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Abstract. Let {R,}52; be a commuting approximating sequence of the Banach
space X leaving the closed subspace A C X invariant. Then we prove three-space results
of the following kind: If the operators R, induce basis projections on X/A, and X or A
is an Lp-space, then both X and A have bases. We apply these results to show that the

spaces C'y = span{z" : k € A} € C(T) and L, = span{z" : k € A} C L1(T) have bases
whenever A C Z and Z \ A is a Sidon set.

1. Introduction. Let X be a separable Banach space (over R or C),
A C X a closed subspace and (P) a Banach space property. Then the paper
deals with three-space problems of the following kind:

If X /A satisfies (P), do X and A also have (P)?

Let B C X be another closed subspace such that X = A+ B. If B
satisfies (P), do A and X also have (P)?

It turns out that these questions are meaningful if (P) is a bounded ap-
proximation property, X, A or X/B is an L,-space, and A, B are invariant
under a sequence of finite rank operators which approximate the identity on
X. We obtain basis and FDD existence theorems supplementing the results
of [9]. In Section 3 we apply these methods to C4- and L 4-spaces (over T)
and show that C'4 and L, have bases whenever A C Z is a co-Sidon set.

First we recall some basic definitions. X is called an £y-space (or L, x-
space) if there exists a A > 1 such that, for every finite-dimensional F C X,
there is a finite-dimensional subspace F' C X with E C F and d(F, [3™F) <.
(d(-,-) is the Banach-Mazur distance.) It is known ([6]) that in this situation
we can even find such F' which are uniformly complemented in X.

X has the bounded approzimation property (BAP) if there is a sequence
of bounded linear finite rank operators R, : X — X with lim,, R,x = z for
all z € X; {R,}72, is then called an approzimating sequence (a.s.).
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If in addition R,Rm = Ruyin(nm) for n # m then {R,}72, is called
a commuting approrimating sequence (c.a.s.) and X is said to have the
commuting bounded approximation property (CBAP).

X has a finite-dimensional Schauder decomposition (FDD) if there is
a c.a.s. {R,}0%, of X where all R, are projections. (In this case we have
X =32, ®(Bnt1 — Rn)X.)

Finally, X has a basis provided that X has a c.a.s. {R,}°° consisting
of projections such that dim (R,4+1 — Ry,)X =1 for all n.

It is clear that basis = FDD = CBAP = BAP. On the other hand it is
well known that CBAP # FDD # basis ([1], [11], [12]; see also [10]).

In the following, “~” means “is isomorphic to”. If U, : X — X,
n=1,2,..., are linear operators we always put Up =U_; = ... =0.

We say that the U, factor uniformly through an Lj,-space Y if there
are linear operators T, : X — Y and S,, : Y — X with S, T, = U, and
supy, [|Snl| - | Tl < oo.

2. The main results. Again, assume that X is a separable Banach
space. Let A C X and B C X be closed subspaces. Recall that a linear
operator R : X — X with RA C A induces a linear operator R on X/A
with | R|| < |R||, namely R(z + A) = Rz + A, z € X.

2.1. THEOREM. Let {R,}5°, be a c.a.s. of X with R,AC A,n=1,2,...

(a) Assume that the operators R, induce the projections of a basis (or
FDD, resp.) on X/A. If X or A is an Ly-space for some p € [1,00[ then
X &1, has a basis (or an FDD, resp.) with projections P, which leave A&,
invariant. In particular, A & 1, also has a basis (or an FDD, resp.) with
projections Pn|agt, -

(b) Assume that X = A+ B and that R,|p, n = 1,2,..., are the pro-
jections of a basis (or an FDD, resp.) of B. If X, X/B or A is an L,-space
for some p € [1,00[ then X @1, has a basis (or an FDD, resp.) with projec-
tions Py, satisfying P,(A®l,) CA®l, and P,|p = Ry, n=1,2,... In
particular, A® 1, has a basis (or an FDD, resp.) with projections Py|aq, -

We postpone the proof of 2.1 to Section 4. Here we make a few remarks.

REMARKS. The proof of 2.1 shows that the theorem remains true for
p = oo. Here we have to replace [, by cp.

In 2.1(b) we do not require AN B = {0}. Moreover, we can admit the
case that R,|p = Rn+1|p for some n. On the other hand, we do not claim
that the Ry,|4 themselves are the projections of a basis or FDD of A. The
theorem is certainly false if we drop the assumption that X, A or X/B is
an L,-space (e.g. take B = {0} and A = X).
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In some cases one obtains slightly better results. Then we do not need
to add I, or cp:

2.2. THEOREM. Let {R,}3>; be a c.a.s. of X which leaves A invariant
and defines a sequence of projections for a basis of X/A. If X or A is an
Ly-space for some p € [1,00] then both X and A have bases.

