nk} of η satisfying (i) of Lemma 3.1. By
(ii) of Lemma 3.1, both equalities of (5) hold. If supSX∗ (x− lim supk→∞ xnk)
is not attained for some x ∈ X, then we can apply a similar argument to
the one used above to show that {(x − xnk)/‖x − xnk‖} is a (P)-sequence,
and this again provides us with a contradiction.

The proof of the following proposition was inspired by the proof of the
James theorem presented in [S].

Proposition 4.2. Let X be a separable Banach space that contains no
(P)-sequence. Then every bounded sequence {xn} in X contains a subse-
quence which converges pointwise on SX∗ to some z ∈ X∗∗, and z attains
its norm on SX∗ .

Proof. Let {xn} be a bounded sequence in X. We may assume that
{xn} is contained in the unit ball. Choose a subsequence {xnk} of {xn} as
described in Lemma 4.1 and put z = lim infk→∞ xnk . We will show that
z(s) = limk→∞ xnk(s) for all s ∈ X∗. Then z is linear and bounded on the
unit ball of X∗, hence z ∈ X∗∗. As X contains no (P)-sequence, ‖z‖ =
supf∈SX∗ limk→∞ f(xnk) is attained by Lemma 2.5.

Define S = SX∗ and consider X as a subset of `∞(S). Suppose to the
contrary that there are some s0 ∈ S, a subsequence η of {nk}, and b > 0
such that

(xη(n) − z)(s0) ≥ b > 0 for all n ∈ N.(8)

Put zn = xη(n) − z, An = conv{zi : i ≥ n}, and fix some 0 < δ, ε < 1 so
that (1 + ε)δ + 2ε < b. We apply the construction of Lemma 3.2 to obtain
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{yn} and {αn} as defined there. Then

yn + z ∈ An + z = conv{xη(i) − z : i ≥ n}+ z(9)

= conv{xη(i) : i ≥ n} ⊂ X.
Define v = lim supk→∞ xnk . Since η is a subsequence of {nk} and yn ∈ An =
conv{zi : i ≥ n}, we have

z = lim inf
k→∞

xnk ≤ lim inf
n→∞

(zn + z) ≤ lim inf
n→∞

(yn + z)(10)

≤ lim sup
n→∞

(yn + z) ≤ lim sup
n→∞

(zn + z) ≤ lim sup
k→∞

xnk = v.

By (9), x = (1− ε)∑∞k=1 ε
k−1(yk + z) ∈ X. Hence

sup
S

(
(1− ε)

∞∑

k=1

εk−1yk

)
= sup

S
(x− z) = sup

S
(x− v).(11)

The second equality above holds because {nk} has been chosen so that (5)
be satisfied. By Lemma 4.1, there is some s ∈ S such that

sup
S

(x− v) = (x− v)(s).

For m ∈ N, by (11) and by the definition of αn, we have

(1− ε) limαn = sup
S

(
(1− ε)

∞∑

k=1

εk−1yk

)
= sup

S
(x− v)(12)

=
[
(1− ε)

∞∑

k=1

εk−1(yk + z − v)
]
(s)

≤ (1− ε)
∑

k 6=m+1

εk−1yk(s) + (1− ε)εm(ym+1 + z − v)(s)

≤ (1− ε)αm + 2(1− ε)
∑

k>m+1

εk−1

+ (1− ε)εm(ym+1 + z − v)(s).

The first inequality above holds because z − v ≤ 0 by (10). By (12) and
Lemma 3.2,

εm(ym+1 + z − v)(s) ≥ limαn − αm −
2εm+1

1− ε

≥ αm +
εm

1− ε (α1 − (1 + ε)δ)− αm −
2εm+1

1− ε .

Hence for m ∈ N,

(ym + z − v)(s) ≥ (α1 − (1 + ε)δ − 2ε)/(1− ε).
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Since by (10), lim infm→∞ ym+z−v ≤ 0, this means that α1 ≤ (1+ε)δ+2ε.
However, since y1 =

∑
tizi for some ti ≥ 0,

∑
ti = 1, we also have

α1 = sup
S
y1 ≥

∑
tizi(s0) ≥ b > (1 + ε)δ + 2ε,

which is a contradiction.

Now we are ready to present the following characterization of reflexive
Banach spaces.

Theorem 4.3. For a Banach space X the following are equivalent :

(i) X is reflexive;
(ii) every bounded sequence {xn} in X contains a norm attaining sub-

sequence, that is, a subsequence {xnk} for which supf∈SX∗ lim sup f(xnk) is
attained ;

(iii) every bounded sequence {xn} in X contains a subsequence {xnk} for
which supf∈SX∗ lim inf f(xnk) is attained ;

(iv) X does not contain any (P)-sequence.

Proof. (i)⇒(ii). Let {xn} be a bounded sequence in a reflexive Banach
space X. There is a subsequence {xnk} of {xn} such that weak-limxnk =
x ∈ X. Choose f ∈ SX∗ so that f(x) = ‖x‖. Then for any h ∈ SX∗ , we have
limh(xnk) = h(x) ≤ ‖x‖.

(ii)⇒(iii). Let {xn} be a bounded sequence in X. Choose a subsequence
{xnk} of {xn} and h ∈ SX∗ so that

limh(xnk) = sup
f∈SX∗

lim sup f(xnk).

Then

sup
f∈SX∗

lim inf f(xnk) ≥ limh(xnk) = sup
f∈SX∗

lim sup f(xnk)

≥ sup
f∈SX∗

lim inf f(xnk).

Hence sup lim inf f(xnk) is attained at h.
(iii)⇒(ii). By Lemma 3.1, there exists a subsequence ζ of N such that

for every subsequence η of ζ,

sup
f∈SX∗

lim sup f(xη) = sup
f∈SX∗

lim inf f(xη).

Choose a subsequence η of ζ and h ∈ SX∗ so that there exists

limh(xη) = sup
f∈SX∗

lim inf f(xη).
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Then
sup
f∈SX∗

lim sup f(xη) ≥ limh(xη) = sup
f∈SX∗

lim inf f(xη)

= sup
f∈SX∗

lim sup f(xη).

Hence sup lim sup f(xη) is attained at h.
(ii)⇔(iv). This is proved in Lemma 2.5.
(iv)⇒(i). Suppose X does not contain any (P)-sequences and suppose

for a contradiction that X is not reflexive. Let Y be a separable nonreflexive
subspace of X. By Lemma 2.2, Y also does not contain any (P)-sequences.
This means that Y contains an isomorphic copy of `1: if it did not, then
according to [Sh], Y would contain a (P)-sequence. Let {xi} be an isomorphic
`1-basis in Y . By Proposition 4.2, it contains a subsequence which converges
pointwise on Y ∗. As this subsequence is again an `1-basis, we may assume
that {xi} already has this property. Let T : `1 ↪→ Y be the embedding for
which T (ei) = xi; here {ei} is the usual basis of `1. Then the dual mapping
T ∗ : Y ∗ → `∞ is surjective and we can choose f ∈ Y ∗ so that T ∗f =
(−1, 1,−1, 1, . . .). Then f(xn) = f(Ten) = T ∗f(en). Hence f(xn) = (−1)n,
which is a contradiction. Consequently, X is reflexive.

Corollary 4.4. Let X be an infinite-dimensional Banach space. Then
X contains an unbounded closed convex set with the AFPP.

Proof. If X is reflexive, then X contains such a set according to [R2] and
[Sh]. If X is not reflexive, then it contains, by Theorem 4.3, a (P)-sequence
{xn}. By [Sh], C = conv{nxn : n ∈ N} has the AFPP.
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