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Real method of interpolation onsubouples of odimension onebyS. V. Astashkin (Samara) and P. Sunehag (Canberra)Abstrat. We �nd neessary and su�ient onditions under whih the norms of theinterpolation spaes (N0, N1)θ,q and (X0,X1)θ,q are equivalent on N, where N is the kernelof a nonzero funtional ψ ∈ (X0 ∩ X1)
∗ and Ni is the normed spae N with the norminherited from Xi (i = 0, 1). Our proof is based on reduing the problem to its partialase studied by Ivanov and Kalton, where ψ is bounded on one of the endpoint spaes.As an appliation we ompletely resolve the problem of when the range of the operator

Tθ = S − 2θI (S denotes the shift operator and I the identity) is losed in any ℓp(µ),where the weight µ = (µn)n∈Z satis�es the inequalities µn ≤ µn+1 ≤ 2µn (n ∈ Z).1. Introdution. Interpolation of subspaes is an important and ratherompliated problem in interpolation theory [5℄. It has been stated as earlyas in the monograph [12℄ by Lions and Magenes. Various aspets of thisproblem have been treated in [1, 6�9, 13�15, 18, 19℄ (the authors are very farfrom laiming the ompleteness of this itation list). Here, we shall onsidera partial ase of this general subspae interpolation problem, interpolationof intersetions by the real method.Let (X0, X1) be a Banah ouple, i.e., a pair of Banah spaes linearlyand ontinuously embedded in a Hausdor� topologial vetor spae τ. Everylinear subspae N of τ generates a normed (in general, non-Banah) ouple
(X0∩N,X1∩N), where the norm onXi∩N is just obtained by the restritionof the norm of Xi (i = 0, 1).The problem of interpolation of intersetions is the problem of �ndingonditions on the triple (X0, X1, N) and the parameters θ ∈ (0, 1) and q ∈
[1,∞] of the real interpolation method under whih the natural formula(with equivalene of norms)(1) (X0 ∩N,X1 ∩N)θ,q = (X0, X1)θ,q ∩Nis valid.2000 Mathematis Subjet Classi�ation: Primary 46M35; Seondary 46E30, 46A45.Key words and phrases: interpolation, real method of interpolation, subouple,weighted spaes, shift operator, spetrum. [151℄ © Instytut Matematyzny PAN, 2008



152 S. V. Astashkin and P. SunehagNote that when N is the kernel of a linear funtional ψ ∈ (X0 ∩ X1)
∗formula (1) means just the equivalene of the norms of the spaes Nθ,q =

(X0 ∩N,X1 ∩N)θ,q and Xθ,q = (X0, X1)θ,q on the subspae N. In [2, 3℄and independently in [17℄ four dilation indies of the Peetre K-funtional
K(t, ψ;X∗

0 , X
∗
1 ) in the dual ouple (X∗

0 , X
∗
1 ) have been introdued and theproblem has been solved under an extra ondition on these indies. Here weshall give a solution of this problem without any additional onditions.An important partiular ase of the problem on the interpolation of in-tersetions generated by a linear funtional was treated in [11℄. Namely,su�ient onditions on θ ∈ (0, 1), p ∈ [1,∞), and on weight funtions w0(x)and w1(x) were found ensuring the formula(2) (Lp(w0) ∩N,Lp(w1) ∩N)θ,p = (Lp(w0), Lp(w1))θ,p ∩N,where Lp(w) is a weighted Lp-spae on (0,∞) with the usual norm and Nis the spae of all funtions f : (0,∞) → R satisfying

(3) ∞\
0

f(x) dx = 0.

It turned out that the validity of (2) is losely related to the possibility of�interpolating� ertain Hardy-type integral inequalities. In the same paper[11℄, the following more general question was asked: under what onditionson w0(x), w1(x), p0, p1 ∈ [1,∞), θ ∈ (0, 1), and q ∈ [1,∞] do we have theidentity(4) (Lp0(w0) ∩N,Lp1(w1) ∩N)θ,q = (Lp0(w0), Lp1(w1))θ,q ∩N?(Generally speaking, here p0 6= p1, and N is still determined by (3).) Wenote that our main results (Theorems 1 and 2) imply a solution of thisproblem. Not entering into details, we will onentrate here only on the aseof L1-spaes (for more detailed onsideration of this topi see [3℄).In [6℄, a onnetion was disovered between interpolation of subspaesand the problem of determining if the range of the operator Tθ = S−2θI onweighted ℓp-spaes is losed or not. Here, S denotes the shift operator and Ithe identity. We will ompletely resolve this problem in the ase when theweight µ = (µn)n∈Z satis�es the inequalities µn ≤ µn+1 ≤ 2µn (n ∈ Z).

2. De�nitions, notation, and auxiliary results. For an arbitrarynormed ouple (X0, X1) and t > 0 we de�ne the Peetre K-funtional :
K(t, x;X0, X1) = inf

x=x0+x1, xi∈Xi

(‖x0‖X0
+ t‖x1‖X1

), x ∈ X0 +X1.



Subouples of odimension one 153If 0 < θ < 1 and 1 ≤ q < ∞, then the real interpolation spae Xθ,q =
(X0, X1)θ,q onsists of all x ∈ X0 +X1 suh that

‖x‖Xθ,q
=

{∞\
0

(t−θK(t, x;X0, X1))
q dt

t

}1/q

<∞.Analyzing the proof of the equivalene theorem [5, Theorem 3.3.1℄, we seethat it remains true for normed (and not only Banah) ouples. Thus, thespae Xθ,q (with an equivalent norm) an be de�ned in terms of the J-funtional
J(t, x;X0, X1) = max(‖x‖X0

, t‖x‖X1
), x ∈ X0 ∩X1.Spei�ally, Xθ,q onsists of all x ∈ X0 +X1 representable in the form

x =
∑

k∈Z

2θkxk (onvergene in X0 +X1)with the norm(5) inf
{ ∑

k∈Z

(J(2k, xk;X0, X1))
q
}1/q

,where the in�mum is taken over all representations indiated above.We will say that a Banah ouple (X0, X1) is regular if X0 ∩X1 is densein both X0 and X1. If (X0, X1) is regular it follows that X∗
0 and X∗