Proof. {Rp|a}, is a c.as. of A. We claim that R, — R,—1 and
(Rn — Rp—1)|a factor uniformly through an L,-space. Indeed, by our as-
sumption, AN (R, — R,—1)X is at most 1-codimensional in (R,, — R,_1)X.
Hence we find uniformly bounded projections P, : (R, — R,—1)X — AN
(R, — R,—1)X.

If X is an Ly,-space then define

T,:A— X by Tha=(Rp+1— Rn—2)a, a€ A,

Sp: X —A by Spx=PFP,(R,— Rn_1)z, v € X.
We obtain S, T, = (R, — R,,—1)|a. Hence the operators (R,, — R,—1)|4 factor
uniformly through X. By [8], A has a basis.

If A is an Lp-space then set W = (id — P,,)(R, — Rp,—1)X and define
T,: X - AW by

Tox = (Py(R, — Ry—1)zx,(id — P,)(Ry, — Rp—1)x),
and S, : AW — X by
Sp(a,w) = (Rp41 — Rp—2)a + w.

Here S, T, = R, — R,,—1 and R,, — R,,_1 factors uniformly through A & W.
The latter space is an £, y-space (where A does not depend on n) because
dim W < 1. Hence X has a basis (in view of [8]).

This proves 2.2, since separable £,-spaces always have bases ([4]). =

In the case p =1 and X an £;-space Theorem 2.1(a) can be proved un-
der the considerably weaker assumption that {R,}?°; be an approximating
sequence. Similarly the basis version of 2.1 for p = co can also be inferred
under this assumption.

2.3. THEOREM. Let {R,}2, be an a.s. of X with R,bA C A, n =
1,2,... Assume that the operators R, induce the projections of a basis (or
an FDD, resp.) on X/A. If X is an Ly-space then X @11 has a basis (or an
FDD, resp.) with projections P,, which leave A® 1y invariant. In particular,
A @ also has a basis (or an FDD, resp.) with projections Py | a1, -

2.4. THEOREM. Let X be an Loo-space and let {R,}°, be an a.s. of
X with R,A C A for all n. Assume that the R,, n = 1,2,..., induce the
projections of a basis of X/A. Then X @ co has a basis with projections P,
satisfying Po(A®co) C Adco, n=1,2,... In particular, A®cy has a basis
with projections Pp|Agc,- Finally, there is a subspace B ~ ¢y of X @cy such
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that (A @ co) + B = X @ ¢y and the operators P,|p are the basis projections
of the unit vector basis of cg.

We also postpone the proofs of Theorems 2.3 and 2.4 to Section 4.

Recall that A @ [, ~ A provided that A contains a complemented iso-
morphic copy of [, and A@ cy ~ A provided that A contains an isomorphic
copy of ¢y (see [7]). Together with 2.1 and the remark following it we obtain

2.5. COROLLARY. Let {R,}>2, be a c.a.s. of X andlet A C X be an L,-
space for some p € [1,00] such that R,(id — R,)X C A, n=1,2,... Then
X Dy, if p<oo, and X @ co, if p= 00, has an FDD.

Reformulating the basis version of 2.1(b) (with A = X) we obtain the
following basis extension result.

2.6. COROLLARY. Let B C X be a closed subspace with a basis {2 and
assume that X or X/B is an L,-space. If the basis projections of 2 can
be extended to a c.a.s. of X then X ©1,, for 1 < p < oo, and X @ co, for
p = 00, has a basis which contains {2 as a subsequence.

REMARKS. Here we identify z € X with (z,0) € X @ [,,. Note that (2
is not just equivalent to a subsequence but the elements of {2 coincide with
some elements of the extended basis.

Theorem 2.3 also includes a result of [9]. Recall that every separable
Banach space Y is isomorphic to a quotient space of 7.

2.7. COROLLARY. Let Y be a Banach space with basis and let q: 11 — Y
be a quotient map. Then ker q has a basis.

Proof. Let ﬁn : Y — Y be the basis projections of a given basis of Y.
Moreover, let {e;}32, be the unit vector basis of /;. Find y; € Y with
lly;|l = 1 and integers 0 < m; < mg < ... such that y; € ﬁnY, i < my,
satisfying the following:

For each y € R,Y with lly|| = 1 there are A1, ..., A, such that

Mn Mn
y=> w2
j=1 j=1

Then define the quotient map qo : I1 — Y by qoe; = y; for all j. It is
well known ([7]) that ker gy ~ kergq. Put A = kergp. We can assume that
dim A = oo, hence A ~ A® l; ([7)).

Define the linear operators R, : I — I by Rye; = ¢e; for j < m,. If
k > my, find A1,..., Ay, with



Three-space problems 421

mn Mn
Roye = |Rall Y Nyss DNl <2
j=1 j=1

Put Ruei = || Ryl >_7 Ajej. Then we obtain an a.s. {R,}52; with goR, =

~

Ryqo for all n. Now Theorem 2.3 completes the proof. m

3. Co-Sidon sets. Now we turn to complex Banach spaces. Let T =
{z € C:|z|] = 1}. Fix A C Z and let C be the closed linear span of the
functions z¥, k € A, on T with respect to the sup-norm (denoted by || - [|o)-
Moreover, let L4 be the closed linear span of z¥, k € A, with respect to the
Li-norm on T (denoted by || - [|1).

