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Abstract. Let {Rn}∞n=1 be a commuting approximating sequence of the Banach
space X leaving the closed subspace A ⊂ X invariant. Then we prove three-space results
of the following kind: If the operators Rn induce basis projections on X/A, and X or A
is an Lp-space, then both X and A have bases. We apply these results to show that the
spaces CΛ = span{zk : k ∈ Λ} ⊂ C(T) and LΛ = span{zk : k ∈ Λ} ⊂ L1(T) have bases
whenever Λ ⊂ Z and Z \ Λ is a Sidon set.

1. Introduction. Let X be a separable Banach space (over R or C),
A ⊂ X a closed subspace and (P) a Banach space property. Then the paper
deals with three-space problems of the following kind:

If X/A satisfies (P), do X and A also have (P)?
Let B ⊂ X be another closed subspace such that X = A+B. If B

satisfies (P), do A and X also have (P)?
It turns out that these questions are meaningful if (P) is a bounded ap-

proximation property, X, A or X/B is an Lp-space, and A, B are invariant
under a sequence of finite rank operators which approximate the identity on
X. We obtain basis and FDD existence theorems supplementing the results
of [9]. In Section 3 we apply these methods to CΛ- and LΛ-spaces (over T)
and show that CΛ and LΛ have bases whenever Λ ⊂ Z is a co-Sidon set.

First we recall some basic definitions. X is called an Lp-space (or Lp,λ-
space) if there exists a λ ≥ 1 such that, for every finite-dimensional E ⊂ X,
there is a finite-dimensional subspace F ⊂X with E ⊂F and d(F, ldimF

p )≤ λ.
(d(·, ·) is the Banach–Mazur distance.) It is known ([6]) that in this situation
we can even find such F which are uniformly complemented in X.

X has the bounded approximation property (BAP) if there is a sequence
of bounded linear finite rank operators Rn : X → X with limnRnx = x for
all x ∈ X; {Rn}∞n=1 is then called an approximating sequence (a.s.).
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If in addition RnRm = Rmin(n,m) for n 6= m then {Rn}∞n=1 is called
a commuting approximating sequence (c.a.s.) and X is said to have the
commuting bounded approximation property (CBAP).

X has a finite-dimensional Schauder decomposition (FDD) if there is
a c.a.s. {Rn}∞n=1 of X where all Rn are projections. (In this case we have
X =

∑
n⊕(Rn+1 −Rn)X.)

Finally, X has a basis provided that X has a c.a.s. {Rn}∞n=1 consisting
of projections such that dim (Rn+1 −Rn)X = 1 for all n.

It is clear that basis ⇒ FDD ⇒ CBAP ⇒ BAP. On the other hand it is
well known that CBAP 6⇒ FDD 6⇒ basis ([1], [11], [12]; see also [10]).

In the following, “∼” means “is isomorphic to”. If Un : X → X,
n = 1, 2, . . . , are linear operators we always put U0 = U−1 = . . . = 0.

We say that the Un factor uniformly through an Lp-space Y if there
are linear operators Tn : X → Y and Sn : Y → X with SnTn = Un and
supn ‖Sn‖ · ‖Tn‖ <∞.

2. The main results. Again, assume that X is a separable Banach
space. Let A ⊂ X and B ⊂ X be closed subspaces. Recall that a linear
operator R : X → X with RA ⊂ A induces a linear operator R̂ on X/A

with ‖R̂‖ ≤ ‖R‖, namely R̂(x+ A) = Rx+ A, x ∈ X.

2.1. Theorem. Let {Rn}∞n=1 be a c.a.s. of X with RnA⊂A, n= 1, 2, . . .

(a) Assume that the operators Rn induce the projections of a basis (or
FDD , resp.) on X/A. If X or A is an Lp-space for some p ∈ [1,∞[ then
X⊕ lp has a basis (or an FDD , resp.) with projections Pn which leave A⊕ lp
invariant. In particular , A ⊕ lp also has a basis (or an FDD , resp.) with
projections Pn|A⊕lp.

(b) Assume that X = A+B and that Rn|B, n = 1, 2, . . . , are the pro-
jections of a basis (or an FDD , resp.) of B. If X, X/B or A is an Lp-space
for some p ∈ [1,∞[ then X ⊕ lp has a basis (or an FDD , resp.) with projec-
tions Pn satisfying Pn(A ⊕ lp) ⊂ A ⊕ lp and Pn|B = Rn|B, n = 1, 2, . . . In
particular , A⊕ lp has a basis (or an FDD , resp.) with projections Pn|A⊕lp.

We postpone the proof of 2.1 to Section 4. Here we make a few remarks.

Remarks. The proof of 2.1 shows that the theorem remains true for
p =∞. Here we have to replace lp by c0.

In 2.1(b) we do not require A ∩ B = {0}. Moreover, we can admit the
case that Rn|B = Rn+1|B for some n. On the other hand, we do not claim
that the Rn|A themselves are the projections of a basis or FDD of A. The
theorem is certainly false if we drop the assumption that X, A or X/B is
an Lp-space (e.g. take B = {0} and A = X).
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In some cases one obtains slightly better results. Then we do not need
to add lp or c0:

2.2. Theorem. Let {Rn}∞n=1 be a c.a.s. of X which leaves A invariant
and defines a sequence of projections for a basis of X/A. If X or A is an
Lp-space for some p ∈ [1,∞] then both X and A have bases.

Proof. {Rn|A}∞n=1 is a c.a.s. of A. We claim that Rn − Rn−1 and
(Rn − Rn−1)|A factor uniformly through an Lp-space. Indeed, by our as-
sumption, A∩ (Rn−Rn−1)X is at most 1-codimensional in (Rn−Rn−1)X.
Hence we find uniformly bounded projections Pn : (Rn − Rn−1)X → A ∩
(Rn −Rn−1)X.