1 arenaturally embedded into (X0 ∩ X1)
∗, and so we may onsider the Banahouple (X∗

0 , X
∗
1 ) of the dual spaes. Moreover, (X0 ∩ X1)

∗ = X∗
0 + X∗

1 [5,Theorem 2.7.1℄.Suppose that (X0, X1) is a regular Banah ouple and ψ ∈ (X0 ∩X1)
∗.Then ψ ∈ X∗

0 +X∗
1 . In what follows, the K-funtional k(t) = K(t, ψ;X∗

0 , X
∗
1 )will play a ruial role. De�ne the funtions

M(t) = sup
s>0

k(ts)

k(s)
, M0(t) = sup

0<s≤min(1,1/t)

k(ts)

k(s)
,

M∞(t) = sup
s≥max(1,1/t)

k(ts)

k(s)
.They are submultipliative for t > 0, and therefore the following numbersare well de�ned:

α = lim
t→0

log2M(t)

log2 t
, α0 = lim

t→0

log2M0(t)

log2 t
, α∞ = lim

t→0

log2M∞(t)

log2 t
,

β = lim
t→∞

log2M(t)

log2 t
, β0 = lim

t→∞

log2M0(t)

log2 t
, β∞ = lim

t→∞

log2M∞(t)

log2 t
,whih are alled the dilation indies of k(t). It is easily seen that 0 ≤ α ≤

α0 ≤ β0 ≤ β ≤ 1 and 0 ≤ α ≤ α∞ ≤ β∞ ≤ β ≤ 1. In [3℄ and [17℄ onlyfour indies were introdued and even though we will here use six indies, in



154 S. V. Astashkin and P. Sunehagour formulations they in fat redue to four, sine the relationship presentedbelow holds.Lemma 1. We have
α = min(α0, α∞), β = max(β0, β∞).Proof. These equalities have very similar proofs and we give only theproof for the β part. First, the following formula is true:

(6) log2

(k(ts)
k(s)

)

log2 t
= (1 − λ)

log2

(k(t1−λ)
k(1)

)

log2(t
1−λ)

+ λ
log2

(k(tλt−λ)
k(t−λ)

)

log2(t
λ)

,where t > 1, λ ∈ (0, 1), and s = 1/tλ. In fat,
log2

(k(ts)
k(s)

)

log2 t
=

log2

(k(ts)
k(1)

)
+ log2

(k(1)
k(s)

)

log2 t

= (1 − λ)
log2

(k(t1−λ)
k(1)

)

log2(t
1−λ)

+ λ
log2

(k(tλt−λ)
k(t−λ)

)

log2(t
λ)

,and (6) is proved.It is lear that the laim will be proved if we show that
lim
t→∞

log2

(
sups>0

k(ts)
k(s)

)

log2 t
= lim

t→∞

log2

(
sups/∈(1/t,1)

k(ts)
k(s)

)

log2 t
.For every t > 1 hoose s(t) ∈ [1/t, 1] suh that

sup
s∈[1/t,1]

k(ts)

k(s)
=
k(ts(t))

k(s(t))
.Then s(t) = t−λ(t), where 0 ≤ λ(t) ≤ 1. If there is a sequene tn > 0 suhthat tn → ∞, t

λ(tn)
n → ∞, and t

1−λ(tn)
n → ∞ as n → ∞, then the resultfollows from formula (6). If there is no sequene (tn) suh that tn → ∞ and

t
λ(tn)
n → ∞, then λ(t) → 0 as t→ ∞. In suh a ase we an use (6) again toreah our result, and likewise if there is no sequene (tn) suh that tn → ∞and t1−λ(tn)

n → ∞ sine then λ(t) → 1 as t→ ∞.The seond lemma will be useful for reduing our problem to the asewhen a funtional is bounded on one of the endpoint spaes.Lemma 2. If ψ ∈ (X0 ∩X1)
∗ then

α0(ψ, (X0 ∩X1, X1)) = α0(ψ, (X0, X1)),

β0(ψ, (X0 ∩X1, X1)) = β0(ψ, (X0, X1)),

α∞(ψ, (X0 ∩X1, X1)) = α(ψ, (X0 ∩X1, X1)) = 0,

β∞(ψ, (X0 ∩X1, X1)) = 0



Subouples of odimension one 155and
α∞(ψ, (X0, X0 ∩X1)) = α∞(ψ, (X0, X1)),

β∞(ψ, (X0, X0 ∩X1)) = β∞(ψ, (X0, X1)),

β0(ψ, (X0, X0 ∩X1)) = β(ψ, (X0, X0 ∩X1)) = 1,

α0(ψ, (X0, X0 ∩X1)) = 1.Proof. It is true that
K(t, ψ;X∗

0 , X
∗
1 ) =

{
K(t, ψ;X∗

0 , (X0 ∩X1)
∗) if t ≥ 1,

K(t, ψ; (X0 ∩X1)
∗, X∗

1 ) if t ≤ 1.Also notie that sine ψ ∈ (X0 ∩ X1)
∗ we know that k1(t) := K(t, ψ;

(X0 ∩ X1)
∗, X∗

1 ) is bounded from above and the same is true for k0(t)/t,where k0(t) := K(t, ψ;X0, (X0 ∩X1)
∗). The results follow from these prop-erties.3. Main results. Suppose that (X0, X1) is a regular Banah ouple.Let ψ ∈ (X0 ∩ X1)

∗ be a nonzero funtional, let N = kerψ, and let Ni bethe normed spae N with the norm inherited from Xi (i = 0, 1).Theorem 1. The norms of the interpolation spaes Nθ,q = (N0, N1)θ,qand Xθ,q = (X0, X1)θ,q are equivalent on N (i.e., Nθ,q = Xθ,q ∩ N) if andonly if(7) θ ∈ (0, α) ∪ (β∞, α0) ∪ (β0, α∞) ∪ (β, 1).Moreover , if θ ∈ (0, α) ∪ (β0, α∞) ∪ (β, 1), then Nθ,q is dense in Xθ,q; if
θ ∈ (β∞, α0), then Nθ,q is dense in some subspae of Xθ,q of odimension 1.Using the following de�nition from [17℄, we an state Theorem 1 in an-other way. As above, (X0, X1) is a regular Banah ouple, ψ ∈ (X0 ∩X1)