We make use of some classical finite rank operators. Fix n and put

an<2akzk> = zn: n_n|k| akzk.
k

=N

It is well known ([3]) that ||oy,|| = 1 on C(T) = Cy as well as on L1(T) = L.
Clearly, 0,,(C4) C Cp and 0, (L4) C Ly for each A C Z. For 0 < m < n put

noy — Mo,
Vam = —————.
n—m
Then
n— |k
me( E akzk) = E akzk + E [#] akzk
n—m
k |k|<m m<|k|<n

and ||V, m|| < (n+m)/(n—m) (as an operator on C(T) as well as on L;(T)).

A C Zis called a Sidon set if {2} rc4 (regarded as a sequence in C(T)) is
equivalent to the unit vector basis of I1. It is well known ([2]) that lacunary
sets are Sidon sets and finite unions of Sidon sets are Sidon sets.

3.2. THEOREM. Let A C Z be such that Z\ A is a Sidon set. Then Cy
and L4 have a basis.

Further results on Cy and L,, where Z \ A is a Sidon set, can be found
in [5].
For the proof of 3.2 we need the following

3.3. LEMMA. Let A C Z be such that Z \ A is a Sidon set. Then Cy
contains an isomorphic copy of co and hence Cy ~ Cy & co. Moreover,
L4 contains a complemented copy of 11 and Ly~ Lo ® ;.

Proof. 1t is well known ([2]) that C(T)/C, is isomorphic to Iy since
Z\ A is a Sidon set. Now find e, € C(T) of norm one with mutually dis-
joint supports, which implies that {e,} 2 is equivalent to the unit vec-
tor basis of ¢o. Let ¢ : C(T) — C(T)/Cx be the quotient map. Then
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we must have lim,, ||gen ||l = 0 because otherwise we could find a subse-
quence {ey, }7°, such that q’Span{enk}z":l is an isomorphism, which is im-
possible since ¢C(T) ~ 2. So we find €, € Cy with lim, |le, — €pljcc = 0
and hence a subsequence {€,,, }°°_; which is equivalent to {e,,, }>°_;. Thus
span{e,,, }>°_; C Cy is isomorphic to cg.

It is well known ([2]) that L;(T)/L, is isomorphic to ¢y since Z \ A is
a Sidon set. Take f, € Li(T) of norm one with disjoint supports. Then
{fn}>2 is equivalent to the unit vector basis of I; and span{ f,, }2° is com-
plemented in Li(T). Let ¢; : L1(T) — L1(T)/L, be the corresponding quo-
tient map. Since we are in ¢o we find a subsequence {q1 fn, }72, of {q1fn}52
such that

weak- 1im q1(fngy — frge) = 0.
k—o0

By Mazur’s theorem there are m; < mg < ... and suitable convex combi-
. m .
nations gi = > ;0" 1 Ak j(frs;n — fnoy) such that limy_.o [lq1gx[ = 0. So

we find gx € L with limg_. ||gk — gk|l1 = 0. The elements g, k =1,2,...,
have disjoint supports and are equivalent to the unit vector basis of [;. By
going over to a suitable subsequence {gi;}32; we see that span{gr,}32,,
and then also W{ﬁkj };";1 C Ly, is isomorphic to I; and complemented in
Ly(T). m

Proof of Theorem 3.2. Put {2 =7\ A. Fix an integer n > 0 and take m
with 0 < m < n such that (n 4+ m)/(n —m) < 2. Consider

me(;akzk): Z akzk—i— Z %akzk.

|k|<m m<|k|<n
For h € Li(T) we define p, : C(T) — C by
1

mn(f) = o= e f(e)dt,  f e C(T).
0

Then [|pap|| = [[2]]1-

Regard gn == >, < jkj<n z¥ as an element of Li(T). Since §2 is a Sidon
set we obtain a constant ¢ > 0 independent of n with |pg, (f)| < ¢/ f]|o for
every f € Cp. Put

Mpy={peC(T) :uk)=0if ke Z\ A},
where fi(k) = p(z7%). Then C}, = C(T)*/M,. Hence we find u € M, with
| + g, || < 2¢. Consider
V.= (,u + ,ugn) o (V2n,n - Vn,m)

By definition of the Vj; we can find a trigonometric polynomial h, €
span{z¥ : m < |k| < 2n} such that v = pj,. Moreover, |h,l1 < 12e.
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Put
Pg (Z akzk) = Z akzk.
k ke
Since

thn, (f) = tg (Vann = Vam) f)
for all f € Cg we obtain

P.th — PQ(‘/Qn,n - Vn,m)gn - Z

m<|k|<n
ke

Now, define R,,f = Vi f + hy * f, f € C(T). Then the R,, are uniformly
bounded finite rank operators. Moreover, lim,, R, f = f for all f € C(T).