If X is an Lp-space then define

Tn : A→ X by Tna = (Rn+1 −Rn−2)a, a ∈ A,
Sn : X → A by Snx = Pn(Rn −Rn−1)x, x ∈ X.

We obtain SnTn = (Rn−Rn−1)|A. Hence the operators (Rn−Rn−1)|A factor
uniformly through X. By [8], A has a basis.

If A is an Lp-space then set W = (id − Pn)(Rn − Rn−1)X and define
Tn : X → A⊕W by

Tnx = (Pn(Rn −Rn−1)x, (id− Pn)(Rn −Rn−1)x),

and Sn : A⊕W → X by

Sn(a,w) = (Rn+1 −Rn−2)a+ w.

Here SnTn = Rn −Rn−1 and Rn −Rn−1 factors uniformly through A⊕W .
The latter space is an Lp,λ-space (where λ does not depend on n) because
dimW ≤ 1. Hence X has a basis (in view of [8]).

This proves 2.2, since separable Lp-spaces always have bases ([4]).

In the case p = 1 and X an L1-space Theorem 2.1(a) can be proved un-
der the considerably weaker assumption that {Rn}∞n=1 be an approximating
sequence. Similarly the basis version of 2.1 for p = ∞ can also be inferred
under this assumption.

2.3. Theorem. Let {Rn}∞n=1 be an a.s. of X with RnA ⊂ A, n =
1, 2, . . . Assume that the operators Rn induce the projections of a basis (or
an FDD , resp.) on X/A. If X is an L1-space then X⊕ l1 has a basis (or an
FDD , resp.) with projections Pn which leave A⊕ l1 invariant. In particular ,
A⊕ l1 also has a basis (or an FDD , resp.) with projections Pn|A⊕l1.

2.4. Theorem. Let X be an L∞-space and let {Rn}∞n=1 be an a.s. of
X with RnA ⊂ A for all n. Assume that the Rn, n = 1, 2, . . . , induce the
projections of a basis of X/A. Then X ⊕ c0 has a basis with projections Pn
satisfying Pn(A⊕c0) ⊂ A⊕c0, n = 1, 2, . . . In particular , A⊕c0 has a basis
with projections Pn|A⊕c0. Finally , there is a subspace B ∼ c0 of X⊕c0 such
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that (A⊕ c0) +B = X⊕ c0 and the operators Pn|B are the basis projections
of the unit vector basis of c0.

We also postpone the proofs of Theorems 2.3 and 2.4 to Section 4.
Recall that A ⊕ lp ∼ A provided that A contains a complemented iso-

morphic copy of lp, and A⊕ c0 ∼ A provided that A contains an isomorphic
copy of c0 (see [7]). Together with 2.1 and the remark following it we obtain

2.5. Corollary. Let {Rn}∞n=1 be a c.a.s. of X and let A ⊂ X be an Lp-
space for some p ∈ [1,∞] such that Rn(id− Rn)X ⊂ A, n = 1, 2, . . . Then
X ⊕ lp, if p <∞, and X ⊕ c0, if p =∞, has an FDD.

Reformulating the basis version of 2.1(b) (with A = X) we obtain the
following basis extension result.

2.6. Corollary. Let B ⊂ X be a closed subspace with a basis Ω and
assume that X or X/B is an Lp-space. If the basis projections of Ω can
be extended to a c.a.s. of X then X ⊕ lp, for 1 ≤ p < ∞, and X ⊕ c0, for
p =∞, has a basis which contains Ω as a subsequence.

Remarks. Here we identify x ∈ X with (x, 0) ∈ X ⊕ lp. Note that Ω
is not just equivalent to a subsequence but the elements of Ω coincide with
some elements of the extended basis.

Theorem 2.3 also includes a result of [9]. Recall that every separable
Banach space Y is isomorphic to a quotient space of l1.

2.7. Corollary. Let Y be a Banach space with basis and let q : l1 → Y
be a quotient map. Then ker q has a basis.

Proof. Let R̂n : Y → Y be the basis projections of a given basis of Y .
Moreover, let {ek}∞k=1 be the unit vector basis of l1. Find yj ∈ Y with
‖yj‖ = 1 and integers 0 < m1 < m2 < . . . such that yj ∈ R̂nY , j ≤ mn,
satisfying the following:

For each y ∈ R̂nY with ‖y‖ = 1 there are λ1, . . . , λmn such that

y =
mn∑

j=1

λjyj ,

mn∑

j=1

|λj | ≤ 2.

Then define the quotient map q0 : l1 → Y by q0ej = yj for all j. It is
well known ([7]) that ker q0 ∼ ker q. Put A = ker q0. We can assume that
dimA =∞, hence A ∼ A⊕ l1 ([7]).

Define the linear operators Rn : l1 → l1 by Rnej = ej for j ≤ mn. If
k > mn find λ1, . . . , λmn with
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R̂nyk = ‖R̂n‖
mn∑

j=1

λjyj ,

mn∑

j=1

|λj| ≤ 2.

Put Rnek = ‖R̂n‖
∑mn

j=1 λjej. Then we obtain an a.s. {Rn}∞n=1 with q0Rn =

R̂nq0 for all n. Now Theorem 2.3 completes the proof.

3. Co-Sidon sets. Now we turn to complex Banach spaces. Let T =
{z ∈ C : |z| = 1}. Fix Λ ⊂ Z and let CΛ be the closed linear span of the
functions zk, k ∈ Λ, on T with respect to the sup-norm (denoted by ‖ · ‖∞).
Moreover, let LΛ be the closed linear span of zk, k ∈ Λ, with respect to the
L1-norm on T (denoted by ‖ · ‖1).

We make use of some classical finite rank operators. Fix n and put

σn

(∑

k

αkz
k
)

=
n∑

k=−n

n− |k|
n

αkz
k.

