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Ordered analytic Hilbert spaces over the unit disk

by

Shengzhao Hou and Shuyun Wei (Suzhou)

Abstract. Let f , g be in the analytic function ring Hol(D) over the unit disk D.
We say that f � g if there exist M > 0 and 0 < r < 1 such that |f(z)| ≤ M |g(z)|
whenever r < |z| < 1. Let X be a Hilbert space contained in Hol(D). Then X is called an
ordered Hilbert space if f � g and g ∈ X imply f ∈ X. In this note, we mainly study the
connection between an ordered analytic Hilbert space and its reproducing kernel. We also
consider when an invariant subspace of the whole space X is similar to X.

1. Introduction. Let Hol(Ω) denote the analytic function ring over the
domain Ω ⊂ C

n. The most basic example of a Hilbert space contained in
Hol(Ω) is the famous Hardy space. The operator theory on the Hardy space
has played an important role both in complex analysis and in functional
analysis. Motivated by the results obtained in the Hardy space, the study
of Hilbert spaces contained in Hol(Ω) has recently drawn much attention.
Among those Hilbert spaces, the Hardy space and Bergman space are very
active fields of research, and many deep and interesting results have been
obtained [CG, DP, HKZ2].

The most useful tool in the study of the Hardy space and Bergman space
is the integration which induces the inner product. A difficulty arises when
one deals with a Hilbert space whose inner product is not induced by a
positive measure. In order to overcome it, the concept of ordered analytic
Hilbert space over the complex plane has been introduced and has proved
useful [CGH].

We note that both the Hardy space H2 and the Bergman space L2
a(D)

have the following properties:

(1) the polynomial ring C is dense in X;
(2) X has a reproducing kernel;
(3) {zn}∞n=0 is an orthogonal basis of X and lim inf n

√

‖zn‖ = 1.
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Furthermore, if f, g ∈ Hol(D) and |f(z)| ≤ |g(z)| whenever 0 < r < |z| < 1,
then g ∈ H2 (resp. g ∈ L2

a(D)) implies f ∈ H2 (resp. f ∈ L2
a(D)). In the

present paper, we are mainly concerned with Hilbert spaces contained in
Hol(D) and having such properties.

In Section 2, we introduce an order structure in Hol(D). We give a neces-
sary and sufficient condition for a Hilbert space to be ordered. The connec-
tion between the reproducing kernel and the “order structure” are discussed
in Section 3; we give a criterion (Theorem 3.1) for a space to be ordered.
Examples are given to show the necessity of each condition of Theorem 3.1.
The similarity of subspaces to the whole space X is studied in Section 4
and we give a complete description of such spaces. As an application of the
“order structure”, we prove that all finite-codimensional subspaces of an
ordered analytic Hilbert space X are similar to X, while this is not always
the case when X is not ordered.

We thank Professor Shunhua Sun for some helpful suggestions. We are
deeply indebted to the referees for numerous suggestions that helped make
this paper more readable.

2. Some basic properties of reproducing Hilbert space. In this
section, we are concerned with the properties of analytic Hilbert spaces
which will be used later.

Let X be a Hilbert space consisting of analytic functions on the unit
disk D. Recall that λ ∈ C is a virtual point of X if the homomorphism
p 7→ p(λ) defined on the polynomial ring C extends to a bounded linear
functional on X.

We begin with a definition which comes from [CG].

Definition 2.1. We say that X is an analytic Hilbert space over D if
the following conditions are satisfied:

(1) the polynomial ring C is dense in X;
(2) X has a reproducing kernel;
(3) the set of virtual points of X is equal to D.

We note that (3) guarantees that the reproducing kernels K(z, λ) are
precisely analytic in z and conjugate analytic in λ over D. The main reason
for requiring the virtual set to be open is that one can do calculations on
it, in particular, analytic calculations. For example, one can do asymptotic
analysis of the reproducing kernel on the boundary of the virtual set.

In both the Hardy and Bergman spaces, we know that lim n
√

‖zn‖
= 1. In a general analytic Hilbert space X, under the condition that {zn}∞n=0

is an orthogonal basis of X, we have the following proposition which will be
used several times in this paper.
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Proposition 2.1. Let X be an analytic Hilbert space with orthogonal

basis {zn}∞n=0. Then

lim inf
n→∞

n
√

‖zn‖ = 1.

Proof. Let Kλ be the reproducing kernel of X. We first show that

lim
|λ|→1

‖Kλ‖ = ∞.