∗,and N = kerψ. For arbitrary 0 < θ < 1 and 1 ≤ q < ∞, we denote by
Xθ,q,ψ = (X0, X1)θ,q,ψ the set of all x ∈ X0 +X1 representable in the form(8) x =

∑

k∈Z

2θkxk, xk ∈ N (onvergene in X0 +X1)with the norm (5), where the in�mum is taken over all representations of theform (8).Theorem 2. The spae Xθ,q,ψ is losed in the real interpolation spae
Xθ,q = (X0, X1)θ,q if and only if ondition (7) holds. Moreover , if θ ∈ (0, α)∪
(β0, α∞) ∪ (β, 1), then Xθ,q,ψ = Xθ,q; if θ ∈ (β∞, α0), then Xθ,q,ψ = Xθ,q ∩

ker ψ̃, where the funtional ψ̃ is a ontinuous extension of ψ to the spae
Xθ,q.Remark 1. In what follows, the interval (α, β), as usual, is the set of allreals x satisfying the inequality α < x < β. Thus, the inequalities α0 ≤ β0



156 S. V. Astashkin and P. Sunehagand α∞ ≤ β∞ imply that at most one of the intervals (β0, α∞) and (β∞, α0)may be nonempty.Remark 2. Theorems 1 and 2 strengthen Theorem 1 from [3℄ and Propo-sition 5.6 from [17℄, whih ontain the extra ondition β∞ ≤ α0.4. Proofs: Redution to the Ivanov�Kalton ase. Our proof of themain results is based on reduing the problem to two problems of the kindstudied by Ivanov and Kalton in [6℄, i.e., to a ase where we have a linearfuntional that is bounded on one of the endpoint spaes.Suppose that we have a Banah ouple X = (X0, X1) and a linear fun-tional ψ ∈ (X0 ∩ X1)
∗. Suppose also that X is an intermediate spae for

(X0, X1) and that ψ an be extended to a bounded linear funtional on X.Then we will write ψ ∈ X∗, whih is meant to imply that we have extended
ψ to X. For every ψ ∈ (X0 ∩ X1)

∗ there is a minimal interpolation spaenorm for whih ψ is bounded. It is unique up to equivalene. That norm is
‖x‖ψ = sup

‖T‖
X→X

≤1
|〈ψ, Tx〉|.Whenever we write kerψ in this setion, we assume that ψ has been extendedto the orresponding maximal interpolation spae for whih ψ is bounded.Theorem 3. Suppose that X = (X0, X1) is a regular Banah ouple,that ψ ∈ (X0∩X1)

∗ and that ψ 6= 0. Then (X0, X1)θ,q,ψ is a losed subspae ofthe interpolation spae (X0, X1)θ,q if and only if both (X0, X0∩X1∩kerψ)θ,qis a losed subspae of (X0, X0∩X1)θ,q and (X0∩X1∩kerψ,X1)θ,q is a losedsubspae of (X0 ∩X1, X1)θ,q. Moreover :(i) The formula
(X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψis valid if and only if both

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψand
(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q ∩ kerψ.(ii) The formula

(X0, X1)θ,q,ψ = (X0, X1)θ,qis valid if and only if both
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,qand
(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q,



Subouples of odimension one 157or both
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,qand

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q ∩ kerψ,or both
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψand

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q.For the proof of the theorem we need four lemmas.Lemma 3.
(X0, X1)θ,q = (X0, X1)θ,q ∩X0 + (X0, X1)θ,q ∩X1,

(X0, X1)θ,q,ψ = (X0, X1)θ,q,ψ ∩X0 + (X0, X1)θ,q,ψ ∩X1.Proof. It is lear that
(X0, X1)θ,q ∩X0 + (X0, X1)θ,q ∩X1 ⊂ (X0, X1)θ,qsine the latter spae is a vetor spae.Assume that x ∈ (X0, X1)θ,q. Then there are xk ∈ X0 ∩ X1 suh that

x =
∑
xk2

θk and ‖(J(2k, xk;X0, X1))‖q < ∞. We now want to �nd x0 ∈
(X0, X1)θ,q ∩ X0 and x1 ∈ (X0, X1)θ,q ∩ X1 suh that x = x0 + x1. Let
x0 =

∑0
k=−∞ xk2

θk, x1 =
∑∞

k=1 xk2
θk. The onvergene of these two se-ries in X0 and X1 follows from the fats that ∑0

k=−∞ ‖2θkxk‖X0
< ∞ and∑∞

k=1 ‖2
θkxk‖X1

<∞ and that X0 and X1 are Banah spaes.The seond laim has the same proof.The following lemma is proved in [3℄ (see also [14℄).Lemma 4.
(X0, X0 ∩X1)θ,q = (X0, X1)θ,q ∩X0,

(X0 ∩X1, X1)θ,q = (X0, X1)θ,q ∩X1.Lemma 5.(i) If ψ ∈ (X0, X0 ∩X1)
∗
θ,q, then

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0 ∩ kerψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1.(ii) If ψ ∈ (X0 ∩X1, X1)
∗
θ,q, then

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1 ∩ kerψ,

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0.