It is well known ([3]) that ‖σn‖ = 1 on C(T) = CZ as well as on L1(T) = LZ.
Clearly, σn(CΛ) ⊂ CΛ and σn(LΛ) ⊂ LΛ for each Λ ⊂ Z. For 0 < m < n put

Vn,m =
nσn −mσm
n−m .

Then

Vn,m

(∑

k

αkz
k
)

=
∑

|k|≤m
αkz

k +
∑

m<|k|≤n

n− |k|
n−m αkz

k

and ‖Vn,m‖ ≤ (n+m)/(n−m) (as an operator on C(T) as well as on L1(T)).
Λ ⊂ Z is called a Sidon set if {zk}k∈Λ (regarded as a sequence in C(T)) is

equivalent to the unit vector basis of l1. It is well known ([2]) that lacunary
sets are Sidon sets and finite unions of Sidon sets are Sidon sets.

3.2. Theorem. Let Λ ⊂ Z be such that Z \ Λ is a Sidon set. Then CΛ
and LΛ have a basis.

Further results on CΛ and LΛ, where Z \ Λ is a Sidon set, can be found
in [5].

For the proof of 3.2 we need the following

3.3. Lemma. Let Λ ⊂ Z be such that Z \ Λ is a Sidon set. Then CΛ
contains an isomorphic copy of c0 and hence CΛ ∼ CΛ ⊕ c0. Moreover ,
LΛ contains a complemented copy of l1 and LΛ ∼ LΛ ⊕ l1.

Proof. It is well known ([2]) that C(T)/CΛ is isomorphic to l2 since
Z \ Λ is a Sidon set. Now find en ∈ C(T) of norm one with mutually dis-
joint supports, which implies that {en}∞n=1 is equivalent to the unit vec-
tor basis of c0. Let q : C(T) → C(T)/CΛ be the quotient map. Then
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we must have limn ‖qen‖∞ = 0 because otherwise we could find a subse-
quence {enk}∞k=1 such that q|span{enk}∞k=1

is an isomorphism, which is im-
possible since qC(T)∼ l2. So we find ẽn ∈ CΛ with limn ‖en − ẽn‖∞ = 0
and hence a subsequence {ẽnm}∞m=1 which is equivalent to {enm}∞m=1. Thus
span{ẽnm}∞m=1 ⊂ CΛ is isomorphic to c0.

It is well known ([2]) that L1(T)/LΛ is isomorphic to c0 since Z \ Λ is
a Sidon set. Take fn ∈ L1(T) of norm one with disjoint supports. Then
{fn}∞n=1 is equivalent to the unit vector basis of l1 and span{fn}∞n=1 is com-
plemented in L1(T). Let q1 : L1(T)→ L1(T)/LΛ be the corresponding quo-
tient map. Since we are in c0 we find a subsequence {q1fnk}∞k=1 of {q1fn}∞n=1
such that

weak- lim
k→∞

q1(fn2k+1 − fn2k) = 0.

By Mazur’s theorem there are m1 < m2 < . . . and suitable convex combi-
nations gk =

∑mk+1
j=mk+1 λk,j(fn2j+1 − fn2j ) such that limk→∞ ‖q1gk‖ = 0. So

we find g̃k ∈ LΛ with limk→∞ ‖gk− g̃k‖1 = 0. The elements gk, k = 1, 2, . . . ,
have disjoint supports and are equivalent to the unit vector basis of l1. By
going over to a suitable subsequence {gkj}∞j=1 we see that span{gkj}∞j=1,
and then also span{g̃kj}∞j=1 ⊂ LΛ, is isomorphic to l1 and complemented in
L1(T).

Proof of Theorem 3.2. Put Ω = Z \Λ. Fix an integer n > 0 and take m
with 0 < m < n such that (n+m)/(n−m) ≤ 2. Consider

Vn,m

(∑

k

αkz
k
)

=
∑

|k|≤m
αkz

k +
∑

m<|k|≤n

n− |k|
n−m αkz

k.

For h ∈ L1(T) we define µh : C(T)→ C by

µh(f) =
1

2π

2π�

0

h(e−it)f(eit) dt, f ∈ C(T).

Then ‖µh‖ = ‖h‖1.
Regard gn :=

∑
m<|k|≤n z

k as an element of L1(T). Since Ω is a Sidon
set we obtain a constant c > 0 independent of n with |µgn(f)| ≤ c‖f‖∞ for
every f ∈ CΩ. Put

MΛ = {µ ∈ C(T)∗ : µ̂(k) = 0 if k ∈ Z \ Λ},
where µ̂(k) = µ(z−k). Then C∗Ω = C(T)∗/MΛ. Hence we find µ ∈ MΛ with
‖µ+ µgn‖ ≤ 2c. Consider

ν := (µ+ µgn) ◦ (V2n,n − Vn,m).

By definition of the Vj,k we can find a trigonometric polynomial hn ∈
span{zk : m ≤ |k| ≤ 2n} such that ν = µhn . Moreover, ‖hn‖1 ≤ 12c.
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Put
PΩ

(∑

k

αkz
k
)

=
∑

k∈Ω
αkz

k.

Since
µhn(f) = µgn((V2n,n − Vn,m)f)

for all f ∈ CΩ we obtain

PΩhn = PΩ(V2n,n − Vn,m)gn =
∑

m<|k|≤n
k∈Ω

|k| −m
n−m zk.

Now, define Rnf = Vn,mf + hn ∗ f , f ∈ C(T). Then the Rn are uniformly
bounded finite rank operators. Moreover, limnRnf = f for all f ∈ C(T).
On CΩ we have

Rn

(∑

k∈Ω
αkz

k
)

=
∑

|k|≤n
k∈Ω

αkz
k.

