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Operator-valued version of conditionally free product

by

Wojciech Młotkowski (Wrocław)

Abstract. We present an operator-valued version of the conditionally free product
of states and measures, which in the scalar case was studied by Bożejko, Leinert and
Speicher. The related combinatorics and limit theorems are provided.

1. Introduction. The concept of free probability has been developed
since the pioneering work of Voiculescu [V]. In this theory a probability space
is a unital complex ∗-algebra A, elements of which are viewed as random
variables, endowed with a state φ which plays the role of the expectation.
Having a family (Ai, φi)i∈I of such probability spaces we can define another
one, (A, φ), where A is the unital free product ∗i∈IAi and φ is a state defined
by the property that φ(a1 . . . am) = 0 whenever a1 ∈ Ai1 , . . . , am ∈ Aim ,
i1 6= . . . 6= im and φi1(a1) = . . . = φim(am) = 0. In this situation one
says that the family {Ai}i∈I of subalgebras is free in the probability space
(A, φ). This notion leads naturally to that of free convolution of probability
measures on the real line. Speicher [S2, S3] has provided a combinatorial
description of this theory by using the lattice of noncrossing partitions.

Later on Bożejko, Leinert and Speicher [BS, BLS] investigated prob-
ability spaces A endowed with a pair (φ, ψ) of states. Having a family
(Ai, φi, ψi)i∈I of such spaces they were able to construct a probability space
(A, φ, ψ) such that A = ∗i∈IAi and ψ(a1 . . . am) = 0, φ(a1 . . . am) =
φi1(a1) . . . φim(am) whenever a1 ∈ Ai1 , . . . , am ∈ Aim , i1 6= . . . 6= im,
ψi1(a1) = . . . = ψim(am) = 0 (conditional freeness of the family {Ai}i∈I
in (A, φ, ψ)). This led them to the notion of free convolution of pairs of
probability measures on R.

Here we are going to extend this theory to the situation when φ is allowed
to be an operator-valued state, i.e. when φ is of the form φ(a) = P0π(a)|H0 ,
where H0 is a fixed Hilbert space, π is a ∗-representation of A in a Hilbert
space H ⊃ H0 and P0 is the orthonormal projection of H onto H0, so that
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φ is a completely positive function A → B(H0). We introduce this notion
in order to study conditionally free convolution of operator-valued measures
(see for example the papers of Bisgaard [Bi] and Schmüdgen [Sm] and the
references given there). In particular we extend the boolean convolution of
measures, studied by Speicher and Woroudi [SW], to operator-valued mea-
sures. Note that neither the classical nor the free convolution of probabil-
ity measures admits such an operator-valued version. It is also posible to
consider spaces with more than two states (see [M2]) but then the related
product of states and measures is no longer associative and for this reason
the methods presented here are not applicable.

It is confusing that the term “operator-valued free probability” appears
also in literature with a different meaning (see [S3, Sh]). There a probability
space is a triple (B,A, φ), whereA is a unital algebra, B is its subalgebra with
1 ∈ B, and φ : A → B satisfies: φ(b) = b for b ∈ B, and φ(b1ab2) = b1φ(a)b2
for a ∈ A, b1, b2 ∈ B, i.e. φ is a B-functional. The distribution of an el-
ement a ∈ A is a B-functional νa defined on the algebra B〈X〉 generated
freely by B and an indeterminate X such that νa(P (X)) := φ(P (a)) for
P (X) ∈ B〈X〉. The natural objects to study in this setup are amalgamated
free products.

The paper is organized as follows. First we study the notions of a mo-
ment pair and a cumulant pair of functions on a fixed linear subspace A0 of
a unital algebra A, with 1 ∈ A0, which are analogous to those of moment
and cumulant functions discussed by Speicher [S2, S3]. In Proposition 1 we
show that these two notions are in one-to-one correspondence. The differ-
ence compared with the case studied by Speicher is that dealing with pairs
one has to distinguish between inner and outer blocks of noncrossing par-
titions. Although these notions appeared in [BLS], they were not studied
systematically there. Here we provide more details and adapt this to the
situation when the first functions in the pairs are operator-valued ones.

Then we apply our results to triples of the form (A, Φ, ψ), where A is a
unital algebra over a field K, ψ : A → K is a linear functional satisfying
ψ(1) = 1 and Φ is a linear function A → B, where B is a fixed algebra over
K with a unit 1, satisfying Φ(1) = 1. For a family {(A, Φ, ψ)}i∈I of such
triples we construct another one, (A, Φ, ψ), which satisfies:

1) A = ∗i∈IAi,
2) ψ(a1 . . . am) = 0 and Φ(a1 . . . am) = Φi1(a1) . . . Φim(am) whenever

a1 ∈ Ai1 , . . . , am ∈ Aim , i1 6= . . . 6= im and ψi1(a1) = . . . = ψim(am) = 0.

We show in Proposition 2 that this construction is associative.
Next, assuming that K = C and that B is endowed with a norm, we

study the limit theorems providing operator-valued versions of the central
limit theorem and of the Poisson distribution (cf. [S1, BS, BLS]).
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In Section 6 we prove that the conditionally free product (A, Φ, ψ) =
∗i∈I(Ai, Φi, ψi) preserves complete positivity of the states Φ and ψ. The
construction of the related pair of representations is adapted from [M1]
where it was studied for the group case (see also [B1, B2, B3]).