158 S. V. Astashkin and P. Sunehag(iii) If ψ /∈ (X0, X0 ∩X1)
∗
θ,q and (X0, X1)θ,q = (X0, X1)θ,q,ψ, then

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0.(iv) If ψ /∈ (X0 ∩X1, X1)
∗
θ,q and (X0, X1)θ,q = (X0, X1)θ,q,ψ, then

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1.Proof. Assume that ψ ∈ (X0, X0 ∩ X1)
∗
θ,q and that x ∈ (X0, X1)θ,q,ψ ∩

X0 ∩ kerψ. Then there are xk ∈ X0 ∩ X1 ∩ kerψ suh that x =
∑

2θkxkwith onvergene in the X0 + X1 norm and ‖(J(2k, xk;X0, X1))‖q < ∞.It is readily seen that J(2k, xk;X0, X0 ∩ X1 ∩ kerψ) = J(2k, xk;X0, X1) if
k ≤ 0. Therefore, the series u =

∑−1
k=−∞ 2θkxk onverges in the norm of

(X0, X0 ∩ X1)θ,q, and hene ψ(u) = 0. Sine x ∈ X0 ∩ kerψ, we see that
s = x−u =

∑∞
k=0 2θkxk ∈ X0∩X1∩kerψ. Let yk = xk if k < 0, y0 = s, and

yk = 0 if k > 0. Then yk ∈ X0∩X1∩kerψ, ‖(J(2k, yk;X0, X0∩X1))‖q <∞,and ∑
2θkyk = x (onvergene in X0). Thus,

(X0, X1)θ,q,ψ ∩X0 ∩ kerψ ⊂ (X0, X0 ∩X1 ∩ kerψ)θ,q.From the assumption that ψ ∈ (X0, X0 ∩X1)
∗
θ,q it follows that the oppositeinlusion is valid as well, and the �rst formula from (i) is proved.Next, assume that ψ ∈ (X0∩X1, X1)

∗
θ,q.We will use the same idea again.For eah x ∈ (X0, X1)θ,q,ψ∩X0 there are xk ∈ X0∩X1∩kerψ suh that x =∑

2θkxk with onvergene in the X0 +X1 norm and ‖(J(2k, xk;X0, X1))‖q
<∞. Again the series ∑−1

k=−∞ 2θkxk onverges in X0 and s =
∑∞

k=0 2θkxk ∈
X0 ∩ X1. Moreover, ψ(s) is well de�ned sine s ∈ X0 ∩ X1. Note that
J(2k, xk;X0 ∩ X1 ∩ kerψ,X1) = J(2k, xk;X0, X1) if k ≥ 0. This impliesthat the series s =

∑∞
k=0 2θkxk onverges in the norm of (X0 ∩ X1, X1)θ,q.Sine ψ ∈ (X0 ∩X1, X1)

∗
θ,q, we have ψ(s) = 0 and we an as above onludethat x ∈ (X0, X0 ∩X1 ∩ kerψ)θ,q. Therefore,

(X0, X1)θ,q,ψ ∩X0 ⊂ (X0, X0 ∩X1 ∩ kerψ)θ,q.Sine the opposite inlusion is obvious the seond formula of (ii) is proved.Finally, we onsider (iii). We keep previous arguments and notation. If
ψ /∈ (X0 ∩ X1, X1)

∗
θ,q it is possible that ψ(s) 6= 0. If there are elements wkin X0 ∩X1 ∩ kerψ suh that ∑

2θkwk = 0, ‖(J(2k, wk;X0, X1))‖q <∞ and
ψ(

∑∞
k=0 2θkwk) = 1, then there is another representation x =

∑
2θkvk suhthat ‖(J(2k, vk;X0, X1))‖q < ∞ and ψ(

∑∞
k=0 2θkvk) = 0 and we an drawthe desired onlusion.To �nish this proof we now assume that there are no suh elements, i.e.,

ψ(
∑∞

k=0 2θkwk) = 0 whenever wk are elements in X0 ∩X1 ∩ kerψ suh that∑
2θkwk = 0 and ‖(J(2k, wk;X0, X1))‖q <∞. In other words, if an element

x ∈ (X0, X1)θ,q ∩X0 has two representations:
x =

∑
2θkxk and x =

∑
2θkyk



Subouples of odimension one 159suh that
‖(J(2k, xk;X0, X1))‖q <∞, ‖(J(2k, yk;X0, X1))‖q <∞,and (xk) ∪ (yk) ⊂ X0 ∩X1 ∩ kerψ, then

ψ
( ∞∑

k=0

2θkxk

)
= ψ

( ∞∑

k=0

2θkyk

)
.Thus, we an de�ne a linear funtional φ on (X0, X1)θ,q ∩ X0. In fat, if

x ∈ (X0, X1)θ,q ∩ X0, then by the extra assumption from part (iii) of thelemma, i.e., that (X0, X1)θ,q = (X0, X1)θ,q,ψ, we have x =
∑∞

k=−∞ 2θkxk,where xk ∈ X0 ∩X1 ∩ kerψ. Then we set
φ(x) := ψ

( ∞∑

k=0

2θkxk

)
.

If x ∈ X0∩X1∩kerψ, then φ(x) = 0, sine we an represent x as ∑
2θkxkby letting x0 = x and xk = 0 for k 6= 0. This means that there is a onstant

γ suh that φ = γψ on X0 ∩ X1. If γ = 0 it follows that φ = 0 also on
(X0, X1)θ,q ∩X0 and the proof an be onluded as in the other ases above.If γ 6= 0 it follows that 1

γφ is an extension of ψ|X0∩X1
. Let us hek that thisextension is ontinuous on the spae (X0, X0 ∩ X1)θ,q = (X0, X1)θ,q ∩ X0.Let x ∈ (X0, X1)θ,q∩X0 and denote by α the norm x in (X0, X1)θ,q∩X0. Asabove, x = u+s, where u =

∑−1
k=−∞ 2θkxk ∈ X0, s =

∑∞
k=0 2θkxk ∈ X0∩X1,and ‖(J(2k, xk;X0, X1))‖q ≤ 2α. Then

‖u‖X0
≤

−∞∑

k=−1

2θkJ(2k, xk;X0, X1) ≤ C1αand ‖s‖X0
≤ ‖x‖X0

+ ‖u‖X0
≤ (C1 + 1)α. Similarly,

‖s‖X1
≤

∞∑

k=0

2(θ−1)kJ(2k, xk;X0, X1) ≤ C2α.Therefore, ‖s‖X0∩X1
≤ Cα. Sine ψ ∈ (X0 ∩X1)