Hence the Rn|CΩ are basis projections. We have C(T) = CΩ + CΛ. Since
RnCΛ ⊂ CΛ for all n, the operators Rn define basis projections on C(T)/CΛ.
By 2.4 with A = CΛ the space CΛ⊕ c0 has a basis. Now, 3.3 shows that CΛ
has a basis.

The operators R∗n|L1(T) define an a.s. on L1(T). (Indeed, R∗nf = Rnf
for any trigonometric polynomial f .) The operators R∗n|LΩ are basis projec-
tions. Since L1(T) = LΛ ⊕ LΩ the operators R∗n define basis projections on
L1(T)/LΛ. By 2.3, LΛ ⊕ l1 has a basis. Now 3.3 concludes the proof.

4. Proofs of the main results. In the following let X be a separable
Banach space, and A ⊂ X and B ⊂ X closed subspaces such that X =
A+B. Put

Wp =
{
lp, 1 ≤ p <∞,

c0, p =∞.

4.1. Proposition. Let {Rn}∞n=1 be an a.s. of X with Rn(id−Rn)X ⊂ A
and RnA ⊂ A for all n. Assume that either

(i) X or A is an Lp-space, or
(ii) RnB ⊂ B for all n, the operators Rn|B are projections, and X, A or

X/B is an Lp-space.

Then there is an a.s. {Pn}∞n=1 of X ⊕Wp consisting of projections with
Pn(A⊕Wp) ⊂ A⊕Wp.

If (ii) holds then in addition Pn|B = Rn|B for all n.
Moreover , if RnRm = Rmin(m,n) for some m and n then also

PnPm = Pmin(m,n).
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If (RnRm −Rmin(m,n))X ⊂ A for some m and n then also

(PnPm − Pmin(m,n))(X ⊕Wp) ⊂ A⊕Wp.

If either (i) holds and the Rn−Rn−1 define rank one operators on X/A,
or (ii) holds and dim (Rn − Rn−1)B ≤ 1 for all n, then the operators
Pn − Pn−1 induce rank one operators on (X ⊕Wp)/(A⊕Wp).

Proof. If RnB ⊂ B, n = 1, 2, . . . , then the Rn define operators (called
Rn again) on X/B. Moreover, if the operators Rn|B are projections then
the map

x+B 7→ Rn(id−Rn)x, x ∈ X,
makes sense, has norm ≤ ‖Rn(id − Rn)‖ and will be called Rn(id − Rn)
again.

Let V be that space among X, A or X/B which is an Lp-space. Fix mn-
dimensional subspaces Fn ⊂ V with supn d(Fn, lmnp ) < ∞ and RnV ⊂ Fn.
Put

W =

{
(
∑

n⊕Fn)(p) if 1 ≤ p <∞,

(
∑

n⊕Fn)(0) if p =∞.

Then W ∼Wp. Now define Pn : X ⊕W → X ⊕W by

Pn(x, (fk)) = ((2id−R2
n)Rn(Rnx+ (id−R2

n)fn),

(f1, . . . , fn−1, (id−R2
n)(Rnx+ (id−R2

n)fn), 0, 0, . . .))

for x ∈ X, fk ∈ Fk, k = 1, 2, . . .
(In the case Fn ⊂ X/B take (id − R2

n)(Rnx + B + (id − R2
n)fn) in the

nth component instead.)
The operators Pn are of finite rank and we have Pn → id pointwise on

X ⊕W . It is easily checked that the Pn are projections, that Rn|B = Pn|B
if we are in case (ii), and that PnPm = Pmin(m,n) provided that RnRm =
Rmin(m,n).

Similarly, if (RnRm−Rmin(m,n))X ⊂ A for some m and n then RnRm−
Rmin(m,n) induces the zero operator on X/A. We can easily check that then
PnPm − Pmin(m,n) induces the zero operator on (X ⊕Wp)/(A⊕Wp). More-
over, clearly Pn(A ⊕W ) ⊂ A ⊕W (since, by assumption, Rn(id − Rn)X
⊂ A).

Finally, assume that the operators Rn−Rn−1 define rank one operators
on X/A. By assumption, Rn(id − Rn)X ⊂ A and the operators on X/A
induced by Rn and (2id − R2

n)R2
n coincide. Hence, by definition of the Pn,

the operators Pn−Pn−1 define rank one operators on (X⊕Wp)/(A⊕Wp).

Remark. The proof of 4.1 shows that actually

sup
n
‖Pn‖ ≤ 18 sup

n
‖Rn‖4.
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Proof of Theorem 2.1. If the operators Rn define projections on X/A or
the operators Rn|B are projections then Rn(id−Rn)X ⊂ A for all n. Hence
Proposition 4.1 proves the FDD version of Theorem 2.1.

If the operators Rn define basis projections on X/A or on B then Rn −
Rn−1 define rank one operators on X/A. Using Proposition 4.1 we find a
sequence {Pn}∞n=1 of FDD-projections of X ⊕ Wp with all the properties
of 4.1 such that the operators Pn − Pn−1 induce rank one operators on
(X ⊕Wp)/(A ⊕Wp). This implies that there are subspaces Un ⊂ X ⊕Wp

such that

(Pn − Pn−1)(X ⊕Wp) = (Pn − Pn−1)(A⊕Wp)⊕ Un
with dimUn ≤ 1. Since the Pn − Pn−1 are uniformly bounded projections
we find uniformly complemented subspaces Gn ⊂ lmnp for suitable mn such
that

sup
n
d((Pn − Pn−1)(A⊕Wp)⊕Gn, lmnp ) <∞.

This is possible if any of X, A or X/B is an Lp-space. (In the latter case we
have Un = (Pn − Pn−1)B.)