Finally we discuss conditionally free convolution on the classM(H)×M,
where M (resp. M(H)) denotes the class of all (resp. all operator-valued)
compactly supported probability measures on R. As a consequence we obtain
a binary associative and commutative operation ] onM(H) which extends
the boolean convolution on M introduced by Speicher and Woroudi [SW].
We show in particular that if E (resp. F ) is the spectral measure of a
selfadjoint operator A (resp. B) then E]F is the spectral measure of A+B.

2. Preliminaries. By a partition of a set S we mean a family π of
nonempty, pairwise disjoint subsets of S (called blocks) such that

⋃
π = S.

The corresponding equivalence relation on S will be denoted by π∼.
A partition π of {1, . . . ,m} is called noncrossing if 1≤k<p<l<q≤m,

k, l ∈ V ∈ π, p, q ∈ W ∈ π implies V = W . The class of all noncrossing
partitions of {1, . . . ,m} will be denoted by NC(m). A block V ∈ π ∈ NC(m)
is said to be inner if there is another block W ∈ π and elements p, q ∈ W
such that p < k < q for every k ∈ V . Otherwise V is called outer. The
family of all inner (resp. outer) blocks of a noncrossing partition π will be
denoted by πi (resp. πo). Having a product of the form

∏
V ∈πo

f(V ) we will
assume that the factors are in the same order as the blocks in πo.

For π ∈ NC(m) and 1 ≤ p < m we define π(p = p + 1) as the partition
σ ∈ NC(m− 1) which results from π by identifying p and p+ 1 and joining
the blocks containing them, if they are different (see Remark 3.2.2 in [S3]).

In other words, if for a block U = {k1, . . . , ks} with k1 < . . . < kr ≤ p <
kr+1 < . . . < ks, we define U(p) := {k1, . . . , kr, kr+1 − 1, . . . , ks − 1} then
σ = π(p = p+1) consists of blocks U(p) with p, p+1 6∈ U ∈ π and the block
U ′(p) ∪ U ′′(p), where p ∈ U ′ ∈ π and p + 1 ∈ U ′′ ∈ π (possibly U ′ = U ′′).
Note that if π is noncrossing then so is π(p = p+ 1).

For a sequence a = (a1, . . . , am) and a set V = {k1, . . . , ks} of inte-
gers with 1 ≤ k1 < . . . < ks ≤ m, we define the subsequence a(V ) =
(a1, . . . , am)(V ) := (ak1 , . . . , aks) and the product

∏
k∈V ak := ak1 . . . aks .

3. Moment and cumulant pairs of functions. The notions of mo-
ment and cumulant functions were introduced by Speicher [S3, Definition
3.2.1] as a tool to calculate expressions of the form φ(a1 . . . am), where
φ = ∗i∈Iφi is the free product state on a free product algebra A = ∗i∈IAi
and a1 ∈ Ai1 , . . . , am ∈ Aim . Our aim is to extend them to moment and
cumulant pairs in order to deal with the conditionally free product pair of
states (φ, ψ) = ∗i∈I(φi, ψi).
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Throughout this section A will be a fixed unital algebra over a field K
and A0 will denote a linear subspace of A with 1 ∈ A0. In our applications
A0 will be either the whole A or the linear span lin{Ai : i ∈ I} in the free
product ∗i∈IAi. Also, B will be a fixed algebra over K with a unit 1. We
will assume that f, F, r,R are functions

f, r :
∞⋃

m=1

A0 × . . .×A0
︸ ︷︷ ︸

m times

→ K, F,R :
∞⋃

m=1

A0 × . . .×A0
︸ ︷︷ ︸

m times

→ B

such that f, F, r,R restricted to A0 × . . . × A0 (m times) are m-linear for
every m.

Definition. The pair (F, f) will be called a moment pair of functions
on A0 if f(1) = 1, F (1) = 1 and

f(a1, . . . , ap−1, apap+1, ap+2, . . . , am)

= f(a1, . . . , ap−1, ap, ap+1, ap+2, . . . , am),

F (a1, . . . , ap−1, apap+1, ap+2, . . . , am)

= F (a1, . . . , ap−1, ap, ap+1, ap+2, . . . , am)

whenever 1 ≤ p < m, a1, . . . , am, apap+1 ∈ A0.
The pair (R, r) will be called a cumulant pair of functions on A0 if

r(1) = 1, R(1) = 1,

(1a) r(a1, . . . , ap−1, apap+1, ap+2, . . . , am)

= r(a1, . . . , ap, ap+1, . . . , am) + r(a1, . . . , ap)r(ap+1, . . . , am)

+
p∑

k=2

r(ak, . . . , ap)r(a1, . . . , ak−1, ap+1, . . . , am)

+
m−1∑

k=p+1

r(ap+1, . . . , ak)r(a1, . . . , ap, ak+1, . . . , am),

and

(1b) R(a1, . . . , ap−1, apap+1, ap+2, . . . , am)

= R(a1, . . . , ap, ap+1, . . . , am) +R(a1, . . . , ap)R(ap+1, . . . , am)

+
p∑

k=2

r(ak, . . . , ap)R(a1, . . . , ak−1, ap+1, . . . , am)

+
m−1∑

k=p+1

r(ap+1, . . . , ak)R(a1, . . . , ap, ak+1, . . . , am)

whenever 1 ≤ p < m, a1, . . . , am, apap+1 ∈ A0.
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Note that the right hand sides are sums over all noncrossing partitions σ
of {1, . . . ,m} such that σ(p = p + 1) is the one-block partition {{1, 2, . . . ,
m−1}}. In (1b) we put R if the corresponding block of σ is outer. In partic-
ular r(a1a2) = r(a1, a2) + r(a1)r(a2) and R(a1a2) = R(a1, a2) +R(a1)R(a2)
if a1, a2, a1a2 ∈ A0.