In fact, if lim|λ|→1 ‖Kλ‖ 6= ∞, then there exist λn with |λn| < 1 such that
limn→∞ λn = λ0 with |λ0| = 1 and

lim
n→∞

‖Kλn
‖ = R < ∞.

Since
|p(λn)| = |〈p, Kλn

〉| ≤ ‖p‖ ‖Kλn
‖,

letting n → ∞, we have |p(λ0)| ≤ ‖p‖R. This contradicts the assump-
tion that no λ0 with |λ0| = 1 is a virtual point of X. Thus we have
lim|λ|→1 ‖Kλ‖ = ∞.

Now we are ready to show

lim inf
n→∞

n
√

‖zn‖ ≤ 1.

Indeed, otherwise there exist N ∈ N and δ > 0 such that n
√

‖zn‖ > 1 + δ
whenever n > N . Thus

‖Kλ(z)‖2 =

∥

∥

∥

∥

∞
∑

m=0

λmzm

‖zm‖2

∥

∥

∥

∥

2

=
∞
∑

m=0

|λ|2m

‖zm‖2

≤
N

∑

m=0

|λ|2m

‖zm‖2
+

∞
∑

m=N+1

|λ|2m

(1 + δ)2m
< ∞,

contrary to lim|λ|→1 ‖Kλ‖ = ∞.
Next we will show that

lim inf
n→∞

n
√

‖zn‖ ≥ 1.

Indeed, otherwise one can find a subsequence n1 < n2 < · · · and 0 < r < 1
such that nk

√

‖znk‖ < r or equivalently ‖znk‖ ≤ rnk for k = 1, 2, . . . .
Choose 1 > δ > r. Since X is a reproducing Hilbert space, there exists

Cδ > 0 such that |f(δ)| ≤ Cδ‖f‖ for all f ∈ X. This gives

δn ≤ Cδ‖zn‖.
Thus

δ ≤ C
1/nk

δ ‖znk‖1/nk .

Now letting k → ∞, we get δ ≤ r, which is not the case.

We note that there is a natural partial order on the ring Hol(D). Let
f , g be in Hol(D). We say that f � g if there exist M > 0 and 0 < r < 1
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such that |f(z)| ≤ M |g(z)| whenever r < |z| < 1. The next proposition gives
a characterization of this partial order.

Proposition 2.2. Let f , g be in Hol(D) and let H∞ denote the set of

bounded analytic functions in D. Then f � g if and only if f/g = b/p, where

b ∈ H∞ and p is a polynomial with all zeros in D.

Proof. “⇒” Without loss of generality, we may assume that f and g have
no common zeros. If f � g, then by definition there exist 0 < r < 1 and
M > 0 such that |f(z)/g(z)| ≤ M whenever r < |z| < 1. Therefore g(z) 6= 0
for r < |z| < 1. Thus the zeros of g in D are in |z| ≤ r and hence are finitely
many, say α1, . . . , αk. Let p = (z − α1) · · · (z − αk). Then (f/g)p =: b is
analytic and bounded in D. Thus b ∈ H∞ and f/g = b/p.

“⇐” If f/g = b/p, then f = (b/p)g. Since the zeros of p are in D, one
can find r > 0 such that |p(z)| ≥ m > 0 whenever r ≤ |z| ≤ 1. This together
with the fact that b ∈ H∞ gives

|f(z)| ≤ M

m
|g(z)| for r < |z| < 1.

This means that f � g.

We say that an analytic Hilbert space X is ordered if for f, g ∈ Hol(D),
f � g and g ∈ X imply f ∈ X. By definition, both the Hardy and Bergman
spaces are ordered. The following proposition gives a description of such
spaces and will be used several times in this paper.

Proposition 2.3. An analytic Hilbert space X is ordered if and only if

the following hold:

(1) for each b ∈ H∞, f ∈ X implies bf ∈ X;

(2) for each f ∈ X and each polynomial p with all zeros in D, pf ∈ X
implies f ∈ X.

Proof. Assume that X is ordered. If b ∈ H∞ then there exists M > 0
such that |bf | ≤ M |f |. That is, bf � f . So f ∈ X implies bf ∈ X.

If p is a polynomial with all zeros in D, then there exist r, m > 0 such
that |p(z)| ≥ m whenever r ≤ |z| ≤ 1. Thus |p(z)f(z)| ≥ m|f(z)| whenever
r ≤ |z| ≤ 1. So f � pf . Thus pf ∈ X implies f ∈ X.