∗, we have
|φ(x)| = |ψ(s)| ≤ C3‖s‖X0∩X1

≤ C3C‖x‖(X0,X1)θ,q∩X0
,i.e., φ ∈ ((X0, X1)θ,q∩X0)

∗ = (X0, X0∩X1)
∗
θ,q. Hene, ψ ∈ (X0, X0∩X1)

∗
θ,q,whih ontradits the assumption that ψ /∈ (X0, X0 ∩X1)

∗
θ,q.The other formulas of the lemma follow from the proved ones by onsid-ering the reversed ouple.Remark 3. If ψ ∈ (X0 ∩ X1, X1)

∗
θ,q and ψ ∈ (X0, X0 ∩ X1)

∗
θ,q, thenLemma 3 implies that ψ ∈ (X0, X1)

∗
θ,q and therefore

(X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ.
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(X0, X1)θ,q,ψ ∩X0 = (X0, X1)θ,q,ψ ∩ kerψ ∩X0,and we do not get any ontradition.Example 1. Let X0 = L1(x), X1 = L1(x

−1) and ψ(f) =
T∞
0 f(s) ds. Itis true that (X0, X1)θ,1 = L1(x

1−2θ) for θ ∈ (0, 1). It is not hard to hekthat ψ ∈ (X0 ∩ X1, X1)
∗
θ,1 and ψ /∈ (X0, X0 ∩ X1)

∗
θ,1 if 0 < θ < 1/2, and

ψ ∈ (X0, X0 ∩ X1)
∗
θ,1 and ψ /∈ (X0 ∩ X1, X1)

∗
θ,1 if 1/2 < θ < 1. On theother hand, we know [17, Theorem 6.1℄ that (X0, X1)θ,1,ψ = (X0, X1)θ,1 =

L1(x
1−2θ) whenever θ 6= 1/2. So, by Lemma 5,

(X0 ∩X1 ∩ kerψ,X1)θ,1 =

{
L1(x

1−2θ) ∩ L1(x
−1) ∩ kerψ, 0 < θ < 1/2,

L1(x
1−2θ) ∩ L1(x

−1), 1/2 < θ < 1,

(X0, X0 ∩X1 ∩ kerψ)θ,1 =

{
L1(x

1−2θ) ∩ L1(x), 0 < θ < 1/2,

L1(x
1−2θ) ∩ L1(x) ∩ kerψ, 1/2 < θ < 1.Lemma 6. Let Y = (Y0, Y1) be a Banah ouple, and ψ 6= 0 be a boundedlinear funtional on Y0 ∩ Y1.(i) If ψ ∈ Y ∗

0 and ψ ∈ Y ∗
1 , then

Y0 ∩ kerψ + Y1 ∩ kerψ = (Y0 + Y1) ∩ kerψ.(ii) If ψ ∈ Y ∗
1 , then

Y0 + Y1 ∩ kerψ = Y0 + Y1.(iii) If ψ ∈ Y ∗
0 , then

Y0 ∩ kerψ + Y1 = Y0 + Y1.Proof. We will only prove the �rst point beause the others are proved inthe same way. Without loss of generality we an assume that ‖ψ‖(Y0∩Y1)∗ ≤ 1.It is lear that
Y0 ∩ kerψ + Y1 ∩ kerψ ⊂ (Y0 + Y1) ∩ kerψ.If y ∈ (Y0 + Y1)∩ kerψ, there are y0 ∈ Y0 and y1 ∈ Y1 suh that y0 + y1 = yand ‖y0‖Y0

+‖y1‖Y1
≤ 2‖y‖Y0+Y1

. Sine ψ(y) = 0 we have ψ(y0)+ψ(y1) = 0.We an �nd w ∈ Y0 ∩ Y1 suh that ψ(w) = 1 and max(‖w‖Y0
, ‖w‖Y1

) ≤ 2.Let ỹ0 = y0−ψ(y0)w and ỹ1 = y1 +ψ(y0)w = y1−ψ(y1)w. Then y = ỹ0 + ỹ1and
‖ỹ0‖Y0

+ ‖ỹ1‖Y1
≤ ‖y0‖Y0

+ |ψ(y0)| ‖w‖Y0
+ ‖y1‖Y1

+ |−ψ(y1)| ‖w‖Y1

≤ 3(‖y0‖Y0
+ ‖y1‖Y1

) ≤ 6‖y‖Y0+Y1
.Proof of Theorem 3. First, we reall the following statements (see[3, Lemma 5 and Corollary 1℄ or [17, Property 2℄): (I) if (X0, X1)θ,q,ψis losed in (X0, X1)θ,q, then either (X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ (if

ψ ∈ (X0, X1)
∗
θ,q) or (X0, X1)θ,q,ψ = (X0, X1)θ,q (if ψ /∈ (X0, X1)

∗
θ,q);



Subouples of odimension one 161(II) (X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ if and only if ψ ∈ (X0, X1)
∗
θ,q. More-over, it follows easily that

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q,ψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q,ψ.Therefore, the �if and only if� statement at the beginning of the theorem isa onsequene of (i) and (ii). So, it is su�ient to prove (i) and (ii).(i) Assume that (X0, X1)θ,q,ψ = (X0, X1)θ,q∩kerψ. Then ψ ∈ (X0, X1)
∗
θ,qand Lemmas 4 and 5 imply that

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0 ∩ kerψ

= (X0, X1)θ,q ∩X0 ∩ kerψ

= (X0, X0 ∩X1)θ,q ∩ kerψand similarly
(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1 ∩ kerψ

= (X0, X1)θ,q ∩X1 ∩ kerψ

= (X0 ∩X1, X1)θ,q ∩ kerψ.Conversely, assume that
(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q ∩ kerψ.Then ψ ∈ (X0, X0∩X1)
∗
θ,q and ψ ∈ (X0∩X1, X1)

∗
θ,q. Therefore, by Lemmas 3and 4, ψ ∈ (X0, X1)

∗
θ,q, whih implies that
(X0, X1)θ,q,ψ = (X0, X1)θ,q ∩ kerψ.(ii) Let (X0, X1)θ,q,ψ = (X0, X1)θ,q. If (a) ψ ∈ (X0, X0 ∩ X1)