Since dim (Pn− Pn−1)(X ⊕Wp)/(Pn −Pn−1)(A⊕Wp) ≤ 1 we also have

sup
n
d((Pn − Pn−1)(X ⊕Wp)⊕Gn, lknp ) <∞ for suitable kn.

Put

Vp =
{

(
∑

n⊕Gn)(p) if 1 ≤ p <∞,

(
∑

n⊕Gn)(0) if p =∞.

Then Vp is complemented in lp or c0, resp. Hence Vp ∼ lp if 1 ≤ p <∞, and
V∞ ∼ c0 ([7]). Put Yp = X ⊕Wp ⊕ Vp. Then Yp ∼ X ⊕ lp if 1 ≤ p <∞, and
Y∞ ∼ X ⊕ c0. Define P̂n : Yp → Yp by

P̂n(y, (g1, g2, . . .)) = (Pny, (g1, . . . , gn, 0, 0, . . .))

for y ∈ X⊕Wp and gk ∈ Gk, k = 1, 2, . . . Then the P̂n are FDD-projections
on Yp with P̂n(A ⊕ Wp ⊕ Vp) ⊂ A ⊕ Wp ⊕ Vp, and in the case of 2.1(b),
P̂n|B = Rn|B.

Finally, we have

(P̂n − P̂n−1)Yp = (Pn − Pn−1)(X ⊕Wp)⊕Gn
and dim(P̂n− P̂n−1)Yp/(P̂n− P̂n−1)(A⊕Wp⊕Vp) ≤ 1. Since the summands
(P̂n − P̂n−1)Yp are lknp -spaces they have bases with uniformly bounded ba-

sis constants, and suitable subsets are bases of (P̂n − P̂n−1)(A⊕Wp ⊕ Vp).
This shows that Yp has a basis with a suitable subsequence being a ba-
sis of A ⊕Wp ⊕ Vp. Let Qj be the corresponding basis projections. In the
case of 2.1(b) we have dim (P̂n − P̂n−1)B ≤ 1 for all n. Hence for every
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j there is n such that Qj |B = P̂n|B = Rn|B. This completes the proof
of 2.1(b).

To prove 2.3 we need

4.2. Lemma. Let X be an Lp-space for some p ∈ [1,∞] and let Rk :
X → X, k = 1, . . . , n, be linear , bounded and of finite rank. Then there is
a finite rank projection Q : X → X with RkQ = QRk = Rk, k = 1, . . . , n,
where ‖Q‖ does not depend on the operators Rk.

Proof. It is well known that X∗ is an Lq-space where p−1 +q−1 = 1 ([6]).
Since the R∗k : X∗ → X∗ are of finite rank we find a finite rank projection
P : X∗ → X∗ with R∗kX

∗ ⊂ PX∗, where ‖P‖ does not depend on the
Rk. By [6, Corollary 3.2] we can choose P to be w∗-continuous. Regard
X as a natural subspace of X∗∗. Then Q1 = P ∗|X is a projection with
Q1X ⊂ X. Since PR∗k = R∗k we obtain RkQ1 = Rk for all k. Using the fact
that X is an Lp-space we find a finite rank projection Q2 : X → X with
Q1X ⊂ Q2X and RkX ⊂ Q2X, k = 1, . . . , n, where ‖Q2‖ does not depend
on the Rk. Hence we obtain Q2Rk = Rk, k = 1, . . . , n, and Q2Q1 = Q1.
Put Q = Q1 + (id − Q1)Q2. Then Q is a finite rank projection satisfying
RkQ = QRk = Rk, k = 1, . . . , n, and ‖Q‖ does not depend on the Rk.

Proof of Theorem 2.3. Let {Rn}∞n=1 be an a.s. of X such that RnA ⊂ A
for all n and the operators Rn define FDD-projections R̂n onX/A. Moreover,
let X be an L1-space. We prove the theorem in two steps.

(a) First we construct an a.s. {Pn}∞n=1 of X ⊕ l1 such that Pn(A⊕ l1) ⊂
A ⊕ l1 for all n, the Pn define FDD-projections on (X ⊕ l1)/(A ⊕ l1), and
PmPn = Pm whenever m ≤ n. Moreover, Pn − Pn−1 shall induce rank one
operators on (X ⊕ l1)/(A⊕ l1) if dim (R̂n − R̂n−1)(X/A) ≤ 1 for all n.

Indeed, by Proposition 4.1 we may assume that the Rn are already pro-
jections. Fix uniformly bounded finite rank projections Qn : X → X with
RjQn = Rj = QnRj and QjQn = Qn = QnQj , j = 1, . . . , n, which ex-
ist according to 4.2. Consider subspaces Fn ⊂ X with QnX ⊂ Fn and
supn d(Fn, l

mn
1 ) < ∞ for some mn. Then F := (

∑
n⊕Fn)(1) ∼ l1. Now

define Pn : X ⊕ F → X ⊕ F by

Pn(x, (f1, f2, . . .)) =
(
Rn

(
x+

∞∑

k=n

(id−Rk)fk
)
,

(
f1, . . . , fn−1, (Qn −Rn)

(
x+

∞∑

k=n

(id−Rk)fk
)
, 0, . . . 0

))
.

If x ∈ A then clearly Pn(x, (fk)) ⊂ A ⊕ F since Rn(id − Rk)X ⊂ A for all
k ≥ n. Moreover, R2

n = Rn and (Qn − Rn)2 = Qn − Rn. This implies that
PmPn = Pm whenever m ≤ n. If j ≥ n then we easily see that
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(PjPn − Pn)(x, (fk)) =
(

(Rj − id)Rn
(
x+

∞∑

k=n

(id−Rk)fk
)
,

(
0, . . . , 0︸ ︷︷ ︸
j−1

, (Qj −Rj)Rn
(
x+

∞∑

k=n

(id−Rk)fk
)
, 0, . . .