If f � g, we will prove that g ∈ X implies f ∈ X under the conditions
(1) and (2). By Proposition 1.2, if f � g, then g = (p/b)f . This together
with the fact that g ∈ X and (1) gives b · (p/b)f = pf ∈ X. Now using (2)
we have f ∈ X. This completes the proof.

Proposition 2.3 has the following equivalent and useful form.

Proposition 2.3′. An analytic Hilbert space X is ordered if and only

if the following hold :
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(1) for each b ∈ H∞, f ∈ X implies bf ∈ X;
(2) for each f ∈ X and |α| < 1, (z + α)f ∈ X implies f ∈ X.

Throughout this paper, we will consider analytic Hilbert spaces with
orthogonal basis {zn}∞n=0; for brevity, we will call them just analytic Hilbert
spaces.

Before continuing, we give two examples which show the existence of
analytic Hilbert spaces without the desired order.

Example 2.1. Let X be an analytic Hilbert space with ‖1‖ = 1, ‖z2k‖2

= 2k and ‖z2k+1‖2 = 1/(2k + 1) for k = 1, 2, . . . . Then X is not ordered.
In fact, let f(z) =

∑∞
k=1 z2k/

√
2k. Then ‖f‖2 =

∑∞
k=1 ‖z2k‖2/2k = ∞.

So f /∈ X. But

‖zf(z)‖2 =
∞
∑

k=1

z2k+1

2k
=

∞
∑

k=1

1

2k(2k + 1)
< ∞.

This means that zf ∈ X. Now by Proposition 2.3, X is not ordered.

Example 2.1 does not satisfy condition (2) of Proposition 2.3, while the
following one does not satisfy condition (1):

Example 2.2. Let X be an analytic Hilbert space with ‖z2k‖2 = 1/2k
and ‖z2k+1‖2 = 2k + 1. Then X is not ordered.

In fact, let f(z) =
∑∞

k=1 z2k/
√

2k and b(z) = z. Then it is easy to check
f ∈ X but bf /∈ X. So X is not ordered.

By the definition of an ordered analytic Hilbert space, it is easy to see
that each analytic Hilbert space with inner product induced by a positive
measure is ordered. The following proposition gives a necessary condition
for having such a measure.

Proposition 2.4. Let X be an analytic Hilbert space whose inner prod-

uct is induced by a positive measure σ. Then limn→∞ ‖zn+1‖/‖zn‖ = 1.

Proof. We have

‖zn+1‖
‖zn‖

/ ‖zn‖
‖zn−1‖ =

‖zn+1‖ · ‖zn−1‖
‖zn‖2

=
(
T
|zn+1|2 dσ)1/2 · (

T
|zn−1|2 dσ)1/2T

|zn|2dσ

≥
T
|zn+1| |zn−1| dσT

|zn|2 dσ
= 1.

Thus ‖zn+1‖/‖zn‖ is increasing. Hence

lim inf
‖zn+1‖
‖zn‖ = lim sup

‖zn+1‖
‖zn‖ = T.

We first show that T ≥ 1. Indeed, if lim sup ‖zn+1‖/‖zn‖ < 1, then there
exist δ > 0 and N ∈ N such that T + δ < 1 and ‖zn+1‖/‖zn‖ ≤ T + δ for
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n > N . So,

n
√

‖zn‖ = n

√

‖z‖
‖1‖ · · · ‖zN‖

‖zN−1‖ · n

√

‖zN+1‖
‖zN‖ · · · ‖zn‖

‖zn−1‖

≤ n
√

M · n

√

(T + δ)n−N .

Thus lim inf n
√

‖zn‖ ≤ T + δ < 1. This contradicts Proposition 2.1.
Next we show that T ≤ 1. Indeed, otherwise there exist β > 0 and N ∈ N

such that ‖zN+1‖/‖zN‖ > 1 + β for n > N . So

n
√

‖zn‖ = n

√

‖z‖
1

· · · ‖zN‖
‖zN−1‖

‖zN+1‖
‖zN‖ · · · ‖zn‖

‖zn−1‖

≥ n
√

M · n

√

(1 + β)n−N .

This means that lim inf n
√

‖zn‖ ≥ 1 + β, contrary to Proposition 2.1 again.
This completes the proof.

Since the reproducing kernel of X is of the form

Kλ(z) =
∞

∑

m=0

λmzm

‖zm‖2

and X is completely determined by Kλ(z), it is interesting to know which
spaces are ordered through ‖z‖n. We first give a proposition to illustrate
which spaces are not ordered.

