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Multipliers with closed range on commutative
semisimple Banach algebras

by

A. Ülger (Istanbul)

Abstract. Let A be a commutative semisimple Banach algebra, ∆(A) its Gelfand
spectrum, T a multiplier on A and T̂ its Gelfand transform. We study the following
problems. (a) When is δ(T ) = inf{|T̂ (f)| : f ∈ ∆(A), T̂ (f) 6= 0} > 0? (b) When is the
range T (A) of T closed in A and does it have a bounded approximate identity? (c) How
to characterize the idempotent multipliers in terms of subsets of ∆(A)?

Introduction. Let A be a commutative semisimple Banach algebra,
M(A) be its multiplier algebra [La1] and T be a multiplier on A. We denote
by ∆(A) the Gelfand spectrum of A and by T̂ the Gelfand transform of T ;
the elements of ∆(A) are considered as multiplicative functionals on A. Let
∆(T̂ ) = {f ∈ ∆(A) : T̂ (f) 6= 0} and δ(T ) = inf{|T̂ (f)| : f ∈ ∆(T̂ )}. In this
paper our aim is to study the following questions. (a) When is δ(T ) > 0?
(b) When is the ideal T (A) closed in A? (c) When does the ideal T (A)
have a BAI (= bounded approximate identity)? (d) How to characterize the
idempotent elements of M(A) in terms of subsets of ∆(A)?

The main motivation behind these questions is a well known problem
of harmonic analysis first studied by I. Glicksberg [G] and later completely
solved in [H-P] by B. Host and F. Parreau. To recall this problem, let G
be a locally compact abelian group equipped with its Haar measure, L1(G)
be its group algebra and M(G) be the algebra of regular complex Borel
measures on G. The algebra M(G) is the multiplier algebra of L1(G). For
a measure µ of the form µ = λ ∗ θ, where λ is an invertible element and
θ an idempotent element of M(G), the ideal L1(G) ∗ µ is obviously closed
in L1(G). The problem mentioned above, which was raised by E. Hewitt,
was this: For a measure µ ∈ M(A), is the ideal L1(G) ∗ µ closed in L1(G)
only when the measure µ is of the above form? That this is the case is the
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achievement of [H-P]. Thus the ideal L1(G) ∗ µ is closed in L1(G) iff µ is
the product of an invertible measure with an idempotent one. One of the
main ingredients of the solution is the fact that, when L1(G) ∗ µ is closed
in L1(G), δ(µ) > 0. (δ(µ) is defined in the same way as δ(T ).) Moreover,
factorizability of µ as µ = λ ∗ θ is equivalent to the existence of a BAI
in the ideal L1(G) ∗ µ (see [Z]). The proof of this result given in [H-P] is
highly group-theoretical and does not seem susceptible of generalization.
The general or abstract version of this problem presents a certain inter-
est given that it is related (a) with the problem of characterization of the
complemented ideals of A, (b) with the problem of characterization of the
idempotent elements of M(A); and (c) with the Weiner–Pitt phenomenon.
The abstract version of this problem has been considered in several papers;
see the papers [A-L], [L-M], Chapter 4 of the book [L-N] and references
there.

In the present paper we also study the same kind of questions in an
abstract setting with applications to the Fourier algebra A(G) of a locally
compact (not necessarily abelian) group G (see [E]), which is one of the
important Banach algebras of harmonic analysis. Our approach and results
are quite different from those of the above papers.

Now we summarize the main results of the paper. Let A be a commu-
tative semisimple Banach algebra, M(A) be its multiplier algebra and T be
an element of M(A). The Gelfand spectrum ∆(M(A)) of M(A) is the union
of the Gelfand spectrum ∆(A) of A and the hull of A, A being considered
as an ideal in M(A) (see [La1]). Denote by T̂ : ∆(M(A))→ C the Gelfand
transform of T . Let, as above,