On Cy, we have
Rn(Z akzk> = Z a2

kes? |k|<n
ke

k| —
|K| mzk.

Hence the R,|c,, are basis projections. We have C(T) = Cp + Cy. Since
R, C, C Cy for all n, the operators R,, define basis projections on C(T)/C}.
By 2.4 with A = C4 the space Cy @ ¢y has a basis. Now, 3.3 shows that Cy
has a basis.

The operators R |p (1) define an a.s. on Li(T). (Indeed, Ry f = R, f
for any trigonometric polynomial f.) The operators R |1, are basis projec-
tions. Since L1(T) = L & Ly, the operators R}, define basis projections on
Li(T)/L. By 2.3, Ly @ l; has a basis. Now 3.3 concludes the proof. m

4. Proofs of the main results. In the following let X be a separable
Banach space, and A C X and B C X closed subspaces such that X =
A+ B. Put

W :{lp, 1< p<oo,
Co, P = 0OQ.

4.1. PROPOSITION. Let {R,}°° be an a.s. of X with R, (id—R,)X C A

and R, A C A for all n. Assume that either

(i) X or A is an Ly-space, or

(ii) R, B C B for all n, the operators Ry|p are projections, and X, A or
X/B is an Ly-space.

Then there is an a.s. {P,}22, of X @ W), consisting of projections with
P,(AeW,) C A W,.

If (ii) holds then in addition P,|p = Ry|p for all n.

Moreover, if Ry,Ry = Ruyin(m,n) for some m and n then also

PPy = Pmin(m,n)‘
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If (RnRim — Riin(m,n))X C A for some m and n then also
(Pan - Pmin(m,n))(X ©® Wp) CA® Wp‘

If either (i) holds and the Ry, — R,—1 define rank one operators on X/A,
or (ii) holds and dim (R, — R,—1)B < 1 for all n, then the operators
P, — P,_1 induce rank one operators on (X & W),)/(A® W)).

Proof. If R,B C B, n = 1,2,..., then the R,, define operators (called
R, again) on X/B. Moreover, if the operators R,|p are projections then
the map

x4+ B~ R,(id — R,)z, x€ X,

makes sense, has norm < ||R,(id — R,)|| and will be called R,(id — Rj,)
again.

Let V' be that space among X, A or X/B which is an £,-space. Fix m,,-
dimensional subspaces F,, C V with sup,, d(F,, l;,”") < oo and R,V C F,.
Put

W >, @Fn)(p) if 1 <p< oo,
(>on ®Fn)0) ifp=cc.
Then W ~ W,,. Now define P, : X @ W — X & W by
Pr(x, (fi)) = ((2id = Bp) Rn(Rpx + (id — Ry) f),
(15 fao1, (id = R2)(Ruz + (id — R2) £2),0,0,...))
forxe X, fre Fp, k=1,2,...

(In the case F,, C X/B take (id — R2)(R,z + B + (id — R2)f,) in the
nth component instead.)

The operators P, are of finite rank and we have P, — id pointwise on
X @ W. It is easily checked that the P, are projections, that R,|p = P,|p
if we are in case (ii), and that PPy = Puin(m,n) provided that R, R, =
Rmin(m,n)'

Similarly, if (Rn Ry — Riin(m,n)) X C A for some m and n then R, R, —
Rinin(m,n) induces the zero operator on X/A. We can easily check that then
PPy, — Piin(m,n) induces the zero operator on (X @& W,,)/(A @ Wp,). More-
over, clearly P,(A® W) C A® W (since, by assumption, R, (id — R,,)X
C A).

Finally, assume that the operators R,, — R,_1 define rank one operators
on X/A. By assumption, R,(id — R,)X C A and the operators on X/A
induced by R, and (2id — R2)R2 coincide. Hence, by definition of the P,,
the operators P, — P,,_; define rank one operators on (X ®W,)/(A®&W,). =

REMARK. The proof of 4.1 shows that actually
sup || Pl < 18 sup || Ry|*.
n n
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Proof of Theorem 2.1. If the operators R,, define projections on X/A or
the operators R, |p are projections then R, (id — R, )X C A for all n. Hence
Proposition 4.1 proves the FDD version of Theorem 2.1.

If the operators R,, define basis projections on X/A or on B then R,, —
R,_1 define rank one operators on X/A. Using Proposition 4.1 we find a
sequence {P,}>°, of FDD-projections of X & W, with all the properties
of 4.1 such that the operators P, — P,_1 1nduce rank one operators on

(X @ Wp)/(A @ W,). This implies that there are subspaces U,, C X & W),
such that

(Pn _Pnfl)(X@Wp) = (Pn _Pnfl)(A@Wp) & Uy

with dim U, < 1. Since the P,, — P,_1 are uniformly bounded projections
we find uniformly complemented subspaces G,, C l;n” for suitable m,, such
that

supd((Py, — Po—1)(A® W,) & Gy, ') < o0.