Proposition 2.5. Let X be an analytic Hilbert space with a reproduc-

ing kernel Kλ(z) =
∑∞

n=0 znλn/‖z‖2. If lim inf ‖zn+1‖/‖zn‖ = 0, then X is

not ordered.

Proof. By the assumption, there exist nk > 0 such that ‖znk+1‖/‖znk‖ <
1/k2. Let g(z) =

∑∞
k=1 znk/‖znk‖. Then g /∈ X. But

‖zg(z)‖2 =
∞

∑

k=0

‖znk+1‖
‖znk‖ <

∞
∑

n=0

1

k2
< ∞.

By Proposition 2.3, X is not ordered.

Proposition 2.6. Let X be an ordered analytic Hilbert space. Then

there exists M > 0 such that ‖zn‖ ≤ M for all n.

Proof. Otherwise there exist nk > 0 such that ‖znk‖ ≥ k. Set f(z) =
∑∞

k=1 znk/k3/2. It is easy to see that f ∈ H∞. By Proposition 2.3, we have
f ∈ X. On the other hand,

‖f‖2 =
∞
∑

k=1

‖znk‖2

k3
≥

∞
∑

k=1

1

k
,

a contradiction.
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By Proposition 2.6, the classical Dirichlet space is not ordered. Further-
more, if lim inf ‖zn+1‖/‖zn‖>1, thenX is not ordered. If lim sup‖zn+1‖/‖zn‖
< 1, then X is not an analytic Hilbert space over D. So when one studies
which spaces are ordered, one only has to consider the following cases:

(1) lim sup ‖zn+1‖/‖zn‖ ≥ 1,
(2) 0 < lim inf ‖zn+1‖/‖zn‖ ≤ 1.

3. Some characterizations of analytic Hilbert spaces. In this sec-
tion we first give a sufficient condition for an analytic Hilbert space to be
ordered. Then we will give examples to show that each condition in our
theorem is sharp to some extent. The following is one of the main results of
this paper.

Theorem 3.1. Let X be an analytic Hilbert space. If

(1) lim inf ‖zn+1‖/‖zn‖ = 1;
(2) there exists M > 0 such that ‖zn+k‖/‖zn‖ ≤ M for all n, k > 0,

then X is ordered.

Proof. Let M denote the multiplication algebra of X. We first show
that, under condition (2), M = H∞. Note that H∞ is contained in the
Hardy space H2. Assume that f(z) =

∑∞
n=0 anzn ∈ X. Then g(z) =

∑∞
n=0 an‖zn‖zn ∈ H2. Thus for each b(z) =

∑∞
n=0 bnzn ∈ H∞, bg ∈ H2, or

equivalently,
∞

∑

k=0

|a0bk + a1bk−1‖z‖ + a2bk−2‖z2‖ + · · · + akb0‖zk‖ |2 < ∞.

It is obvious that f(z) =
∑∞

n=0 anzn ∈ X implies that
∑∞

n=0 |an|zn ∈ X.
If b(z) =

∑∞
n=0 bnzn ∈ H∞, we will show that

∑∞
n=0 |bn|zn ∈ H∞. Indeed,

otherwise there exists a sequence {zn} ⊂ D such that limn→∞ |bn|zn =∞. Let
wn =(|bn|/bn) · zn. We have limn→∞ bnwn =∞ and this contradicts b∈H∞.

So without loss of generality, we may assume that an, bn ≥ 0 for n =
1, 2, . . . . Since there exists M >0 such that ‖zn+k‖/‖zn‖ ≤ M for all n, k>0,
we have

‖bf‖2 =
∞

∑

k=0

|a0bk + a1bk−1 + · · · + akb0|2‖zk‖2

=
∞

∑

k=0

∣

∣

∣

∣

‖zk‖
‖z0‖ a0bk‖z0‖+

‖zk‖
‖z1‖ a1bk−1‖z1‖ + · · · + ‖zk‖

‖zk‖ akb0‖zk‖
∣

∣

∣

∣

2

≤ M2
∞

∑

n=0

|a0bk +a1‖z‖bk−1 +a2‖z2‖bk−2 + · · · +ak‖zk‖b0|2 <∞.