∗
θ,q and

ψ /∈ (X0 ∩X1, X0)
∗
θ,q, then, by Lemmas 4 and 5,

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X1)θ,q,ψ ∩X0 ∩ kerψ

= (X0, X1)θ,q ∩X0 ∩ kerψ

= (X0, X0 ∩X1)θ,q ∩ kerψ,

(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0, X1)θ,q,ψ ∩X1

= (X0, X1)θ,q ∩X1 = (X0 ∩X1, X1)θ,q.In the ases (b) ψ /∈ (X0, X0 ∩ X1)
∗
θ,q and ψ ∈ (X0 ∩ X1, X0)

∗
θ,q and ()

ψ /∈ (X0, X0 ∩X1)
∗
θ,q and ψ /∈ (X0 ∩X1, X0)

∗
θ,q we end up in a very similarmanner. If ψ ∈ (X0, X0 ∩ X1)

∗
θ,q and ψ ∈ (X0 ∩ X1, X0)

∗
θ,q then again ψ ∈

(X0, X1)
∗
θ,q and (X0, X1)θ,q,ψ ⊂ (X0, X1)θ,q ∩ kerψ, whih ontradits theassumption that (X0, X1)θ,q,ψ = (X0, X1)θ,q.Conversely, assume, for example, that both

(X0, X0 ∩X1 ∩ kerψ)θ,q = (X0, X0 ∩X1)θ,q ∩ kerψ
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(X0 ∩X1 ∩ kerψ,X1)θ,q = (X0 ∩X1, X1)θ,q.Then ondition (a) is true. So, by Lemmas 3�6 with Y0 = (X0, X0 ∩X1)θ,qand Y1 = (X0 ∩X1, X1)θ,q, we have

(X0, X1)θ,q = (X0, X1)θ,q ∩X0 + (X0, X1)θ,q ∩X1

= (X0, X0 ∩X1)θ,q + (X0 ∩X1, X1)θ,q

= (X0, X0 ∩X1)θ,q ∩ kerψ + (X0 ∩X1, X1)θ,q

= (X0, X0 ∩X1 ∩ kerψ)θ,q + (X0 ∩X1 ∩ kerψ,X1)θ,q.Using Lemma 6 for the seond time for the spaes Y0 = (X0, X1)θ,q,ψ ∩X0and Y1 = (X0, X1)θ,q,ψ ∩X1 shows that the last expression is equal to
(X0, X1)θ,q,ψ ∩X0 ∩ kerψ + (X0, X1)θ,q,ψ ∩X1

= (X0, X1)θ,q,ψ ∩X0 + (X0, X1)θ,q,ψ ∩X1 = (X0, X1)θ,q,ψ.The other two ases are onsidered in the same way.We now have everything we need to prove Theorem 2 (equivalently, The-orem 1).Proof of Theorem 2. The speial ases when ψ is bounded on one ofthe endpoint spaes were proved by Ivanov and Kalton [6℄. If ψ ∈ X∗
0 itfollows that α∞ = β∞ = α = 0 and therefore we have a losed subspaewhen θ > β = β0 and when θ < α0 and for no other θ. That subspae hasodimension one in the latter ase and zero in the former. If instead ψ ∈ X∗

1 ,it follows that α0 = β0 = β = 1 and we have a losed subspae that equalsthe whole spae if θ < α = α∞ and a losed subspae of odimension one if
θ > β∞. The subspae is not losed for any other θ. The rest of Theorem 2follows from that result, Theorem 3, and Lemmas 1 and 2.5. Interpolation of intersetions of weighted Lp-spaes generatedby the integral funtional. Let w(x) be a positive measurable funtion on
(0,∞), 1 ≤ p ≤ ∞. As usual, we de�ne Lp(w) as the spae of all measurablefuntions f : (0,∞) → R with the norm

‖f‖w,p =
(∞\

0

|f(x)|pw(x) dx
)1/p

(with the usual modi�ation for p = ∞). Let us onsider the linear funtional
φ(f) =

∞\
0

f(x) dxwith the domain D onsisting of all measurable funtions f : (0,∞) → Rsuh that Tba |f(x)| dx <∞ for all 0 < a < b <∞ and lima→0, b→∞

Tb
a f(x) dxexists. Denote its kernel by N .



Subouples of odimension one 163It might seem restritive to hoose a partiular linear funtional butatually it is su�ient for understanding the orresponding situation for alarger lass of positive linear funtionals. If we used a linear funtional ofthe form ψ(f) =
T∞
0 f(x)g(x) dx where g is bounded and stritly positive, weould perform a hange of measure by onsidering the measure g(x)dx andwe end up in a situation with the standard integral funtional and weights

wi/g, i = 0, 1. The K-funtional of ψ in the dual ouple of the ouple withweights wi, i = 0, 1, is equal to the K-funtional of the standard integralfuntional φ in the dual ouple of the ouple with weights wi/g, and theanswer to the interpolation of intersetions question only depends on that
K-funtional.Assume that the restrition of the standard integral funtional φ to theintersetion Lp0(w0)∩Lp1(w1) is bounded. Using Theorem 1 and arguing asin [3℄, we an �nd neessary and su�ient onditions for equality (4) to hold(without any restritions on the dilation indies of the Peetre K-funtionalof the integral funtional φ in the ouple (Lp0(w0)

∗, Lp1(w1)
∗)). We statehere only a result in the ase when p0 = p1 = 1. Let w(x) = w0(x)/w1(x)and let w−1(x) be the funtion inverse to w(x).Theorem 4. Suppose that weight funtions w0(x) and w1(x) satisfy thefollowing onditions:

• w0(x) is inreasing ,
• w1(x) is dereasing ,
• lim
x→0

w(x) = lim
x→∞

1/w(x) = 0.Let α, β, α0, β0, α∞, and β∞ be the dilation indies of the funtion k(t) =
1/w0(w