∆(T̂ ) = {f ∈ ∆(A) : T̂ (f) 6= 0} and δ(T ) = inf{|T̂ (f)| : f ∈ ∆(T̂ )}.
In Section 2 we study the question of when δ(T ) > 0. We give three

characterizations of this condition. The first of these says that if ∆(A) is
closed in (A∗, Υ ), then δ(T ) > 0 iff the set T ∗(∆(T̂ )) is closed in (A∗, Υ ).
Here Υ is any locally convex topology on A∗ compatible with the duality
(A∗, A∗∗). At this point we recall that if the algebra A has a BAI then ∆(A)
is closed in (A∗, weak) and this may also happen even if A has no (bounded
or not) approximate identity (see [Ü]). The second characterization says
that, if the ideal B = T (A) is closed in A and ∆(A) is closed in (A∗, weak),
then δ(T ) > 0 iff the spectrum of the algebra B is closed in (B∗, weak). At
this point we remark that, even if A is unital, the closedness of the ideal T (A)
in A does not imply that δ(T ) > 0. A rather simple example is this. Let A(D)
be the classical disk algebra. Then the ideal A(D)z = {a ∈ A(D) : a(z) = 0}
is closed in A(D) but δ(z) = 0. The third characterization applies to regular
Banach algebras and says this: If A is regular, ∆(A) is closed in (A∗, weak)
and T (A) is closed in A, then δ(T ) > 0 iff the following condition holds:
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There is a constant c > 0 such that, for each f ∈ ∆(T̂ ), there exists an
element a ∈ A with ‖a‖ ≤ c such that the support of â is contained in ∆(T̂ )
and 〈a, f〉 = 1.

This condition is satisfied, for instance, for every open subset E of
the spectrum of the Fourier algebra A(G). It is also satisfied for every
open subset of the spectra of algebras called “boundedly regular” in
[L-N; p. 418]. We give an example of a regular Banach algebra B such
that the above condition fails for every infinite subset of ∆(B). In this sec-
tion we also show that if A is regular, ∆(A) is closed in (A∗,weak) and
there exists a one-to-one weakly compact homomorphism from A into a
Banach algebra B, then the analog of the Host–Parreau Theorem holds
for A. Thus the problem of when a multiplier with closed range on a Ba-
nach algebra with a BAI factors as the product of an invertible and an
idempotent multiplier has its full meaning (and difficulty) only for those
algebras A on which there exists no one-to-one weakly compact homomor-
phism.

In Section 3, we study the following two questions: (a) When is the
ideal T (A) closed in A and does it have a BAI? (b) How to characterize
the idempotent elements of M(A) in terms of subsets of ∆(A)? Concern-
ing the first question, we first give some general results such as this: If A
has a BAI, then T (A) is closed in A and has a BAI iff the ideal T ◦M(A)
is closed in M(A) and has a unit element. Then we show that when A
is a BSE-algebra [T-Ha] with a BAI (the definition of which is recalled
below), then T (A) is closed in A and has a BAI iff T is spectrally in-
vertible in the sense that there exists a multiplier S ∈ M(A) such that
T̂ (f)Ŝ(f) = 1 for each f ∈ ∆(T̂ ). As a corollary, we show that if the closed
linear span of ∆(T̂ ) in A∗ is isomorphic to `1(∆(T̂ )) then δ(T ) > 0 iff T (A)
is closed in A and has a BAI. One of the main results of this section says
that if A is regular, has a BAI and T (A) is closed in A then T (A) has a
BAI iff ∆(T̂ ) is a U- (or Urysohn) set with respect to A in the following
sense:

There exists a constant c > 0 such that, for each compact K ⊆ O, there
exists an a ∈ A with ‖a‖ ≤ c such that the support of â is contained in O
and â = 1 on K.

This notion, which seems to be new in this context, has turned out to
be quite important. Indeed, the closed-open U-subsets of ∆(A) also char-
acterize the idempotent elements of M(A). The following result, which is
one of the main results of this paper, can be considered as an abstract ana-
log of Cohen’s (and Host’s [H]) Idempotent Theorem [C]: Suppose that A
is a regular BSE-algebra with a BAI and satisfying Ditkin’s condition for
synthesis. Then a closed-open subset E of ∆(A) supports an idempotent
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element of M(A) iff E is a U-set. Thus, for instance, when A is the Fourier
algebra of an amenable locally compact group G, a closed-open subset of G
is a U-set with respect to the Fourier algebra A(G) iff it is in the coset ring
of G generated by the open subgroups of G.

1. Notation and preliminary results. Our notation and terminology
are standard and some of them are already introduced in the preceding
section. For any Banach space X, we denote by X∗ the dual space of X
and we always consider X as naturally embedded into X∗∗. For x ∈ X and
f ∈ X∗, we denote by 〈x, f〉 (and also 〈f, x〉) the natural duality between
X and X∗. Finally, L(X) denotes the algebra of bounded linear operators
on X.