Thus bf ∈ X. So H∞ ⊂ M.
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The fact that M ⊂ H∞ is well known for experts, we give a proof here
just for convenience. In fact,

|f(λ)Kλ(λ)| = |〈MfKλ, Kλ〉| ≤ ‖Mf‖ · ‖Kλ‖2 = ‖Mf‖ · |Kλ(λ)|,

and thus |f(z)| ≤ ‖Mf‖.
Now we only need to show that for each |α| < 1, under condition (1),

(z + α)f ∈ X implies f ∈ X. For f(z) =
∑∞

n=0 anzn, we denote
∑N

n=0 anzn

by fN (z).

If α = 0, since lim infn→∞ ‖zn+1‖/‖zn‖ = 1, there exists N ∈ N such
that ‖zn+1‖ > 1

2‖zn‖ for n > N . Then

‖f‖2 =
∞

∑

n=0

|an|2‖zn‖2 =
N

∑

n=0

|an|2‖zn‖2 +
∞

∑

n=N+1

|an|2‖zn‖2

≤
N

∑

n=0

|an|2‖zn‖2 + 2

∞
∑

n=N+1

|an|2‖zn+1‖2

≤
N

∑

n=0

|an|2‖zn‖2 + 2‖zf‖2.

Thus zf ∈ X implies f ∈ X.

In the case of 0 < |α| < 1, by the assumption lim infn→∞ ‖zn+1‖/‖zn‖
= 1, we pick δ > 0 and Nα ∈ N such that ‖zn+1‖2/‖zn‖2 ≥ δ + |α| for
n > Nα. Therefore for N > Nα, we have

‖αfN‖2 =

N
∑

n=0

|α|2|an|2‖zn‖2

=

Nα
∑

n=0

|α|2|an|2‖zn‖2 +
N

∑

n=Nα+1

|α|2|an|2
‖zn‖2

‖zn+1‖2
‖zn+1‖2

≤ Mα +
|α|2

(δ + |α|)2 ‖zfN‖,

where Mα =
∑Nα

n=0 |α|2|an|2‖zn‖2. Thus

‖zfN‖ ≤ ‖(z + α)fN‖ + ‖αfN‖(1)

≤ ‖(z + α)fN‖ +
√

Mα + γ‖zfN‖2,

where γ = |α|2/(δ + |α|)2 < 1. Since

(z + α)fN (z) = αa0 − αaN+1z
N+1 +

N+1
∑

n=1

(an−1 + αan)zn,
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(z + α)f(z) = αa0 +
∞

∑

n=1

(an−1 + αan)zn,

[(z + α)f ]N(z) = αa0 +
N

∑

n=1

(an−1 + αan)zn,

we have

‖(z + α)fN‖ ≤ |αa0| + ‖[(z + α)f ]N+1‖ + |αaN+1| ‖zN+1‖(2)

≤ |αa0| + ‖(z + α)f‖ + |αaN+1| ‖zN+1‖.
Next we will show that

lim inf
n→∞

|an+1| ‖zn+1‖ 6= ∞.(3)

Indeed, otherwise there exists n0 > 0 such that |an| 6= 0 whenever n > n0.
Since (z + α)f(z) = αa0 +

∑∞
n=1(an−1 + αan)zn ∈ X, there exists n1 > 0

such that

|an−1 + αan| ‖zn‖ < 1 for n > n1.

So

‖αanzn‖ − 1 ≤ ‖an−1z
n‖ ≤ ‖αanzn‖ + 1(4)

whenever n > n1. Hence

lim
n→∞

|an−1|
|an|

= |α| < 1.

This contradicts f being analytic in the unit disk. Thus (3) holds. Therefore
there exist a subsequence {nk}∞k=1 and M > 0 such that

‖ank
znk‖ ≤ M for k = 1, 2, . . . .(5)

If zf /∈ X, then limn→∞ ‖zfn‖ = ‖zf‖ = ∞. Consequently,

lim
k→∞

‖zfnk−1‖ = ∞.

Combining (1), (2) and (5), we get

‖zfnk−1‖ ≤ |αa0| + ‖(z + α)f‖ + |αank
| ‖znk‖ +

√

Mα + γ‖zfnk−1‖2.(6)

Now divide (6) by ‖zfnk−1‖ and let k → ∞ to get 1 ≤ √
γ. This is impossible.

Thus we have zf ∈ X. So f ∈ X.

Remark 3.1. Let Y be an analytic Hilbert space whose inner product
is induced by a positive measure. By definition, it is easy to see that Y
is ordered. So it is natural to ask whether one can determine that Y is
ordered by using Theorem 3.1. In fact, by Proposition 2.4 and the fact that
‖zn‖ ≤ ‖zn+k‖ for all positive integers n and k, it is obvious that Y is
ordered.
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In the remainder of this section, we will give some examples to show that
Theorem 3.1 is sharp to some extent. We recall that lim sup ‖zn+1‖/‖zn‖ ≥ 1
is necessary for X to be an analytic Hilbert space. So all the examples in
the following satisfy this condition.