A single function f (resp. r) is said to be a moment (resp. cumulant)
function on A0 if (f, f) (resp. (r, r)) is a moment (resp. cumulant) pair
on A0.

Examples. 1) If A0 is a subalgebra of A then

f(a1, . . . , am) = f(a1 . . . am) and F (a1, . . . , am) = F (a1 . . . am).

2) Assume that r(a1, . . . , am) = 0 whenever m ≥ 2. Then r is a cumulant
function if and only if the map a 7→ r(a) satisfies r(a1a2) = r(a1)r(a2)
whenever a1, a2, a1a2 ∈ A0. In view of the next proposition, such a cumulant
function corresponds to the moment function given by f(a1, a2, . . . , am) :=
r(a1)r(a2) . . . r(am).

3) If r ≡ 0 then R becomes a boolean cumulant (see [SW, M2]).

We now show that these two notions are in one-to-one correspondence.
Note that the first statement is contained in [S2, S3].

Proposition 1. Suppose that the pairs (F, f) and (R, r) of functions
are related by

f(a1, . . . , am) =
∑

π∈NC(m)

∏

V ∈π
r((a1, . . . , am)(V )),

and

F (a1, . . . , am) =
∑

π∈NC(m)

∏

V ∈πi

r((a1, . . . , am)(V ))
∏

V ∈πo

R((a1, . . . , am)(V )),

where the order of factors in the product
∏
V ∈πo

R((a1, . . . , am)(V )) corre-
sponds to that of the outer blocks in π. Then

(a) f is a moment function if and only if r is a cumulant function.
(b) (F, f) is a moment pair if and only if (R, r) is a cumulant pair.

Proof. Put a = (a1, . . . , am) and ap = (a1, . . . , apap+1, . . . , am). First ob-
serve that if (R, r) is a cumulant pair, 1 ≤ p < m, a1, . . . , am, apap+1 ∈ A0,
σ ∈ NC(m− 1) then

(2a)
∏

B∈σ
r(ap(B)) =

∑

π∈NC(m)
π(p=p+1)=σ

∏

V ∈π
r(a(V ))

and
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(2b)
∏

B∈σi

r(ap(B))
∏

B∈σo

R(ap(B))

=
∑

π∈NC(m)
π(p=p+1)=σ

∏

V ∈πi

r(a(V ))
∏

V ∈πo

R(a(V )).

Therefore

F (ap) =
∑

σ∈NC(m−1)

∏

B∈σi

r(ap(B))
∏

B∈σo

R(ap(B))

=
∑

σ∈NC(m−1)

∑

π∈NC(m)
π(p=p+1)=σ

∏

V ∈πi

r(a(V ))
∏

V ∈πo

R(a(V ))

=
∑

π∈NC(m)

∏

V ∈πi

r(a(V ))
∏

V ∈πo

R(a(V )) = F (a),

and similarly for f , so that (F, f) is a moment pair.
On the other hand, if (F, f) is a moment pair then R(1) = F (1) = 1 and

for a1, a2, a1a2 ∈ A0,

R(a1a2) = F (a1a2) = F (a1, a2) = R(a1, a2) +R(a1)R(a2)

and similarly r(a1a2) = r(a1)r(a2), so (1) holds for m = 2. Assume that
m ≥ 3 and that (1) is true for all k < m. Then (2) holds for all σ ∈
NC(m− 1) \ {{1, . . . ,m− 1}} so if 1 ≤ p < m, a1, . . . , am, apap+1 ∈ A0 then

R(ap) = F (ap)−
∑

σ∈NC(m−1)
|σ|>1

∏

B∈σi

r(ap(B))
∏

B∈σo

R(ap(B))

= F (a)−
∑

σ∈NC(m−1)
|σ|>1

∑

π∈NC(m)
π(p=p+1)=σ

∏

V ∈πi

r(a(V ))
∏

V ∈πo

R(a(V ))

= F (a)−
∑

π∈NC(m)
|π(p=p+1)|>1

∏

V ∈πi

r(a(V ))
∏

V ∈πo

R(a(V ))

=
∑

π∈NC(m)
|π(p=p+1)|=1

∏

V ∈πi

r(a(V ))
∏

V ∈πo

R(a(V )),

which is the right hand side of (1b). The same works for r, so our proof is
complete.

Example. If r ≡ 0 then the formula for F becomes

F (a1, . . . , am) =
∑

π∈NC(m)
πi=∅

∏

V ∈π
R((a1, . . . , am)(V )),
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which can be inverted ([SW, M2]) to

R(a1, . . . , am) =
∑

π∈NC(m)
πi=∅

(−1)|π|−1
∏

V ∈π
F ((a1, . . . , am)(V )).

The following lemma will allow us to apply these notions to the unital
free product of algebras.

Lemma 1. Assume that (R, r) is a cumulant pair.

(a) If m ≥ 2, a1, . . . , am ∈ A0 and ap = 1 for some p, with 1 ≤ p ≤ m,
then R(a1, . . . , am) = 0 and r(a1, . . . , am) = 0.

(b) Suppose that m ≥ 2, a1, . . . , am, b1, . . . , bm ∈ A0 and a1 − b1, . . . ,
am − bm ∈ K1. Then R(a1, . . . , am) = R(b1, . . . , bm) and r(a1, . . . , am) =
r(b1, . . . , bm).