−1(1/t)). Then the formula(9) (L1(w0) ∩N,L1(w1) ∩N)θ,q = (L1(w0), L1(w1))θ,q ∩Nis equivalent to ondition (7).Proof. Sine the restrition of φ to the intersetion L1(w0) ∩ L1(w1) isa bounded funtional, the neessity of ondition (7) follows at one fromTheorem 1 and [3, Corollary 2℄.Conversely, assume that (7) is satis�ed. By Theorem 2, it is su�ient toprove that(10) (L1(w0), L1(w1))θ,q ∩N ⊂ L1(w0) ∩N + L1(w1) ∩N.For every f ∈ (L1(w0), L1(w1))θ,q∩N onsider the representation f = f0+f1,where f0 = f · χ(0,1], f1 = f − f0. The onditions on the weights w0 and
w1 imply that f0 ∈ L1(w0) and f1 ∈ L1(w1). Moreover, it is not hardto hek that f0 and f1 belong to the domain D of the funtional φ. Let
g ∈ L1(w0) ∩ L1(w1) be suh that φ(g) = 1 and let g0 = f0 − φ(f0)g and
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g1 = f0 + φ(f0)g. Then f = g0 + g1 and gi ∈ L1(wi) ∩ N (i = 0, 1). So,inlusion (10) is proved, and hene we have (9).Complementing Corollary 7 from [3℄, we shall show that for arbitrarynumbers a, b, c, and d with 0 ≤ a ≤ min(b, c) ≤ max(b, c) ≤ d ≤ 1 thereexist weight funtions w0(x) and w1(x) suh that the dilation indies α, β0,
α∞, and β of the funtion k(t) = 1/w0(w

−1(1/t)) oinide with a, b, c, and d,respetively.Following [3℄, we take a two-sided inreasing sequene (xk)
∞
k=−∞ of pos-itive numbers suh that x0 = 1 and lim|k|→∞ xk+1/xk = ∞.If b > 0, we de�ne a funtion ν ′ in the following way: ν ′(1) = 1,

ν ′(x) =

{
(x/x2k)

cν ′(x2k), x2k ≤ x ≤ x2k+1,

(x/x2k+1)
dν ′(x2k+1), x2k+1 ≤ x ≤ x2k+2,for k = 0, 1, 2, . . . , and

ν ′(x) =

{
(x/x2k)

aν ′(x2k), x2k−1 ≤ x ≤ x2k,

(x/x2k−1)
bν ′(x2k−1), x2k−2 ≤ x ≤ x2k−1,for k = 0,−1,−2, . . .If b = 0 and d > 0, we de�ne ν ′(x) as before if x ∈ [1,∞), and for

x ∈ (0, 1] we put ν ′(x) = 1/ln(e/x).Finally, if d = 0, we put ν ′(x) = 1/ln(e/x) for x ∈ (0, 1] and ν ′(x) =
ln(ex) for x ∈ [1,∞).It an easily be heked that ν ′(x) is inreasing, ν ′(x)/x is dereasing,and the range of ν ′(x) is (0,∞). There exists an inreasing onave funtion
ν(x) suh that ν ′(x) ≤ ν(x) ≤ 2ν ′(x) (x > 0) (see [10, Theorem 2.1.1℄).The de�nition of ν ′ readily implies that its dilation indies α, β0, α∞, and β(therefore, also those of ν) oinide with a, b, c, and d, respetively.We de�ne w0(x) = x and w1(x) = xν−1(1/x) (ν−1 is the inverse funtionto ν). Sine these funtions satisfy the onditions of Theorem 4 and ν(x) =
1/w0(w

−1(1/t)), applying this theorem we arrive at the following result: ifthe weight funtions w0 and w1 are de�ned as earlier, then equality (9) holdsif and only if θ ∈ (0, a) ∪ (b, c) ∪ (d, 1).6. The shift operator and its spetrum on weighted ℓq spaes. In[2, 3, 17℄, weaker versions of Theorems 1 and 2 were proved using an approahdeveloped by Ivanov and Kalton in [6℄ for omparison of the interpolationspaes (X0, X1)θ,q and (N0, X1)θ,q, where ψ ∈ X∗
0 and N0 = kerψ. Thekey idea of that approah is to redue the general interpolation problem forsubspaes to the study of the shift operator on a ertain weighted ℓp-spae.Note that the theorems obtained here imply the interpolation results of [6℄(see also [3℄ and [17℄). In the remainder of this artile we will work in the



Subouples of odimension one 165opposite diretion and use our interpolation results to derive more generalresults onerning the shift operator and its spetrum on weighted ℓp-spaes.We start with some notation and preliminary remarks. Putting(11) µn = (k(2−n))−1 (n ∈ Z)we see that µn > 0, and sine k(t) = K(t, ψ;X∗
0 , X

∗
1 ) is an inreasing andonave funtion on (0,∞), we have(12) µn ≤ µn+1 ≤ 2µn (n ∈ Z).Furthermore, it is easy to hek that

α = − lim
n→∞

1

n
log2 sup

k∈Z

µk
µn+k

, β = lim
n→∞

1

n
log2 sup

k∈Z

µk
µk−n

,

α∞ = − lim
n→∞

1

n
log2 sup

k≤0

µk−n
µk

, β∞ = lim
n→∞

1

n
log2 sup

k≤0

µk
µk−n

,

α0 = − lim
n→∞

1

n
log2 sup

k≥0

µk
µn+k

, β0 = lim
n→∞

1

n
log2 sup

k≥0

µk+n
µk

.Let ℓq(µ) be the spae of two-sided numerial sequenes a = (ak)
∞
k=−∞ withthe norm

‖a‖q,µ =
{∑

k∈Z

|ak|
qµqk

}1/q
.In what follows, we shall onsider the shift operator S((ak)) = (ak−1), itsinverse S−1, and also the operators Tθ = S − 2θI (0 < θ < 1), where I isthe identity mapping. By (12), both S and S−1 are bounded on ℓq(µ), and