The first example is an analytic Hilbert space which is not ordered and
satisfies lim inf ‖zn+1‖/‖zn‖ < 1.

Example 3.1. Let X be an analytic Hilbert space with

‖zn‖ =







































1, 0 ≤ n ≤ 11,

1

k
, 2k−1 + k ≤ n ≤ 2k − k for k ≥ 4,

1

k2j
, n = 2k − k + j, 0 < j ≤ k,

1

k2k−i
, n = 2k + i, 0 < i < k.

Then lim sup ‖zn+1‖/‖zn‖ = 2, lim inf ‖zn+1‖/‖zn‖ = 1/2 and X is not

ordered.

Proof. Let

bk(z) = z2k−k + 2z2k−k+1 + 22z2k−k+2 + · · · + 2k−1z2k−k+(k−1) + 2kz2k

and f(z) =
∑∞

k=4 bk(z). Obviously, if we write f(z) =
∑∞

n=0 anzn, then
|an| ≤ n. Thus f ∈ Hol(D). Since

‖f‖2 =

∞
∑

k=4

‖bk‖2 =

∞
∑

k=4

k + 1

k2
= ∞,

we have f /∈ X. But
(

z − 1

2

)

f(z) =

∞
∑

k=4

(

z − 1

2

)

bk(z) =

∞
∑

k=4

(

−1

2
z2k−k + 2kz2k+1

)

So
∥

∥

∥

∥

(

z − 1

2

)

f(z)

∥

∥

∥

∥

2

=

∞
∑

k=4

(

1

(2k)2
+

(

2

k

)2)

< ∞

and (z − 1/2)f(z) ∈ X. By Proposition 2.3, X is not ordered.

The next example exhibits an ordered analytic Hilbert space such that
lim inf ‖zn+1‖/‖zn‖ < 1.

Example 3.2. Let X be an analytic Hilbert space with ‖z2k‖ = 1 and

‖z2k+1‖ = 2 for k = 0, 1, . . . . Then lim sup ‖zn+1‖
‖zn‖ = 2, lim inf ‖zn+1‖

‖zn‖ = 1/2

and X is ordered.
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Proof. Since ‖zn+k‖/‖zn‖ is uniformly bounded, by Theorem 3.1 we have
MX = H∞. So we only need to show that (z + α)f(z) ∈ X implies f ∈ X
for each α ∈ D.

Set f(z) =
∑∞

n=0 anzn. Then

‖zf‖2 =
∞

∑

n=0

|an|2‖zn+1‖2 =
∞
∑

k=0

|a2k|2‖z2k+1‖2 +
∞

∑

k=0

|a2k+1|2‖z2k+2‖2

= 4
∞
∑

k=0

|a2k|2‖z2k‖2 +
1

4

∞
∑

k=0

|a2k+1|2‖z2k+1‖2 ≥ 1

4

∞
∑

n=0

|an|2‖z2n‖2.

Thus zf ∈ X implies f ∈ X.
Assume that (z + α)f ∈ X for 0 < |α| < 1 and

(z + α)f(z) = αa0 +
∞
∑

n=1

(αan + an−1)z
n.

Let

f1(z) = αa0 +

∞
∑

k=1

(αa2k + a2k−1)z
2k, f2(z) =

∞
∑

k=1

(αa2k+1 + a2k)z
2k+1.

Set

f0(z) =
f2(z)

z
=

∞
∑

k=1

(αa2k+1 + a2k)z
2k.

Since (z +α)f(z) ∈ X, it follows that f1, f2 ∈ X. Since zf0(z) = f2(z) ∈ X,
we have f0 ∈ X and

(f2 − αf0)(z) = −α2a1 +
∞

∑

k=1

(a2k−1 − α2a2k+1)z
2k ∈ X.

So
∞

∑

k=1

|a2k−1 − α2a2k+1|2‖z2k‖2 < ∞.(7)

We also note that Theorem 3.1 in fact shows the following:
Let α∈D and g(z) =

∑∞
n=0 bnzn be analytic in D and lim infn→∞ rn+1/rn

= 1 where rn > 0. Then
∑∞

n=0(bn+αbn+1)
2r2

n < ∞ implies
∑∞

n=0 b2
nr2

n < ∞.
Let a2k−1 = bk and rk = ‖z2k‖ = 1. Then (7) is equivalent to

∞
∑

k=0

|bk − α2bk+1|2r2
k < ∞.