Proof. For m = 2 we have

R(a) = R(a1) = R(a, 1) +R(a)R(1) = R(a, 1) +R(a)

so R(a, 1) = 0. Similarly R(1, a) = 0 and the same is true for r.
If the assertion holds for all k < m then by definition

R(a1, . . . , 1ap, . . . , am)=R(a1, . . . , 1, ap, . . . , am)+r(1)R(a1, . . . , ap, . . . , am)

(r(1) = 1 should be replaced by R(1) = 1 if p = 1), and similarly for r,
which concludes the proof of the first part. The second assertion is an easy
consequence of the first one.

Lemma 2. Suppose that functions f and r are related as in Proposi-
tion 1, σ = {B1, . . . , Br} = πo for some π ∈ NC(m), B = B1 ∪ . . . ∪ Br =
{k0, k1, . . . , ks}, 1 = k0 < k1 < . . . < ks = m. Then

∑

π∈NC(m)
πo=σ

∏

V ∈πi

r((a1, . . . , am)(V )) =
s∏

t=1

f(akt−1+1, akt−1+2, . . . , akt−1).

Proof. This is a consequence of the fact that {π ∈ NC(m) : πo = σ} is
precisely the class of partitions of the form σ ∪ π1 ∪ . . . ∪ πs, where πt is a
noncrossing partition of the interval {kt−1 + 1, kt−1 + 2, . . . , kt − 1}.

4. Free product of pairs of functions. Here we will work with a
family {Ai}i∈I of unital algebras over K. Assume that for every i ∈ I we
are given linear functions Φi : Ai → B, ψi : Ai → K such that Φi(1) = 1
and ψi(1) = 1. We define a moment pair

Fi(a1, . . . , am) = Φi(a1 . . . am), fi(a1, . . . , am) = ψi(a1 . . . am)

on Ai and take the corresponding cumulant pair (Ri, ri).
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Now define A to be the unital free product A = ∗i∈IAi and put A0 =
lin{Ai : i ∈ I} (note that in [S2, S3, BLS] the symbol “lin” is missing). We
define

R(a1, . . . , am) =
∑

i∈I
Ri(ai1, . . . , a

i
m), r(a1, . . . , am) =

∑

i∈I
ri(ai1, . . . , a

i
m),

if ak =
∑
i∈I a

i
k, aik ∈ Ai, and all but finitely many of the summands are 0.

Note that if a =
∑
i∈I a

i =
∑
i∈I b

i, ai, bi ∈ Ai then bi = ai + αi1 for
some αi ∈ K satisfying

∑
i∈I αi = 0. Therefore, in view of Lemma 1b, the

functions R and r are well defined and one can see immediately

Lemma 3. Suppose that a1 ∈ Ai1 , . . . , am ∈ Aim and ik 6= il for some
1 ≤ k < l ≤ m. Then R(a1, . . . , am) = 0 and r(a1, . . . , am) = 0.

Now we can see that (R, r) is a cumulant pair onA0. Indeed, if a1, . . . , am,
apap+1 ∈ A0 then, by the last lemma, we may assume that a1, . . . , am ∈ Ai
for some i ∈ I (otherwise we have 0 on both sides of (1)) and use the fact
that (Ri, ri) is a cumulant pair on Ai. Denote by (F, f) the related moment
pair.

Lemma 4. Suppose a1 ∈ Ai1 , . . . , am ∈ Aim , b1 ∈ Aj1 , . . . , bn ∈ Ajn and
a1 . . . am = b1 . . . bn. Then F (a1, . . . , am) = F (b1, . . . , bn) and f(a1, . . . , am)
= f(b1, . . . , bn).

Proof. By multiplicativity we can assume that i1 6= . . . 6= im, j1 6= . . .
6= jn and a1, . . . , am, b1, . . . , bn 6= K1. Then a1 . . . am = b1 . . . bn implies that
m = n and b1 = α1a1, . . . , bm = αmam for some α1, . . . , αm ∈ K satisfying
α1 . . . αm = 1, which ends the proof.

The last lemma allows us to define linear functions Φ and ψ on A =
∗i∈IAi by putting

Φ(a1 . . . am) = F (a1, . . . , am), ψ(a1 . . . am) = f(a1, . . . , am)

whenever a1 ∈ Ai1 , . . . , am ∈ Aim for some i1, . . . , im ∈ I.

Theorem 1. Assume that a1 ∈Ai1 , . . . , am ∈Aim , m≥ 1, i1 6= . . . 6= im
and ψi1(a1) = . . . = ψim(am) = 0. Then

ψ(a1 . . . am) = 0 and Φ(a1 . . . am) = Φi1(a1) . . . Φim(am).

Proof. We proceed by induction on m. For m = 1 the assertion is obvi-
ous. Suppose it holds for all k < m and write

ψ(a1 . . . am) =
∑

π∈NC(m)

∏

V ∈π
r((a1, . . . , am)(V )),

Φ(a1 . . . am) =
∑

π∈NC(m)

∏

V ∈πi

r((a1, . . . , am)(V ))
∏

V ∈πo

R((a1, . . . , am)(V )).
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By Lemma 2 and by induction we can take in these sums only partitions
satisfying πi = ∅, i.e. partitions for which all blocks are intervals. But if V
is an interval with |V | > 1 then, by Lemma 3, r((a1, . . . , am)(V )) = 0 and
R((a1, . . . , am)(V )) = 0. Therefore we are left with π = {{1}, . . . , {m}},
which gives the assertion.