’I’L?p

This is possible if any of X, A or X/B is an Ly,-space. (In the latter case we
have U,, = (P, — P,—1)B.)
Since dim (P, — P—1)(X @ W),) /(P — P—1)(A® W)) < 1 we also have

supd((P, — Pu_1)(X @ W,) ® G, I5") < 00 for suitable ki,.

s P
Put '
Vo { >, @Gn)(p) if 1 <p< oo,
P (X2, ®Gn) o) if p=oo.
Then V), is complemented in [, or cg, resp. Hence V), ~ [, if 1 < p < 00, and
Voo ~co ([7]). Put Y, =X @ W, @ V,. Then Y, ~ X &1, if 1 <p < o0, and
Yoo ~ X @ ¢p. Define P, : Y, — Y, by

ﬁn(ya (91592’ .. )) = (Pnya (glv' .. agn’o’()) .. ))

fory e X@ W, and g, € G, k =1,2,... Then the 13n are FDD-projections
on Y, with P,(Ae W, & V,) C A@d W, &V, and in the case of 2.1(b),
Pn’B - Rn|B
Finally, we have
(Po = Pa1)Yp = (P = Pa)(X ©W,) © Gy,

and dlm(P — P, 1)Y, /(Pp— P 1)(Ae W, @V,) < 1. Since the summands
(P b, 1)Y), are lk n_spaces they have bases with uniformly bounded ba-
sis constants, and sultable subsets are bases of (P, — Py_1)(A ® W, & V).

This shows that Y}, has a basis with a suitable subsequence being a ba-
sis of A@® W, @ V,. Let Q; be the correspondlng basis projections. In the

case of 2.1(b) we have dim (P — P,_ 1)B < 1 for all n. Hence for every
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J there is n such that Q;|p = ﬁn|3 = Ry|p. This completes the proof
of 2.1(b). n

To prove 2.3 we need

4.2. LEMMA. Let X be an Ly-space for some p € [1,00] and let Ry, :
X - X, k=1,...,n, be linear, bounded and of finite rank. Then there is
a finite rank projection Q : X — X with RiQ = QR = R, k=1,...,n,
where ||Q|| does not depend on the operators Ry.

Proof. Tt is well known that X* is an £,-space where p~!+¢~1 = 1 ([6]).
Since the R}, : X* — X™ are of finite rank we find a finite rank projection
P : X* — X* with R X* C PX*, where ||[P| does not depend on the
Ry. By [6, Corollary 3.2] we can choose P to be w*-continuous. Regard
X as a natural subspace of X**. Then @1 = P*|x is a projection with
(1 X C X. Since PR} = R; we obtain R;()1 = R}, for all k. Using the fact
that X is an £j,-space we find a finite rank projection @2 : X — X with
Q1 X C QX and R X C Q2X, k=1,...,n, where ||Q2| does not depend
on the Rj;. Hence we obtain QoRy = Ry, k = 1,...,n, and Q20Q1 = Q1.
Put @ = @1 + (id — Q1)Q2. Then Q is a finite rank projection satisfying
RrQ = QR = R, k=1,...,n, and ||Q|| does not depend on the Rj. =

Proof of Theorem 2.3. Let {R,}52, be an a.s. of X such that R, A C A

for all n and the operators R,, define FDD-projections R,on X /A. Moreover,
let X be an Lq-space. We prove the theorem in two steps.

(a) First we construct an a.s. {P,}°°; of X @ [; such that P,(A® ) C
A @1y for all n, the P, define FDD-projections on (X @& 11)/(A & 11), and
P, P, = P,, whenever m < n. Moreoveg, Py — Py shall induce rank one
operators on (X & 11)/(A® 1) if dim (R, — Rp—1)(X/A) <1 for all n.

Indeed, by Proposition 4.1 we may assume that the R,, are already pro-
jections. Fix uniformly bounded finite rank projections @, : X — X with
R;Q, = Rj = QuR; and Q;Q, = Qn = QnQj, j = 1,...,n, which ex-
ist according to 4.2. Consider subspaces F,, C X with @,X C F, and
sup,, d(Fy,l{") < oo for some my. Then F := (3 ©F,)q) ~ l1. Now
define P, : X ®F — X & F by

Pu(z,(f1, f2,...) = <Rn(x + i(id - Rk)fk),
k=n

(fiove s fa1s(Qu = Ra) (2 + i(id — B fi ), 0,...0) ).
k=n

If © € A then clearly P,(z, (fx)) C A® F since R, (id — R;)X C A for all
k > n. Moreover, R2 = R,, and (Q,, — R;,)?> = Qn — R,,. This implies that
P, P, = P,, whenever m < n. If j > n then we easily see that
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(PiPu = Ba) (e, () = (B — i) Ro(w+ Y2 (id — R ).
k=n