))
∈ A⊕ F.

This implies (PmPn − Pmin(m,n))(X ⊕ l1) ⊂ A⊕ F and hence the Pn define
FDD-projections on (X ⊕ l1)/(A⊕ l1).

Finally, since the Rn are projections, we have

(Pn − Pn−1)(x, (fk)) =
(

(Rn −Rn−1)
(
x+

∞∑

k=n

(id−Rk)fk
)
,

(
0, . . . , 0︸ ︷︷ ︸
n−2

, fn−1 − (Qn−1 −Rn−1)
(
x+

∞∑

k=n−1

(id−Rk)fk
)
,

(Qn −Rn)
(
x+

∞∑

k=n

(id−Rk)fk
)
, 0, . . .

))
.

Since (Rn − Rn−1)
∑∞

k=n(id − Rk)fk ∈ A, the Pn − Pn−1 define rank one
operators on (X⊕ l1)/(A⊕ l1) provided that dim (R̂n− R̂n−1)(X/A) ≤ 1 for
all n.

(b) Now we prove 2.3. According to (a), taking X ⊕ l1 instead of X
and A ⊕ l1 instead of A, we can assume that {Rn}∞n=1 is an a.s. of X with
RnA ⊂ A, RmRn = Rm for m ≤ n such that the Rn define FDD-projections
R̂n on X/A. Since Rn → id and the Rn are of finite rank, using a perturba-
tion argument, we may as well assume that there is a subsequence {Rnm}∞m=1
which is a c.a.s. of X. Then the operators Rnm are FDD-projections. This
proves the FDD-part of 2.2(a).

Now assume that in addition dim (R̂n − R̂n−1)(X/A) ≤ 1 for all n. Put
Xm = (Rnm − Rnm−1)X and Am = (Rnm − Rnm−1)A. We may assume
that RjXm ⊂ Xm for all j = nm−1 + 1, . . . , nm. (Otherwise replace Rj by
Rnm−1 + (Rnm − Rnm−1)Rj(Rnm − Rnm−1).) Find subspaces Gm ⊂ X with
Xm ⊂ Gm and supm d(Gm, l

km
1 ) <∞ for some km. Put

Ym = (Gm ⊕ . . .⊕Gm︸ ︷︷ ︸
nm−nm−1 times

)(1).

Then Z := X ⊕ (
∑

m⊕Ym)(1) ∼ X ⊕ l1. Moreover, the Xm ⊕ Ym are the
summands of an FDD of Z. Let Pnm be the corresponding projections and
put W = A⊕ (

∑
m⊕Ym)(1). Then PnmW ⊂ W for all m. We complete the

Pnm to a c.a.s. {Pj}∞j=1 of Z with PjW ⊂ W such that the Pj define basis
projections on Z/W . Then an application of 2.1(a) finishes the proof.
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To this end put M = nm − nm−1 and define P l : Xm ⊕ Ym → Xm ⊕ Ym
by

P l(x, (g1, . . . , gM )) =
(
Rlx− (id−Rl)

l−1−nm−1∑

k=1

Rk+nm−1gk,

(
g1, . . . , gl−1,−Rl

(
x+

l−1−nm−1∑

k=1

Rk+nm−1gk

)
, 0, . . . , 0

))

for l = nm−1 + 1, . . . , nm. Then the P l are uniformly bounded and P lP k =
Pmin(k,l) for all k and l. Moreover, P l(Am ⊕ Ym) ⊂ Am ⊕ Ym since
(id − Rl)RhX ⊂ A if l ≥ h. From the latter fact we also infer that the
P l − P l−1 define rank one operators on (Xm ⊕ Ym)/(Am ⊕ Ym). Now, fi-
nally, put

Pl =Pnm +(Pnm−Pnm−1)P l(Pnm−Pnm−1), nm−1 +1≤ l≤ nm, l= 1, 2, . . .

Then the Pl satisfy all the requirements to apply 2.1(a).

To prove Theorem 2.4, let X be an L∞-space, A ⊂ X a closed subspace,
and {Rk}∞k=1 an a.s. of X such that RnA ⊂ A for all n and the operators Rn
induce basis projections on X/A. By Proposition 4.1 we may assume that
the operators Rk are projections.

4.3. Lemma. Put X1 = X ⊕ c0 and A1 = A⊕ c0. Then there is a closed
subspace B ⊂ X1 such that

(4.1) B ∼ c0, A1 ∩B = {0}, A1 +B = X1.

Furthermore, there exists an a.s. {Sk}∞k=1 of X1 consisting of projections
such that

(4.2) Sn|X = Rn for all n,

A1 and B are invariant under Sn and the operators Sn|B are the projections
of the unit vector basis of c0. Moreover ,

(4.3) Sm(id− Sn)X1 ⊂ A, (id− Sn)SmX1 ⊂ A whenever m ≤ n.
Finally , there is a bounded projection Q : X1 → B with

(4.4) X = kerQ

(where we identify x ∈ X with (x, 0) ∈ X1).

Proof. Find xn ∈ X such that ‖xn‖ ≤ 2 and the elements xn+A are the
elements of a normalized basis of X/A whose basis projections are induced
by the operators Rn. This implies

(4.5) Rkxn ∈ A whenever k < n, (id−Rk)xn ∈ A whenever k > n.
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Let {ek}∞k=1 be the unit vector basis of c0. Put bn = (2−nxn, en) ∈ X1 and
let B = span{bn}∞n=1 ⊂ X1. Define Q : X1 → B by

Q
(
x,
∑

k

αkek

)
=
(∑

k

1
2k
αkxk,

∑

k

αkek

)
.

Then clearly (4.1) is satisfied since {bn}∞n=1 is equivalent to the unit vector
basis of c0. We also obtain (4.4).