The function ψ is called the unital free product of the functions ψi and
denoted by ∗i∈Iψi (see [V, VDN]). Hence we will call the pair (Φ,ψ) of func-
tions on A = ∗i∈IAi the unital free product of the pairs (Φi, ψi) and denote it
by ∗i∈I(Φi, ψi). The next proposition says that this operation is associative,
which is not the case when we have more than two states (see [M2]).

Proposition 2. Assume that I =
⋃
j∈JIj is a partition of I. Then

∗j∈J
(
∗i∈Ij (Φi, ψi)

)
= ∗i∈I(Φi, ψi).

Proof. Set (Φ′j , ψ
′
j) = ∗i∈Ij (Φi, ψi) and (Φ′, ψ′) = ∗j∈J (Φ′j , ψ

′
j). Take

a1 ∈ Ai1 , . . . , am ∈ Aim with i1 6= . . . 6= im and ψi1(a1) = . . . = ψim(am)
= 0. Then for some 0 = k(0) < k(1) < . . . < k(s) = m we have ik(t−1)+1,
ik(t−1)+2, . . . , ik(t) ∈ Ijt , 1 ≤ t ≤ s, and j1 6= . . . 6= js. Put

bt = ak(t−1)+1ak(t−1)+2 . . . ak(t).

Then we have ψ′jt(bt) = 0 and

Φ′jt(bt) = Φik(t−1)+1 (ak(t−1)+1)Φik(t−1)+2(ak(t−1)+2) . . . Φik(t)(ak(t)).

This in turn implies ψ′(a1 . . . am) = ψ′(b1 . . . bs) = 0 and Φ′(a1 . . . am) =
Φ′(b1 . . . bs) = Φ′j1(b1) . . . Φ′js(bs) = Φi1(a1) . . . Φim(am), which concludes the
proof.

The following two propositions can help us evaluate Φ(a1 . . . am).

Proposition 3. Assume that a1 ∈ Ai1 , . . . , am ∈ Aim and that for
some 1 ≤ p < m the sets {i1, . . . , ip} and {ip+1, . . . , im} are disjoint. Then

Φ(a1 . . . am) = Φ(a1 . . . ap)Φ(ap+1 . . . am).

Proof. In view of Lemma 3 we can calculate Φ(a1 . . . am) using only π’s of
the form π = π1π2, where π1 ∈ NC({1, . . . , p}), π2 ∈ NC({p+ 1, . . . ,m}).

Proposition 4. Suppose that a1 ∈ Ai1 , . . . , am ∈ Aim and that for
some k we have ik 6∈ {i1, . . . , ik−1, ik+1, . . . , im}. Then

Φ(a1 . . . am) = ψik(ak)Φ(a1 . . . ak−1ak+1 . . . am)

+ Φ(a1 . . . ak−1) [Φik(ak)− ψik(ak)1]Φ(ak+1 . . . am).

More generally , if the sets {ip, ip+1, . . . , iq} and {i1, . . . , ip−1, iq+1, . . . , im}
are disjoint for some 1 ≤ p ≤ q ≤ m then

Φ(a1 . . . am)=ψ(ap . . . aq)Φ(a1 . . . ap−1aq+1 . . . am)

+ Φ(a1 . . . ap−1) [Φ(ap . . . aq)− ψ(ap . . . aq)1]Φ(aq+1 . . . am).
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Proof. Assume first that ψik(ak)=0 and put r(V ) :=r((a1, . . . , am)(V )),
R(V ) := R((a1, . . . , am)(V )). Since R(V ) = 0 and r(V ) = 0 for every V with
{k} ⊂ V and |V | > 1, and moreover r({k}) = 0, we have

Φ(a1 . . . am) =
∑

π∈NC(m)

∏

V ∈πi

r(V )
∏

V ∈πo

R(V )

=
∑

π∈NC{1,...,k−1}
σ∈NC{k+1,...,m}

( ∏

V ∈πi

r(V )
∏

V ∈πo

R(V )
)
Φik(ak)

·
( ∏

W∈σi

r(V )
∏

V ∈σo

R(V )
)

= Φ(a1 . . . ak−1)Φik(ak)Φ(ak+1 . . . am).

Applying this to the general case we have

Φ(a1 . . . ak−1(ak − ψik(ak)1)ak+1 . . . am)

= Φ(a1 . . . ak−1) [Φik(ak)− ψik(ak)1]Φ(ak+1 . . . am),

which proves the first assertion. Combining this with Proposition 2 we get
the second assertion.

5. Limit theorems. In this section we assume that A is a fixed com-
plex unital algebra with linear functions Φ : A → B, ψ : A → C, where B is
a complex algebra with a unit 1 and with a norm ‖ · ‖, satisfying Φ(1) = 1
and ψ(1) = 1, and that (R, r) is the related cumulant pair on A. Define
(Â, Φ̂, ψ̂) = ∗i∈N(A, Φ, ψ). For a ∈ A, i ∈ N, we denote by (a, i) the embed-
ding of a into the ith factor A of Â. For example (a1, i) · (a2, i) = (a1a2, i).
The following results generalise those presented in [S1], [BS] and [BLS].

Theorem 2. Let m ≥ 1 be a fixed integer and assume that for every
N ∈ N elements a1,N , a2,N , . . . , am,N ∈ A are given. Assume that for every
nonempty subset V ⊂ {1, . . . ,m} the limits

lim
N→∞

N · Φ
( ∏

k∈V
ak,N

)
= Q(V ), lim

N→∞
N · ψ

( ∏

k∈V
ak,N

)
= q(V )

exist. Set
Sk,N = (ak,N , 1) + (ak,N , 2) + . . .+ (ak,N , N).