(0..0-,0.(@ —Rj)Rn<x+§(id—Rk)fk>,0,...>> cAaF.

j—1

This implies (P Pn — Prin(mn)) (X ©11) C A® F and hence the P, define
FDD-projections on (X @ 11)/(A® ;).
Finally, since the R, are projections, we have

(Pn = Po1)(z, (fr)) = ((Rn - Rn—l)(ﬂf + i(id - Rk)fk>,
k=n

(0, ey 0, fa1 = (Qu—1 — Rn_1)<a: + i (id — Rk)fk>7

k=n—1

(Qn—Rn)<x+i(id—Rk)fk>,0,...>>.
k=n

n—2

Since (Rp, — Rp—1)> s, (id — Ry) fr € A, the P, — P,,_1 define rank one
operators on (X ®11)/(A®11) provided that dim (R, — Rn_1)(X/A) < 1 for
all n.

(b) Now we prove 2.3. According to (a), taking X & [; instead of X
and A @ [y instead of A, we can assume that {R,}2, is an a.s. of X with
R,AC A, Rh,R, = R, for m < n such that the R,, define FDD-projections
}/%n on X/A. Since R,, — id and the R,, are of finite rank, using a perturba-
tion argument, we may as well assume that there is a subsequence { Ry, }oo_;
which is a c.a.s. of X. Then the operators R,,, are FDD-projections. This
proves the FDD-part of 2.2(a).

Now assume that in addition dim (}A%n — }?En_l)(X/A) < 1 for all n. Put
Xm = (Rn,, — Ry, )X and A,, = (Ry,, — Rn,, ,)A. We may assume
that R; X,, C X,, for all j = n,—1 +1,..., 0. (Otherwise replace R; by
Ry, .+ (Rn,, — Rn,,_)R;j(Ry,, — Rn,,_,).) Find subspaces G, C X with
Xm C Gy, and sup,, d(Gm,llfm) < oo for some k. Put

N ——

Nom —MNym—1 times

Then Z .= X & (>_,, @Ym)(l) ~ X @ l1. Moreover, the X,, ®Y,, are the
summands of an FDD of Z. Let P, be the corresponding projections and
put W =A@ (3, ®Ym)a)- Then P, W C W for all m. We complete the
P, to a cas. {P;}52, of Z with P;W C W such that the P; define basis
projections on Z/W. Then an application of 2.1(a) finishes the proof.
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To this end put M = n,, — nym_1 and define P; : X,,, ® Yy, — X0 @ Y
by

I—1—nm_1

Pz, (g1, .-, 9m)) = <Rl$ — (id— Ry) Z Ritnp1 9k
k=1

I—1—nm_1

<91,~~-,9l—1’_Rl <$+ Z Rk-}—nmflgk)vov"'yo))
k=1

for I =ny—1+1,...,ny. Then the P, are uniformly bounded and PP, =
Pringr,yy for all k and [. Moreover, Pi(Ay, @ Yin) C Ay @© Y, since
(id — R))RpX C A if I > h. From the latter fact we also infer that the
Py — P;_; define rank one operators on (X, ® Y,)/(Am @ Yy). Now, fi-
nally, put

Pi=P,, +(Pn,—Pn, )P(Py,,—Pn,, )y Nm1+1<1<np,, [=1,2,...
Then the P, satisfy all the requirements to apply 2.1(a). m

To prove Theorem 2.4, let X be an L-space, A C X a closed subspace,
and {R}72, an a.s. of X such that R, A C A for all n and the operators R,,
induce basis projections on X/A. By Proposition 4.1 we may assume that
the operators Ry are projections.

4.3. LEMMA. Put X1 =X ®cy and A1 = ADcy. Then there is a closed
subspace B C X1 such that

(41) B ~ ¢, AlﬂB:{O}, A+ B =Xj;.

Furthermore, there exists an a.s. {Sp}32, of X1 consisting of projections
such that

(4.2) Snlx =Ry forall n,

Ay and B are invariant under S, and the operators Sy|p are the projections
of the unit vector basis of co. Moreover,

(4.3) Sp(id—Sy)X1 CcA, (idd—S,)SnX1 CA whenever m < n.
Finally, there is a bounded projection Q) : X1 — B with

(4.4) X =ker@

(where we identify x € X with (x,0) € X1).