‖S‖ ≤ 2, ‖S−1‖ ≤ 1.Remark 4. If r(S) denotes the spetral radius of the shift operator, then
2α = 1/r(S−1) and 2β = r(S). Therefore, it is lear that Tθ is invertible if
θ < α or θ > β.The proof of Theorem 1 from [3℄ (see also [17, Theorems 4.2 and 4.3℄)shows that the following proposition is a onsequene of Theorems 1 and 2.Proposition 1. Let 0 < θ < 1 and 1 ≤ q < ∞. The operator Tθ islosed in ℓq(µ) if and only if

θ ∈ (0, α) ∪ (β∞, α0) ∪ (β0, α∞) ∪ (β, 1).Moreover , if θ ∈ (0, α)∪(β0, α∞)∪(β, 1), then ImTθ = ℓq(µ); if θ ∈ (β∞, α0),then ImTθ is a losed subspae of ℓq(µ) of odimension 1 onsisting of all
(ak)k∈Z ∈ ℓq(µ) suh that ∑

k∈Z

2kθak = 0.The weight µ = (µn)n∈Z from the last proposition satis�es the ondition:there are a ouple (X0, X1) and a linear funtional ψ ∈ (X0 ∩ X1)
∗ suh



166 S. V. Astashkin and P. Sunehagthat for the K-funtional k(t) = K(t, ψ;X∗
0 , X

∗
1 ) we have (11). Next, we willhek that assumption (12) is not only neessary for the existene of suha linear funtional but also su�ient. Consider the ouple (ℓ1, ℓ1(2

k)) andlinear funtionals of the form ψ(x) =
∑
vkxk, where 0 < vk ≤ vk+1 ≤ 2vk.The last ondition implies that the linear funtional ψ is bounded on theintersetion ℓ1 ∩ ℓ1(2k). The K-funtional k for suh a linear funtional hasthe property that k(2n) = vn (n ∈ Z). Thus, the funtional we are lookingfor is de�ned by letting vk = 1/µ−k.Theorem 5. Let 0 < θ < 1, 1 ≤ q < ∞ and let (µn)n∈Z be a positivesequene suh that µn ≤ µn+1 ≤ 2µn for all n. The operator Tθ is losed in

ℓq(µ) if and only if
θ ∈ (0, α) ∪ (β∞, α0) ∪ (β0, α∞) ∪ (β, 1).Moreover , if θ ∈ (0, α)∪(β0, α∞)∪(β, 1), then ImTθ = ℓq(µ); if θ ∈ (β∞, α0),then ImTθ is a losed subspae of ℓq(µ) of odimension 1 onsisting of all

(ak)k∈Z ∈ ℓq(µ) suh that ∑

k∈Z

2kθak = 0.If we want to know when Tθ is invertible we also have to know if it isinjetive or not in the ases when we know that it is surjetive, i.e., when
θ ∈ (0, α) ∪ (β0, α∞) ∪ (β, 1). When θ ∈ (0, α) ∪ (β, 1) it is shown in [3℄ and[17℄ that Tθ is injetive; we will prove that in the remaining ases it is not.Proposition 2. If θ ∈ (β0, α∞), then Tθ is not injetive.Proof. It is su�ient to prove that (2−θk) ∈ ℓq(µ) sine that element thenlies in the kernel of Tθ. If ε > 0 is su�iently small, then from the inequality
θ > α0 and from the de�nition of the index α0 it follows that

sup
n≥0

µn
µk+n

≥ c12
−k(θ−ε), k = 1, 2, . . . ,whene

µk2
−θk ≤

µ0

c1
2−εk, k = 1, 2, . . . .Similarly, sine θ < β∞, for su�iently small η > 0 we have

µ−k2
θk ≤

µ0

c2
2−ηk, k = 1, 2, . . . ,and therefore ∑

k∈Z

2−kθqµqk <∞.Sine α0 ≤ β0 and α∞ ≤ β∞, the proof is omplete.Corollary 1. The operator Tθ is invertible if and only if θ < α or
θ > β.



Subouples of odimension one 167Theorem 6. The spetrum of S on ℓq(µ) is the set {z∈C | 2α≤|z|≤2β}.Proof. The spetrum is invariant under rotation sine the operator
Vλ((αk)) = (λkαk) is an isometry for λ on the unit irle in C. Therefore,the theorem follows from Corollary 1.It is worth noting that the Stein�Weiss Theorem [5, Theorem 5.4.4℄ im-plies that the spae ℓp(µ) is an interpolation spae of the ouple (ℓp, ℓp(2

k))if µ satis�es ondition (12). The operator Tθ is invertible on ℓp if θ 6= 0 andon ℓp(2k) if θ 6= 1. If we ould �interpolate� the inverse of Tθ for a ertain
θ ∈ (0, 1) to the spae ℓp(µ), we would know that Tθ is surjetive on thatspae. There is, however, a problem when we try to perform that interpola-tion: the inverse operators on the endpoint spaes do not have to agree on thewhole of the intersetion. In other words, the operator Tθ is not an injetionas an operator de�ned on the sum ℓp + ℓp(2

k), that is, the inverse of Tθ (onthis sum) does not exist (see [4, Remark 3.1℄ and referenes therein). To beable to formulate results about the spetrum of operators on interpolationspaes, authors have usually imposed the assumption that the inverses agree,see e.g. [16℄. In our partiular ase we have two possible inverses,
U+
θ ((αk)) =

(
2−(n+1)θ

∞∑

n+1

2θkαk

)

n
,

U−
θ ((αk)) =

(
− 2−(n+1)θ

n∑

−∞

2θkαk

)
n
,and they agree only on (αk) with ∑

2θkαk = 0. This is atually preiselythe same kind of situation that was onsidered by Krugljak, Maligranda andPersson in [11℄ when they interpolated Hardy-type operators. The operators
U+
θ and U−

θ an be seen as disrete Hardy-type averaging operators. Theyan be onverted to the usual Hardy operator forms
1

x

x\
0

f(s) ds and −
1

x

∞\
x

f(s) dsby letting f(s) = αk for 2θk ≤ s < 2θ(k+1) and x = 2θ(k+1). We see that U−
θis bounded on ℓp for θ > 0 and U+

θ on ℓp(2n) for θ < 1.
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