Then

lim
N→∞

Φ̂(S1,NS2,N . . . Sm,N ) =
∑

π∈NC(m)

∏

V ∈πi

q(V )
∏

V ∈πo

Q(V )

and
lim
N→∞

ψ̂(S1,NS2,N . . . Sm,N ) =
∑

π∈NC(m)

∏

V ∈π
q(V ).
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Proof. By induction on m and by Proposition 1 we see that if ∅ 6= V ⊂
{1, . . . ,m} then

lim
N→∞

N ·R((a1,N , . . . , am,N )(V )) = Q(V ),

lim
N→∞

N · r((a1,N , . . . , am,N )(V )) = q(V ).

Now consider

Φ̂(S1,N . . . Sm,N ) =
∑

i(1),...,i(m)∈{1,...,N}
Φ̂((a1,N , i(1)) . . . (am,N , i(m))).

For a sequence i = (i(1), . . . , i(m)) ∈ {1, . . . , N}m we define a partition
π = π(i) of {1, . . . ,m} by k π∼ l iff i(k) = i(l). Note that if π(i) = π(j) := π
then

Φ̂((a1,N , i(1)) . . . (am,N , i(m))) = Φ̂((a1,N , j(1)) . . . (am,N , j(m))).

Denoting this common value by Φ̂(π;N) we note that if |π| = p then there
are exactly A(p,N) := N(N − 1) . . . (N − p+ 1) sequences i ∈ {1, . . . , N}m
with π(i) = π. Hence

Φ̂(S1,N . . . Sm,N ) =
∑

π

A(|π|, N)Φ̂(π;N),

where the sum is taken over all partitions π of {1, . . . ,m}. For fixed π we
have

Φ̂(π;N)

=
∑

σ∈NC(m)
σ≤π

∏

B∈σi

r((a1,N , . . . , am,N )(B))
∏

B∈σo

R((a1,N , . . . , am,N )(B)),

where σ ≤ π means that σ is a subpartition of π, i.e. every block of σ is a
subset of a block of π. Note that every summand is a product of |σ| factors.
Therefore

lim
N→∞

A(|π|, N) · Φ̂(π;N) =
∏

V ∈πi

q(V )
∏

V ∈πo

Q(V )

if π is noncrossing, and the limit is 0 otherwise. The same proof works
for ψ.

Denote by NC2(m) the class of all partitions π ∈ NC(m) satisfying
|V | = 2 for every block V ∈ π. Of course if m is odd then NC2(m) is empty
and a sum over π ∈ NC2(m) equals 0.

Corollary 1 (Conditionally free central limit theorem). Let a1, . . . , am
∈ A with Φ(ak) = 0, ψ(ak) = 0 for 1 ≤ k ≤ m and set

Sk,N =
1√
N

[(ak, 1) + . . .+ (ak, N)] .
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Then, for m even,

lim
N→∞

Φ̂(S1,N . . . Sm,N ) =
∑

π∈NC2(m)

∏

V ∈πi
V={k,l},k<l

ψ(akal)
∏

V ∈πo
V={k,l},k<l

Φ(akal)

and
lim
N→∞

ψ̂(S1,N . . . Sm,N ) =
∑

π∈NC2(m)

∏

V ∈π
V={k,l},k<l

ψ(akal),

and both limits are 0 if m is odd.

Proof. Putting ak,N = (1/
√
N)ak we have Φ(ak,N ) = 0, ψ(ak,N ) = 0,

N ·Φ(ak,Nal,N ) = Φ(akal),N ·ψ(ak,Nal,N ) = ψ(akal) and for V ⊂ {1, . . . ,m}
with |V | ≥ 3, limN→∞N ·Φ(

∏
k∈V ak,N ) = 0 and limN→∞N ·ψ(

∏
k∈V ak,N )

= 0.

Remark. Assume that B is the algebra B(H0) of bounded linear op-
erators on a Hilbert space H0, a1 = . . . = am = a, and Φ(a2) = A2,
0 ≤ A ∈ B(H0), ψ(a2) = β2, β > 0. We know from [BLS] that for α > 0 the
unique probability measure να,β on R satisfying

�
tm dνα,β(t) =

∑

π∈NC2(m)

α2|πo|β2|πi|

for every m is given by

να,β = c(α, β)
(
δ
α2/
√
α2−β2 + δ−α2/

√
α2−β2

)
+ ν̃α,β ,

where

c(α, β) =





1
2
α2 − 2β2

α2 − β2 if 2β2 ≤ α2,

0 otherwise

(note that [BLS] erroneously had “ 1
4” instead of “ 1

2”),

dν̃α,β = χ[−2β,2β](t)
1

2π
α2
√

4β2 − t2
α4 − (α2 − β2)t2

dt.

For fixed α, β > 0 and for a continuous function f : R→ R, define

C(f ;α, β) = C1(f ;α, β) + C2(f ;α, β),

where

C1(f ;α, β) =
1
2
α2 − 2β2

α2 − β2

(
f

(
α2

√
α2 − β2

)
+ f

( −α2
√
α2 − β2

))
χ[β
√

2,∞)(α)

C2(f ;α, β) =
1

2π

2β�

−2β

f(t)
α2
√

4β2 − t2
α4 − (α2 − β2)t2

dt.
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Now taking the spectral resolution A = � ∞0 αdE(α) of A we can describe
our operator-valued limit measure, which has moments

�
tm dνA,β(t) =

∑

π∈NC2(m)

β2|πi|A2|πo|

by
�
f(t) dνA,β(t) =

∞�

0

C(f ;α, β) dE(α).