Proof. Find z,, € X such that ||z,| <2 and the elements z,, + A are the
elements of a normalized basis of X/A whose basis projections are induced
by the operators R,. This implies

(4.5)  Ryxn, € A whenever k <n, (id— Rg)rn, € A whenever k > n.
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Let {e;}?2, be the unit vector basis of c¢y. Put b, = (27"2y,€e,) € X1 and
let B =span{b,}52,; C Xi. Define Q : X; — B by

Q(m, Z akek) = <Z 2% QETE, Z akek>.
k k

k

Then clearly (4.1) is satisfied since {b,}"2; is equivalent to the unit vector
basis of ¢y. We also obtain (4.4).
Now define Sy : X1 — X1 by Si(z,0) = (Rgz,0) for z € X, and

(4.6)  Si(o, i e
n=1 N . )
- <_ 3 % Rian + Y % (id — Ri)an, Y anen) _
n=1

n=k+1 n=1
This implies in particular that {S;}7°, is an a.s. of X and that SyA; C Ay
for all k£ (see (4.5)). Furthermore, we have

1 >
Skbn:{bn if £ > n,
0 ifk<n.

This shows that the Sy are projections (since the Ry are assumed to be
projections). We obtain (4.2).

We have Si(id — S;)X = Ri(id — R;,)X C A whenever k& < m by
assumption on X/A. Similarly (id — S,,)SxX C A if £ < m. Using (4.6) we
see that, for kK < m and any n,

Sk(id — S)(0, en) = Si(id — Spn) <bn - (‘”—” 0))

1
= (—2—n R(id — Rp)zy, 0) € A,

and similarly,
1

(id — ) Sk (0, €n) = < =

Hence we obtain (4.3), which completes the proof of Lemma 4.3. u

(id — Run) Ry, o) €A

REMARK. (4.4) implies that X & B = X;. This means in particular that
SmSn = Swmin(m,n) Whenever Ry, Ry = Riin(m.n)-

We retain the notation of Lemma 4.3. Consider the unit vector basis
{bn}22, of B ~ c¢g. The projections S induce the basis projections for the
basis {b, + A1}22, of X1/A;. Hence we find b} € A] C X; with

(47) b (byn) = { L n7m,

0, n=m.
(The functionals b} may not be uniformly bounded.)
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Let Q, : X1 — span{b,} be defined by Qnz = b%(z)by. Then

(48)  SuOp = OnSm  forall mym,  QnSpm = {Q”’ nsm,
0, m < n.

Moreover,

(4.9) Spx — Z @kx € Ay for any n and any = € X;.

k=1
>ory Qrz is the projection of S,z onto B along A;.) Now (4.3) implies
(4.10)  QnSm(id —Sn) =0, Qn(id — Sp)Sm =0  whenever m < n.

Also, (ker @n) N X is an L y-space where A does not depend on n since
this space is 1-codimensional in X.

4.4. PROPOSITION. There is an a.s. {T,}22, of X1 @ co consisting of
projections and leaving A1 ® cg and B invariant such that

(4.11) T, 71, =T, whenever m <n, Tilp=Sklp forall k.
(We identify x € X1 with (x,0) € X1 & co.)

Proof. Find finite-dimensional subspaces F;, C ker @n N X with

(4.12) U Sulid =S X1 € Fo, | (d = Qn)SmX C Fy

k=n m=1
and sup,, d(Fp,, ") < oo where m,, = dim F,,. Put G,, = F,, + span{b,}.
Hence sup,, d(Gp, ™ !) < co. Note that with the projection Q : X1 — B
of Lemma 4.3, using (4.4) we have
(4.13) QG,, =span{b,}, kerQNG, =F,.

Put Xy = X1 © (3, ®Gn)()- Hence Xo ~ X7 @ cp. Define T;, : Xo — X3 by

(414> Tn<$, (.917927 .. )) = (Sn(:(} + gn); (gl + Sl(ld - STL);U - SlSTLQﬂ?

ey On—1+ Sn_l(id — Sn):L’ — Sn_lSngn, 0,0,.. ))
The definition of T;, makes sense since we have S,,(id — S,)X1 C F,, and
SinSnGn C Gy, for m < n. The latter inclusion follows from the fact that
SmSpby, = 0 if m < n and S,,S, F,, C Gy, (in view of (4.12)). The T,, are
uniformly bounded projections and Ty, |p = Sp|p since Sp,(id — Sy,)|p = 0
for m < n. We easily check that (4.11) is satisfied. Put

b(n) = (bn, (0, ...,0,—b,,0,0,...)) € X»
1

and W = span{b(n)};2,. Moreover, put V.= W + (3_, ©F,) ). Then, in
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view of (4.13), we have V ~ ¢y and Xy ~ X7 @& V. Also, (4.14) implies

Tibtm) = {

(Recall that Sy,b,, = 0 if m > n, since the operators S, |p are the basis pro-
jections of {b;}7° ,.) Moreover, if f € F,, and f(m)=(0,(0,...,0, f,0,0,...)),
——

b(m), m <n,

0, n < m.

then £ ) m—1
m), m<mn,
Tf(m) = {0, m > n,
and
Tuf(n) +V = (Suf = 3 Quf.
k=1
(=S18nf + Qi f,...,— n_lsnf+(2n_1f,o,o,...)).