Now let A be a commutative semisimple Banach algebra. On A∗∗ there
exist two natural multiplications extending that of A, known as the first
and second Arens products of A∗∗. The space A∗∗ will always be consid-
ered as equipped with the first of these products whose definition and main
properties are recalled below. For a, b in A, f in A∗ and n, m in A∗∗,
the elements fa and nf of A∗ and mn of A∗∗ are defined, respectively, as
follows:

〈fa, b〉 = 〈f, ab〉, 〈nf, a〉 = 〈n, fa〉, 〈mn, f〉 = 〈m,nf〉.
Equipped with this multiplication, A∗∗ is a Banach algebra and A is a subal-
gebra of it. In general A∗∗ is not commutative but, for a ∈ A and m ∈ A∗∗,
am = ma. This multiplication is in general not separately weak-star to
weak-star continuous on A∗∗ but, for n ∈ A fixed, the mapping m 7→ mn is
continuous in the weak-star topology of A∗∗. If (eα)α∈I is a BAI (= bounded
approximate identity) in A then each weak-star cluster point u of this net
in A∗∗ is a right unit in A∗∗ so that, for each m ∈ A∗∗, mu = m. Conversely,
every right unit of A∗∗ is a cluster point in (A∗∗, weak-star) of some BAI
of A. Also, for m,n ∈ A∗∗ and f ∈ ∆(A), 〈mn, f〉 = 〈n, f〉〈m, f〉. For all
these results we refer the reader to [B-D; Section 28]. For a set E ⊆ ∆(A),
the ideal ker(E) is defined as ker(E) =

⋂
f∈E f

−1(0); for an ideal I of
A, the hull of I is defined by hull(I) = {f ∈ ∆(A) : I ⊆ f−1(0)} (see
[La2]).

A (bounded) linear operator T : A → A is said to be a multiplier on
A if, for each a, b ∈ A, we have T (ab) = aT (b). The space of multipliers
on A is denoted by M(A). The space M(A) is a commutative, semisimple
unital subalgebra of the algebra L(A) of bounded linear operators on A.
Each a ∈ A defines a multiplier La : A → A on A by La(x) = ax. The
algebra A being semisimple, identifying A with the ideal {La : a ∈ A}, we
can consider A as an ideal of M(A). However A is in general not closed in
M(A). By Hull(A) we denote the hull of A, considered as an ideal in M(A).
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The Gelfand spectrum of M(A) is the set ∆(M(A)) = ∆(A) ∪ Hull(A)
(see [La1]). The set ∆(A) is open in ∆(M(A)) but in general far from
being dense in it. For T ∈ M(A), we denote by T̂ : ∆(M(A)) → C
the Gelfand transform of T . We shall work with the restriction of T̂ to
∆(A).

For T ∈ M(A), let T ∗∗ : A∗∗ → A∗∗ be its second adjoint and ϕT
be the restriction of T̂ to ∆(A). Then, for f ∈ ∆(A), ϕT (f) = T̂ (f) and
T ∗(f) = T̂ (f)f . The second adjoint T ∗∗ of T is also a multiplier on A∗∗

(T ∗∗(nm) = nT ∗∗(m)), and if u is a right unit in A∗∗, for f ∈ ∆(A) we
have ϕT (f) = 〈T ∗∗(u), f〉. In particular, the function f 7→ 〈T ∗∗(u), f〉 is
continuous on the Gelfand spectrum of A. Moreover the element e = T ∗∗(u)
is such that, for a ∈ A, ae = aT ∗∗(u) = T ∗∗(au) = T ∗∗(a) = T (a) so that
T = Le, where Le : A → A is the multiplier defined by Le(a) = ae. The
multiplier Le does not depend on the right unit chosen and ϕLe(f) = 〈e, f〉
for f ∈ ∆(A). Whenever convenient, we shall identify T and Le. This will
permit us to use the weak-star topology of A∗∗.