Corollary 2 (Conditionally free Poisson limit theorem). Assume that
a1, a2, . . . ∈ A with

lim
N→∞

N · Φ(aN . . . aN︸ ︷︷ ︸
s times

) = A, lim
N→∞

N · ψ(aN . . . aN︸ ︷︷ ︸
s times

) = β

for every s with 1 ≤ s ≤ m. Then for

SN = (aN , 1) + . . .+ (aN , N)

we have
lim
N→∞

Φ̂(SN . . . SN︸ ︷︷ ︸
m times

) =
∑

π∈NC(m)

β|πi|A|πo|,

lim
N→∞

ψ̂(SN . . . SN︸ ︷︷ ︸
m times

) =
∑

π∈NC(m)

β|π|.

Proof. For every ∅ 6=V ⊂ {1, . . . ,m} we have q(V )=β and Q(V )=A.

Remark. As before, we can apply the formula provided in [BLS] to
find that, in the case of an operator 0 ≤ A ∈ B(H0) with spectral resolution
A = � ∞0 αdE(α), the unique operator-valued probability measure on R with
moments �

tm dπA,β(t) =
∑

π∈NC(m)

β|πi|A|πo|

is given by
∞�

−∞
f(t) dπA,β =

∞�

0

P (f ;α, β) dE(α)

where

P (f ;α, β) = P1(f ;α, β) + P2(f ;α, β) + P3(f ;α, β),

P1(f ;α, β) =
1− β

1 + α− β f(0) · χ[0,1](β),

P2(f ;α, β) =
(α− β −√β)(α− β +

√
β)

(α− β)(α− β + 1)
f

(
α(α− β + 1)

α− β

)
· χβ(α),
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χβ denotes the characteristic function of the set [0,max{0, β − √β}] ∪
[β +

√
β,∞), and

P3(f ;α, β) =
1
π

1+β+2
√
β�

1+β−2
√
β

f(t)
α
√

4β − (t− (1 + β))2

2t[t(β − α) + α(1− β + α)]
dt.

6. Free product of pairs of representations. Let A be a complex
unital ∗-algebra. We will call a functional ψ on A a state if ψ is of the
form ψ(a) = 〈σ(a)ξ, ξ〉 for a ∗-representation σ of A in a Hilbert space K
and a unit vector ξ ∈ K. More generally, if H0 is a Hilbert space then an
operator-valued function Φ : A → B(H0) will be called a state if Φ is of
the form Φ(a) = P0π(a)|H0 , where π is a ∗-representation of A in a Hilbert
space H ⊇ H0 and P0 is the orthogonal projection from H onto H0. In
particular the functions Φ and ψ are completely positive. We are going to
show that free product of pairs of states is a pair of states. For this purpose
we generalize Voiculescu’s construction of the free product representation
(see [V, VDN]).

Theorem 3. Assume that for every i ∈ I, Φi and ψi are states on a
complex unital algebra Ai. Then (Φ,ψ) = ∗i∈I(Φi, ψi) is a pair of states on
A = ∗i∈IAi.

Proof. For i∈I assume that ψi(a)=〈σi(a)ξi, ξi〉 and Φi(a)=P i0πi(a)|H0 ,
a ∈ Ai where πi : Ai → B(H0 ⊕ Hi), σi : Ai → B(Cξi ⊕ Ki) are ∗-
representations ofAi and P i0 is the orthogonal projection ofH0⊕Hi ontoH0.
Now define

H = H0 ⊕
∞⊕

m=1

( ⊕

i1,...,im∈I
i1 6=...6=im

Ki1 ⊗ . . .⊗Kim−1 ⊗Him
)
.

For each i ∈ I we have the decomposition

H = (H0 ⊕Hi)⊕ (Cξi ⊕Ki)⊗H(i),

where

H(i) =
∞⊕

m=1

( ⊕

i1,...,im∈I
i6=i1 6=... 6=im

Ki1 ⊗ . . .⊗Kim−1 ⊗Him
)
.

Then we define a ∗-representation π̃i of Ai on H to act as πi(a) on H0⊕Hi
and as σi(a) ⊗ IdH(i) on (Cξi ⊕ Ki) ⊗ H(i). Having π̃i defined for each
i ∈ I we define a representation π of A = ∗i∈IAi by putting π(a) =
π̃i1(a1) . . . π̃im(am) for a = a1 . . . am, ak ∈ Aik , i1 6= . . . 6= im. Obviously, π
is a ∗-representation of A. We are going to show that Φ(a) = P0π(a)|H0 for
every a ∈ A.
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Assume that a1 ∈ Ai1 , . . . , am ∈ Aim , i1 6= . . . 6= im and ψi1(a1) = . . . =
ψim(am) = 0. The last condition implies that σik(ak)ξik ∈ Kik and one can
check by induction that for ξ ∈ H0,

π(a1 . . . am)ξ = Φi1(a1) . . . Φim(am)ξ

+
m∑

k=1

σi1(a1)ξi1 ⊗ . . .⊗ σik−1(ak−1)ξik−1

⊗ (Id− P ik0 )πik(ak)Φik+1(ak+1) . . . Φim(am)ξ.

which implies that P0π(a1 . . . am)|H0 = Φi1(a1) . . . Φim(am).
Now we can repeat this construction replacing H0 by C1, Hi by Ki and

πi by σi to obtain the ∗-representation σ := ∗i∈Iσi corresponding to ψ.