Now define Sk : X1 → X1 by Sk(x, 0) = (Rkx, 0) for x ∈ X, and

(4.6) Sk

(
0,
∞∑

n=1

αnen

)

=
(
−

∞∑

n=k+1

αn
2n

Rkxn +
k∑

n=1

αn
2n

(id−Rk)xn,
k∑

n=1

αnen

)
.

This implies in particular that {Sk}∞k=1 is an a.s. of X1 and that SkA1 ⊂ A1

for all k (see (4.5)). Furthermore, we have

Skbn =
{
bn if k ≥ n,

0 if k < n.
This shows that the Sk are projections (since the Rk are assumed to be
projections). We obtain (4.2).

We have Sk(id − Sm)X = Rk(id − Rm)X ⊂ A whenever k ≤ m by
assumption on X/A. Similarly (id− Sm)SkX ⊂ A if k ≤ m. Using (4.6) we
see that, for k ≤ m and any n,

Sk(id− Sm)(0, en) = Sk(id− Sm)
(
bn −

(
xn
2n
, 0
))

=
(
− 1

2n
Rk(id−Rm)xn, 0

)
∈ A,

and similarly,

(id− Sm)Sk(0, en) =
(
− 1

2n
(id−Rm)Rkxn, 0

)
∈ A.

Hence we obtain (4.3), which completes the proof of Lemma 4.3.

Remark. (4.4) implies that X⊕B = X1. This means in particular that
SmSn = Smin(m,n) whenever RmRn = Rmin(m,n).

We retain the notation of Lemma 4.3. Consider the unit vector basis
{bn}∞n=1 of B ∼ c0. The projections Sk induce the basis projections for the
basis {bn + A1}∞n=1 of X1/A1. Hence we find b∗n ∈ A⊥1 ⊂ X∗1 with

(4.7) b∗n(bm) =
{

1, n 6= m,

0, n = m.

(The functionals b∗n may not be uniformly bounded.)
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Let Q̃n : X1 → span{bn} be defined by Q̃nx = b∗n(x)bn. Then

(4.8) SmQ̃n = Q̃nSm for all n,m, Q̃nSm =
{
Q̃n, n ≤ m,

0, m < n.

Moreover,

(4.9) Snx−
n∑

k=1

Q̃kx ∈ A1 for any n and any x ∈ X1.

(
∑n

k=1 Q̃kx is the projection of Snx onto B along A1.) Now (4.3) implies

(4.10) Q̃nSm(id− Sn) = 0, Q̃n(id− Sn)Sm = 0 whenever m ≤ n.
Also, (ker Q̃n) ∩ X is an L∞,λ-space where λ does not depend on n since
this space is 1-codimensional in X.

4.4. Proposition. There is an a.s. {Tn}∞n=1 of X1 ⊕ c0 consisting of
projections and leaving A1 ⊕ c0 and B invariant such that

(4.11) TmTn = Tm whenever m ≤ n, Tk|B = Sk|B for all k.

(We identify x ∈ X1 with (x, 0) ∈ X1 ⊕ c0.)

Proof. Find finite-dimensional subspaces Fn ⊂ ker Q̃n ∩X with

(4.12)
∞⋃

k=n

Sn(id− Sk)X1 ⊂ Fn,
n⋃

m=1

(id− Q̃n)SmX ⊂ Fn

and supn d(Fn, lmn∞ ) < ∞ where mn = dimFn. Put Gn = Fn + span{bn}.
Hence supn d(Gn, lmn+1

∞ ) < ∞. Note that with the projection Q : X1 → B
of Lemma 4.3, using (4.4) we have

(4.13) QGn = span{bn}, kerQ ∩Gn = Fn.

Put X2 = X1⊕ (
∑

n⊕Gn)(0). Hence X2 ∼ X1⊕ c0. Define Tn : X2 → X2 by

(4.14) Tn(x, (g1, g2, . . .)) = (Sn(x+ gn), (g1 + S1(id− Sn)x− S1Sngn,

. . . , gn−1 + Sn−1(id− Sn)x− Sn−1Sngn, 0, 0, . . .)).

The definition of Tn makes sense since we have Sm(id − Sn)X1 ⊂ Fm and
SmSnGn ⊂ Gm for m ≤ n. The latter inclusion follows from the fact that
SmSnbn = 0 if m < n and SmSnFn ⊂ Gm (in view of (4.12)). The Tn are
uniformly bounded projections and Tn|B = Sn|B since Sm(id − Sn)|B = 0
for m ≤ n. We easily check that (4.11) is satisfied. Put

b(n) = (bn, (0, . . . , 0︸ ︷︷ ︸
n−1

,−bn, 0, 0, . . .)) ∈ X2

and W = span{b(n)}∞n=1. Moreover, put V = W + (
∑

n⊕Fn)(0). Then, in
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view of (4.13), we have V ∼ c0 and X2 ∼ X1 ⊕ V . Also, (4.14) implies

Tnb(m) =
{
b(m), m < n,

0, n ≤ m.

(Recall that Snbm = 0 if m > n, since the operators Sn|B are the basis pro-
jections of {bk}∞k=1.) Moreover, if f ∈Fm and f(m)=(0, (0, . . . , 0︸ ︷︷ ︸

m−1

, f, 0, 0, . . .)),
then

Tnf(m) =
{
f(m), m < n,

0, m > n,
and

Tnf(n) + V =
(
Snf −

n∑

k=1

Q̃kf,

(−S1Snf + Q̃1f, . . . ,−Sn−1Snf + Q̃n−1f, 0, 0, . . .)
)
.