This implies that
∞
∑

k=1

|bk|2r2
k < ∞,
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or equivalently
∞

∑

k=1

|a2k−1|2‖z2k‖2 < ∞.

Since ‖z2k+1‖ = 2‖z2k‖, we have

∞
∑

k=1

|a2k−1|2‖z2k−1‖2 < ∞.

Thus

h(z) =
∞

∑

k=1

a2k−1z
2k−1 =

∞
∑

k=0

a2k+1z
2k+1 ∈ X.

We also have f2(z) − αh(z) =
∑∞

k=0 a2kz
2k+1 ∈ X.

By using ‖z2k+1‖ = 2‖z2k‖ again, we get h1(z) =
∑∞

k=0 a2kz
2k ∈ X.

Thus f = h1 + h ∈ X.

Examples 3.1 and 3.2 show that condition (1) of Theorem 3.1 is sharp
to some extent. The following example shows the necessity of condition (2)
of Theorem 3.1.

Example 3.3. Let X be an analytic Hilbert space and {‖zn‖}∞n=1 be the

following sequence:

1,

1 − 1

24
, 1 − 2

24
, . . . ,

1

23
,

1

23
, 1,

1 − 1

34
, 1 − 2

34
, . . . ,

1

33
,

1

33
,

23

33
, 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 − 1

k4
, 1 − 2

k4
, . . . ,

1

k3
,

1

k3
,

(

2

k

)3

, . . . ,

(

k − 1

k

)3

, 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Set mk =
∑k

i=1 i4. Then ‖zmk‖ = 1, ‖zmk−k‖ = 1/k3, ‖zmk‖/‖zmk−k‖ = k3

and X is not ordered.

Proof. We first note that the number of elements in the set
{

1 − 1

k4
, 1 − 2

k4
, . . . ,

1

k3
,

1

k3
,

(

2

k

)3

, . . . ,

(

k − 1

k

)3

, 1

}

is k4, because 1−1/k3

1/k4 + k = k4.

Since limn→∞ ‖zn+1‖/‖zn‖ = 1, condition (1) of Theorem 2.1 is satisfied.
Next we will show that H∞ 6⊆ MX . In fact, take amk

= 1/k, amk−k = k2 and
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ai = 0 for i 6= mk, mk−k. Then f(z) =
∑

anzn ∈ X. Set b(z) =
∑∞

k=1 zk/k2.
It is obvious that b ∈ H∞. In this case,

‖bf‖2 =

∞
∑

n=0

|anb0 + ak−1b1 + · · · + a0bn|2‖zk‖2

≥
∞

∑

k=1

|amk
b0 + · · · + a0bmk

|2‖zmk‖ ≥
∞

∑

k=1

|amk−kbk|2 = ∞.

Thus bf /∈ X.

4. Similarity of subspaces to X. The classical Beurling theorem
states that all the invariant subspaces of the Hardy space are similar (unitar-
ily equivalent) [Beu]. However, the situation in the Bergman space is quite
different: two invariant subspaces are unitarily equivalent if and only if they
are equal [Ri2]. The classification of the Bergman space (under similarity) is
far from success [Bou, HKZ1, Zhu1, Zhu2]. In this section, we mainly study
the similarity of invariant subspaces of ordered analytic Hilbert spaces. We
prove that every finite-dimensional invariant subspace is similar to X when
X is ordered. We also give examples to show that this may not be true when
X is not ordered. We first give a lemma.

Lemma 4.1. Let X be an analytic Hilbert space and |α| < 1. Then

(z + α)f ∈ X implies f ∈ X if and only if Mz+α is bounded below.

Proof. “⇒” First we show that the range of T = Mz+α is closed. In
fact, if (z + α)fn converges to g, then there exists g0 ∈ Hol(D) such that
g = (z+α)g0. By the assumption, we have g0 ∈ X. Thus R(T ) = {(z+α)f |
f ∈ X, (z + α)f ∈ X} is closed.

Next we will show that G(T ), the graph of T , is closed. That is, for

fn
‖ ‖→ f and (z + α)fn

‖ ‖→ g ∈ X, we need to show that f ∈ D(T ) and

(z + α)f = g. Since (z + α)fn
‖ ‖→ g, there exists g0 ∈ Hol(D) such that

g = (z + α)g0. Combining this with the assumption gives g0 ∈ X. Since X

is an analytic Hilbert space, (z + α)fn
‖ ‖→ (z + α)g0 implies (z + α)fn →

(z +α)g0 pointwise. Thus fn → g0 pointwise. Since fn
‖ ‖→ f , we have f = g0.