Remark. It is natural to call the pair (π, σ) the conditionally free prod-
uct of the pairs (πi, σi) and to write (π, σ) := ∗i∈I(πi, σi). Note that if Ai
are C∗-algebras then the states Φ and ψ can be extended to ones on the
unital C∗-free product (see [VDN]).

7. Free convolution of pairs of measures. Let H be a fixed Hilbert
space and let B(H)+ denote the class of all nonnegative bounded linear
operators on H. A function µ defined on the Borel field B(R) and with
values in B(H)+ is said to be an operator-valued measure if for every ξ ∈ H
the map B(R) 3 E 7→ 〈µ(E)ξ, ξ〉 is a measure (see [Sm] for instance). We
call µ a probability measure if µ(R) = Id, and we call µ compactly supported
if for some compact set K ⊂ R we have µ(E) = 0 whenever E ∩K = ∅. We
will denote by M(H) the set of all compactly supported operator-valued
probability measures µ : B(R) → B(H)+. In particular we define ∆0 ∈
M(H) by putting ∆0(E) = Id if 0 ∈ E and ∆0(E) = 0 otherwise. We
will denote by M the class of ordinary compactly supported probability
measures on R.

We define the moment sequence {(A(m), a(m))}∞m=0 of a pair (µ, ν) ∈
M(H)×M by

A(m) =
�

R
xm dµ(x), a(m) =

�

R
xm dν(x)

(note that the sequences A(m), a(m) uniquely determine the measures µ, ν;
see [Bi]). This, in turn, defines the cumulant sequence {(R(m), r(m))}∞m=1
of (µ, ν) by the relations

a(m) =
∑

π∈NC(m)

∏

V ∈π
r(|V |), A(m) =

∑

π∈NC(m)

∏

V ∈πi

r(|V |)
∏

V ∈πo

R(|V |),

where, as usual, the factors in the product
∏
V ∈πo

R(|V |) are in the same
order as the outer blocks of π.



28 W. Młotkowski

Theorem 4. Assume that {(Rk(m), rk(m))}∞m=1 is the cumulant se-
quence of a pair (µk, νk) ∈ M(H)×M for k ∈ {1, 2}. Then there exists a
unique pair (µ, ν)∈M(H)×M whose cumulant sequence {(R(m), r(m))}∞m=1
satisfies

R(m) = R1(m) +R2(m), r(m) = r1(m) + r2(m).

Proof. Take unital C∗-algebras A1,A2, states Φk : Ak → B(H), ψk :
Ak → C and elements Xk = X∗k ∈ Ak satisfying Φk(Xm

k ) = Ak(m),
ψk(Xm

k )=ak(m) and take the C∗-unital free product (A, Φ, ψ)=(A1, Φ1, ψ1)
∗ (A2, Φ2, ψ2). Let (R̃k, r̃k) and (R̃, r̃) denote the corresponding cumulant
pairs on Ak and on A0 = A1 +A2 ⊂ A respectively, so that

R̃k(Xk, . . . ,Xk︸ ︷︷ ︸
m times

) = Rk(m), r̃k(Xk, . . . ,Xk︸ ︷︷ ︸
m times

) = rk(m).

By the definition of R̃, X1 +X2 ∈ A0 and

R̃(X1 +X2, . . . ,X1 +X2︸ ︷︷ ︸
m times

) = R1(m) +R2(m),

r̃(X1 +X2, . . . ,X1 +X2︸ ︷︷ ︸
m times

) = r1(m) + r2(m).

Then (µ, ν) is the unique pair in M(H)×M satisfying

Φ((X1 +X2)m) =
�

R
xm dµ(x), ψ((X1 +X2)m) =

�

R
xm dν(x).

Denote the pair (µ, ν) in the theorem by (µ1, ν1)⊕(µ2, ν2). Hence we get
a binary operation ⊕ onM(H)×M which is associative and commutative,
with (∆0, δ0) as the neutral element. It is easy to see that ν is the free
convolution of ν1 and ν2 in the sense of Voiculescu (cf. [S2, S3]).

Now for µ ∈ M(H), with the moment sequence A(m), we define its
boolean cumulant sequence R̃m, m = 1, 2, . . . , by the following relations:

A(m) =
∑

π∈NC(m)
πi=∅

∏

V ∈π
R̃(|V |),

where the order of factors corresponds to that of blocks. Note that for the
pair (µ, δ0) the cumulant sequence is {(R̃(m), 0)}∞m=1. This leads to the
following

Corollary 3. Assume that for k ∈ {1, 2} we have the boolean cumulant
sequence R̃k(m) of a measure µk ∈ M(H). Then there exists a unique µ ∈
M(H) whose boolean cumulant sequence R̃(m) satisfies R̃(m) = R̃1(m) +
R̃2(m).
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Following [SW] we call the measure µ the boolean convolution of µ1 and
µ2 and denote it by µ1 ] µ2. This binary operation on M(H) is associative
and commutative with ∆0 as the neutral element. It gains in interest in view
of the following

Example. Let E and F be the spectral measures of selfadjoint operators
A and B respectively. It is easy to see what are the moment sequences:

A(m) =
�
λm dE(λ) = Am, B(m) = Bm

and the cumulant sequences are:

R̃(m) =
{
A if m = 1,
0 otherwise,

S̃(m) =
{
B if m = 1,
0 otherwise.

This implies that E ] F is the spectral measure of the sum A+B.
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