Finally, for a locally compact topological group G, we denote by A(G)
its Fourier algebra and by B(G) its Fourier–Stieltjes algebra. For the defi-
nitions and properties of these algebras, we refer the reader to the paper of
P. Eymard [E]. Here we mention some of the well known properties of these
algebras that we shall need. The algebra A(G) is a commutative semisimple,
regular Tauberian Banach algebra of functions on G, with A(G) ⊆ C0(G),
the space of continuous functions on G that vanish at infinity. The spectrum
of A(G), via the Dirac measures, is G. When G is amenable, the algebra
A(G) has a BAI and its multiplier algebra is B(G). In any case, A(G) is a
closed ideal of B(G), and A(G) = B(G) when G is compact. If G is abelian,
then A(G) is isometrically isomorphic to the group algebra L1(Ĝ), and B(G)
to M(Ĝ).

2. An analysis of the condition δ(T ) > 0. Throughout the paper A
will be a commutative semisimple Banach algebra and T will be a multiplier
on A. Other hypotheses on A will be made as needed. Let ∆(T̂ ) = {f ∈
∆(A) : T̂ (f) 6= 0}, ∆0(T̂ ) = {f ∈ ∆(A) : T̂ (f) = 0} and δ(T ) = inf{|T̂ (f)| :
f ∈ ∆(T̂ )}. The set ∆0(T̂ ) is the hull of the ideal T (A), and when this ideal
is closed in A, the set ∆(T̂ ) is its Gelfand spectrum. The quantity δ(T ) need
not be strictly positive; in this section our aim is to find out when δ(T ) > 0.
This section, being long, will be divided into two subsections. We shall go
from general to particular. Unless otherwise specified, the space ∆(A) is
equipped with its Gelfand topology.

2.a. The general case. In the first characterization of the condition
δ(T ) > 0 we do not assume that T (A) is closed in A. This result shows
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that in this kind of questions, besides weak-star and hull-kernel topologies
on ∆(A) or ∆(M(A)), the weak topology σ(A∗, A∗∗) and the norm topology
of A∗ are also relevant.

We start with a very general result. Let Υ be a locally convex Haus-
dorff topology on A∗ for which T ∗ is continuous from (A∗, Υ ) to (A∗, Υ ).
For instance, Υ may be the norm topology, weak topology, weak-star topol-
ogy or any locally convex topology compatible with (A∗, A∗∗) or even with
(A∗, A). The condition δ(T ) > 0 is closely related to the closedness of ∆(A)
in (A∗, Υ ).

Lemma 2.1. Suppose that ∆(A) is closed in (A∗, Υ ). Then δ(T ) > 0 iff
the set T ∗(∆(T̂ )) is closed in (A∗, Υ ).

Proof. We first observe that for f ∈ ∆(A), T ∗(f) = T̂ (f)f . Then we
observe that if a net (T̂ (fα)fα)α∈I in T ∗(∆(A)) converges in (A∗, Υ ) to a
functional g ∈ A∗ then either g = 0 or g is of the form g = T̂ (f)f for some
f ∈ ∆(A). Indeed, if g 6= 0, the net (T̂ (fα))α∈I has no subnet that converges
to zero. So, being bounded, it has a subnet (T̂ (fβ))β∈J that converges to
a complex number λ 6= 0. This implies that the subnet (fβ)β∈J converges
in (A∗, Υ ) to g/λ. Since, by hypothesis, ∆(A) is closed in (A∗, Υ ), g/λ is
in ∆(A). On the other hand, T ∗ being continuous in the topology Υ , the
net (T ∗(fβ))β∈J converges in (A∗, Υ ) to T ∗(g/λ) = T̂ (g/λ)g/λ, so that
g = T̂ (g/λ)g/λ is of the form T̂ (f)f , with f = g/λ.

From this we conclude that the set T ∗(∆(T̂ )) is closed in (A∗, Υ ) iff the
zero functional is not in the Υ -closure of this set. This being observed, it is
now clear that if δ(T ) = 0 then there exist nets in T ∗(∆(T̂ )) that converge
in (A∗, Υ ) to zero so that zero is in the Υ -closure of the set T ∗(∆(T̂ )), and
this set is not closed in (A∗, Υ ).

Conversely, if δ(T ) > 0, then, ∆(A) being closed in (A∗, Υ ), no net in
T ∗(∆(T̂ )) can converge in (A∗, Υ ) to zero so that zero of A∗ is not in the
Υ -closure of the set T ∗(∆(T̂ )); hence this set is closed in (A∗, Υ ).