(Recall that Q̃nf = 0 if f ∈ Fn ⊂ ker Q̃n ∩ X.) In view of (4.8) and (4.9)
this implies Tnf(n) ∈ A1 + V . On the other hand, if a ∈ A1, then

Tn(a, (0, 0, . . .)) ∈ A1 +
(∑

k

⊕Fk
)

(0)

according to (4.12) and (4.14). Hence Tn(A1 + V ) ⊂ A1 + V for all n. We
clearly have, in view of (4.13), A1 + V ∼ A1 ⊕ c0.

4.5. Proposition. There is an a.s. {Pn}∞n=1 of X1 ⊕ c0 consisting of
projections and leaving A1 ⊕ c0 and B invariant such that

(4.15) PnPm = Pm whenever m ≤ n, Pk|B = Sk|B for all k.

Moreover ,

(4.16) PmPn = Pm whenever RmRn = Rm and m ≤ n.
Proof. Since limk→∞ Skx = x for all x ∈ X1 the space span(

⋃
k SkX1) is

dense in X1. Find finite-dimensional subspaces

(4.17) Fn ⊂ span
(⋃

k

SkX1

)
∩ ker Q̃n+1 ∩X

with

(4.18)
n⋃

m=1

(id− Sn)SmX1 ⊂ Fn,
n⋃

m=1

SmX ⊂ Fn.

This is possible, since by (4.3),

(id− Sn)SmX1 ⊂ A ∩ span
(⋃

k

SkX1

)
⊂ X ∩ span

(⋃

k

SkX
)
,

and by (4.8), Q̃n+1(
⋃n
m=1 SmX) = 0. (Recall that SkX ⊂ X for all k in view
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of (4.2).) Finally, Fn can be arranged such that in addition supn d(Fn, ldimFn∞ )
<∞, since X∩ker Q̃n+1 is an L∞-space. Put Gn = Fn+span{bn+1}. Hence
supn d(Gn, ldimGn∞ ) <∞. We have

(4.19) QGn = span{bn+1}, kerQ ∩Gn = Fn,

in view of (4.4) since Fn ⊂ X.
Now put X2 = X1 ⊕ (

∑
n⊕Gn)(0) ∼ X1 ⊕ c0. Define Pn : X2 → X2 by

(4.20) Pn(x, (g1, g2, . . .)) = (Snx+ (id− Sn)gn, (g1, . . . , gn,

(id− Sn+1)(Snx+ (id− Sn)gn), (id− Sn+2)(Snx+ (id− Sn)gn), . . .)).

The definition of Pn makes sense in view of (4.18). In particular we have
(id−Sn+k)(id−Sn)Gn ⊂ Gn+k since (id−Sn+k)(id−Sn)bn+1 = 0 for k ≥ 1.
The operators Pn are uniformly bounded projections. We obtain Pn|B =
Sn|B since (id − Sn+k)SnB = {0}. It is easily checked that PnPm = Pm
whenever n ≥ m. If RmRn = Rm and m ≤ n then, in view of X ⊕B = X1,
by (4.2) we see that SmSn = Sm. Also, (4.20) implies that then PmPn = Pm.

Put
b(n) = (bn+1, (0, . . . , 0︸ ︷︷ ︸

n−1

, bn+1, 0, 0, . . .)) ∈ X2

and W = span{b(n)}∞n=1. Moreover, put V = W + (
∑

n⊕Fn)(0). Then, in
view of (4.19) and the fact that {bn}∞n=1 is the unit vector basis of c0, we
have X2 = X1 ⊕ V ∼ X1 ⊕ c0. Equation (4.20) implies

Pnb(m) =
{
b(m), m ≤ n,

0, m > n.

(This follows since Snbm is bm if m ≤ n, and 0 otherwise.)
Finally, take f ∈ Fm and put

f(m) = (0, (0, . . . , 0︸ ︷︷ ︸
m−1

, f, 0, 0, . . .)).

Then (4.20) implies

Pnf(m) =
{
f(m), m < n,

0, m > n,
and

Pnf(n) + V =
(

(id− Sn)f −
∞∑

k=n+1

Q̃kf, (0, . . . , 0︸ ︷︷ ︸
n−1

, f,

(id− Sn+1)(id− Sn)f − Q̃n+2f, (id− Sn+2)(id− Sn)f − Q̃n+3f, . . .)
)
.

Note that, in view of (4.17), Q̃n+kf = 0 for some k0 and all k ≥ k0, and also
Q̃n+1f = 0. In particular, there is no problem with the convergence of the
series. Now, (id− Sn)f −∑∞k=n+1 Q̃kf is the projection of (id− Sn)f onto
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A1 along B. Moreover, by (4.8), we have

Q̃n+k+1(id− Sn+k)(id− Sn)f = Q̃n+k+1f.

Hence PnV ⊂ A1 + V . In view of (4.3) and (4.20) we also have PnA1 ⊂
A1 + V . Since A1 + V ∼ A⊕ c0 the proof is complete.

Proof of Theorem 2.4. First we apply Lemma 4.3 to obtain X1 = X⊕c0,
A1 = A⊕ c0 and Sk. Then we continue with Proposition 4.4 to obtain

X2 = X1 ⊕ c0 ∼ X ⊕ c0, A2 ∼ A1 ⊕ c0 ∼ A⊕ c0

and Tk.
Then we apply Lemma 4.3 and the remark following it again to X2

instead of X, A2 instead of A, and Tk instead of Rk. Finally, we apply
Proposition 4.5 to find Pn on X⊕c0. Since TmTn = Tm for m ≤ n, by (4.16)
we also have PmPn = Pm. Hence {Pn}∞n=1 is a sequence of FDD-projections
on X⊕c0 leaving A⊕c0 invariant. Moreover, there is a subspace B ⊂ X⊕c0
with

(A⊕ c0) +B = X ⊕ c0, B ∼ c0

such that the operators Pn|B are the projections of the unit vector basis
of c0. Now an application of Theorem 2.1(b) (and the following remark)
finishes the proof.
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