(Recall that Q,f = 0 if f € F, C kerQ, N X.) In view of (4.8) and (4.9)
this implies T;, f(n) € A; + V. On the other hand, if a € A;, then

Ty(a,(0,0,...)) € A + (Z@Fk>(o>
k

according to (4.12) and (4.14). Hence T,,(A; + V) C Ay + V for all n. We
clearly have, in view of (4.13), A1 +V ~ A1 @ ¢p. =

4.5. PROPOSITION. There is an a.s. {P,}72, of X1 @ ¢y consisting of
projections and leaving A1 ® co and B invariant such that

(4.15)  P,P, = P,, whenever m <n, Py|p=Sk|lp forall k.
Moreover,
(4.16) P,P, =P, whenever R,R, = R,, and m <n.

Proof. Since limy_, o Spx = z for all x € X the space span(|J, SiX1) is
dense in X7. Find finite-dimensional subspaces

(4.17) F, C span (U Sle) Aker Qpyr N X
k
with
(4.18) U Gd=8.)SmX1 C Fo, | SmX C F
m=1 m=1

This is possible, since by (4.3),
(id — Sp)SmX1 C AN span(U SkX1> cXn span(U SkX>,
k k

and by (4.8), én+1(Unm:1 SmX) = 0. (Recall that S X C X for all k in view
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of (4.2).) Finally, F, can be arranged such that in addition sup,, d(Fj, [dim Fn)

< 00, since X Nker Q41 is an Loo-space. Put G,, = F,, +span{b,+1}. Hence
sup,, d(Gp, 1dmGn) < 0o, We have

(4.19) QG, =span{b,+1}, kerQNG, = F,,

in view of (4.4) since F,, C X.
Now put Xo = X1 (3, @Gn)(o) ~ X1 ® cg. Define P, : Xo — X5 by

(420> Pn(;(}, (g17 g2, .- )) = (STL‘:U =+ <1d - Sﬂ)gTH (gla -5 9n,

(id — Sp41)(Snx + (id — Sp)gn), (id — Sp+2)(Spx + (id — Sp)gn), - - .)).
The definition of P, makes sense in view of (4.18). In particular we have
(ld—Sn+k)(ld—Sn)Gn C G»,H,k; since (ld—Sn+k)(ld—Sn)bn+l =0 for k > 1.
The operators P, are uniformly bounded projections. We obtain P,|p =
Sp|p since (id — Sp4x)SpB = {0}. It is easily checked that P,P,, = P,
whenever n > m. If R,,R,, = R,, and m < n then, in view of X & B = X1,
by (4.2) we see that S, S, = Sy,. Also, (4.20) implies that then P, P, = P,,.

Put
b(n) = (bn+1,(0,...,0,b,41,0,0,...)) € Xo
n—1

and W = span{b(n)}>2,. Moreover, put V.= W + (>_, @Fn)(o). Then, in
view of (4.19) and the fact that {b,}22 is the unit vector basis of ¢g, we
have Xy = X7 &V ~ X1 @ ¢g. Equation (4.20) implies

Pobtm) = {

(This follows since Sy, by, is by, if m < n, and 0 otherwise.)
Finally, take f € F,, and put

f(m) = (0,(0,...,0, f,0,0,...)).

b(m), m <n,

0, m > n.

m—1
Then (4.20) implies
fm), m<n,
Fuf(m) = {O, m > n,
and

(id - Sn+1)(id - Sn)f - ©n+2fa (id - Sn+2)<id - Sn)f - én+3fv - ))

Note that, in view of (4.17), Qnirf = 0 for some ko and all k > ko, and also

Qn+1f = 0. In particular, there is no problem with the convergence of the
series. Now, (id — Sy,)f — D52, .1 Qkf is the projection of (id — S,,)f onto
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A; along B. Moreover, by (4.8), we have

én—i—k-‘rl(id - Sn—i—k)(id - Sn)f = én—i—k-‘rlf‘

Hence P,V C Ay + V. In view of (4.3) and (4.20) we also have P,A; C
Ay + V. Since A1 +V ~ A& ¢y the proof is complete. =

Proof of Theorem 2./. First we apply Lemma 4.3 to obtain X1 = X @y,
Ay = AP cg and Si. Then we continue with Proposition 4.4 to obtain

Xo=X1Pcy~ XDy, Ay ~ A1 Dcg~AD

and Tk.

Then we apply Lemma 4.3 and the remark following it again to Xs
instead of X, As instead of A, and T} instead of Rj. Finally, we apply
Proposition 4.5 to find P, on X @ ¢g. Since T,,,T,, = T, for m < n, by (4.16)
we also have P, P, = P,,. Hence {P,}>°, is a sequence of FDD-projections
on X ®cg leaving AP ¢y invariant. Moreover, there is a subspace B C X ¢
with

(A® cp) + B =X @ cy, B~ ¢y

such that the operators P,|p are the projections of the unit vector basis
of ¢gp. Now an application of Theorem 2.1(b) (and the following remark)
finishes the proof. =
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