Therefore, the graph of T is closed and the inverse of T is bounded.
“⇐” If Mz+α is bounded below, then R(Mz+α) is closed. Thus

M−1
z+α : R(Mz+α) → X

is bounded. If (z + α)f = g ∈ X and M−1
z+αg = h, then

Mz+α(f − h) = (z + α)f − Mz+αM−1
z+αg = g − g = 0.

Since both f and h are analytic in D, we have f = h. So f ∈ X.



140 S. Z. Hou and S. Y. Wei

To prove Theorem 4.1, we need a proposition due to Bourdon [Bou].

Lemma 4.2 ([Bou]). If S : H → H is bounded below and commutes

with T , then RanS is invariant for T and is similar to H.

Let φ ∈ Hol(D). We say that φ is a universal divisor of X if for each
f ∈ X, f/φ analytic in D implies f/φ ∈ X. Recall that in the Hardy space
each Blaschke product is a universal divisor and in the Bergman space, every
finite product of interpolating Blaschke products is a universal divisor. When
X is an ordered analytic Hilbert space, each polynomial p is a universal
divisor.

Theorem 4.1. Let X be an analytic Hilbert space and N be an invariant

subspace of X. Then the following are equivalent :

(1) N is similar to X;
(2) N is generated by φ ∈ X and Mφ is bounded below ;
(3) φ is a universal divisor.

Proof. (1)⇒(2). Assume that A : X → N is a similarity. Then N =
[A(1)], where [A(1)] denotes the closed subspace generated by A(1). Since
A(zf) = zA(f) for all f ∈ X, there exists φ ∈ H∞ such that A = Mφ. Since
Mφ is injective, Mφ : X → N is bijective. Thus A−1 = M−1

φ is bounded. For
each polynomial p,

‖p‖ = ‖M−1
φ Mφp‖ ≤ ‖M−1

φ ‖ ‖Mφp‖.

Thus ‖Mφp‖ ≥ (1/‖M−1
φ ‖)‖p‖ and Mφ is bounded below.

(2)⇒(1). A direct application of Lemma 4.2.

(2)⇒(3). If Mφ is bounded below, we want to show that for each f ∈
Hol (D), φf ∈ X implies f ∈ X. Since Mφ is bounded below, the range of
Mφ is closed. Let Mφf = g ∈ X. Then

M−1
φ : RanMφ → X

is bounded. We denote M−1
φ g by h. It is obvious that h ∈ X. Note that

Mφ(f − h) = φf − MφM−1
φ g = g − g = 0 and both f and h are analytic

in D. So f = g ∈ X.

(3)⇒(2). The proof is similar to that in [Hor]. We give it just for con-
venience. Note that the space

{f ∈ X | f/φ ∈ Hol(D)}
is closed in X. By the closed graph theorem, if f is a universal divisor for
X, then the map of {f ∈ X | f/φ ∈ Hol(D)} into X which sends f ∈ X to
φf must be bounded. Equivalently, the map which sends f ∈ X to fφ must
be bounded below.
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Although Theorem 4.1 gives a necessary and sufficient condition for
a subspace M to be similar to X, it does not provide much information
about φ. In the case of the Hardy space, it is well known that φ can be cho-
sen to be an inner function. In the case of the Bergman space, it is known
[Bou, Zhu2] that φ is a finite product of interpolating Blaschke products.

If X is ordered, then M = H∞. Thus each finite-codimensional subspace
of an ordered analytic Hilbert space is generated by a polynomial with all
roots in D (Theorem 2.5 of [AS]). By Proposition 2.3 and Lemma 4.1, we
have the following:

Corollary 4.1. Let X be ordered and M be a finite-codimensional

invariant subspace. Then M is similar to X.

Corollary 4.1 fails to hold for analytic Hilbert spaces without order, as
can be seen from the following example:

Example 4.1. Let Y be an analytic Hilbert space with ‖1‖ = 1, ‖z2k‖ =
2k and ‖z2k+1‖ = 1/(2k + 1) for k = 1, 2, . . . . Let [z] denote the invariant

subspace generated by the ideal zC. Then [z] is not similar to Y .

In fact, if [z] is similar to X, then Mz is bounded below. This contradicts
the argument in Example 2.1.
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