As mentioned in the introduction, if A has a BAI then ∆(A) is closed in
(A∗,weak). At this point we recall that, in general, existence of a BAI in A
is not necessary for the closedness of ∆(A) in (A∗,weak) (see [Ü]).

Corollary 2.2. Suppose that ∆(A) is closed in (A∗,weak). Then δ(T )
> 0 iff T ∗(∆(T̂ )) is closed in (A∗,weak).

Although for lots of interesting Banach algebras, including the Fourier
algebra A(G) of any locally compact group G, ∆(A) is norm closed in A∗,
in general ∆(A) is not always norm closed in A∗. Below, in Example 2.13,
the reader will find an example of a commutative semisimple regular Ba-
nach algebra B whose spectrum is not norm closed in B∗. In spite of this,
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the assumption that ∆(A) is norm closed in A∗ is certainly not a strong
hypothesis.

Corollary 2.4. Suppose that ∆(A) is norm closed in A∗. Then δ(T )
> 0 iff the set T ∗(∆(T̂ )) is norm closed in A∗.

Remarks 2.5. (a) Since T̂ : ∆(A) → C is continuous for the Gelfand
topology, when δ(T ) > 0, the set ∆(T̂ ) is both closed and open in ∆(A).
Hence if ∆(A) is connected, then either ∆(T̂ ) = ∆(A), in which case T is
one-to-one on A, or ∆(T̂ ) = ∅, in which case T is identically null on A. For
that reason, the Banach algebras with connected spectrum do not present
any interest for us.

(b) Whether ∆(A) is closed or not in (A∗, Υ ), if T ∗(∆(T̂ )) is closed in
(A∗, Υ ) then δ(T ) > 0. This is clear from the proof of the above lemma.

(c) If ∆(T̂ ) is weak-star compact (or compact for Υ ) then T ∗(∆(T̂ ))
is norm closed in A∗. Hence, in this case, δ(T ) > 0. Actually more is
true. Indeed, by the Shilov Idempotent Theorem [B-D; Theorem 21.5], there
exists an idempotent element u in A which is 1 on the set ∆(T̂ ) and zero on
the set ∆(A) \∆(T̂ ). If we put a = T (u) then T = La so that T (A) = Aa.
Since the spectrum of La is â(∆(T̂ )) ∪ {0} and zero is an isolated point
of it, the ideal T (A) is complemented in A and has a unit element [L-M;
Corollary 11].

(d) Whenever δ(T ) > 0, the set ∆(T̂ ) is closed in (∆(A),weak) if ∆(A)
is closed in (A∗,weak). The converse of this fact is false as the following
example shows.

Let Ω be a locally compact Hausdorff space, A = C0(Ω) and a ∈ A.
Then, since A has a BAI, ∆(A) is closed in (A∗,weak). Also, since (∆(A),
weak) is discrete [Ü], for any a ∈ A, the set ∆(â) is closed in (∆(A),weak),
so also in (A∗,weak). However, δ(a) = inf{|â(f)| : f ∈ ∆(â)} > 0 iff ∆(â) is
compact. This fact combined with Remark (d) above shows that the closed-
ness of the set ∆(T̂ ) in (A∗,weak) is not sufficient, even if A has a BAI, to
imply that δ(T ) > 0.

Now let G be any locally compact group, a ∈ B(G) ∩ C0(G) and T :
A(G) → A(G) be the multiplier defined by T (x) = ax. Then δ(T ) > 0 iff
the set ∆(â) = {g ∈ G : a(g) 6= 0} is compact. Hence, from Remark (c)
above, we get the following corollary.

Corollary 2.6. Let a ∈ B(G) ∩C0(G). Then the ideal A(G)a is com-
plemented in A(G) and unital iff the set ∆(â) = {g ∈ G : a(g) 6= 0} is
compact.

As mentioned in the introduction, the spectrum of the algebra A = A(G)
is closed in (A∗,weak) iff the group G is amenable [C-X]. On the other hand,
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if the range of a multiplier S on A is dense in A then ∆(Ŝ) = ∆(A). These
results imply the following corollary.

Corollary 2.7. The group G is amenable iff there exists a multiplier
S : A(G)→ A(G) with dense range such that S∗(∆(Ŝ)) is closed in (VN(G),
weak).

In the second result characterizing the condition δ(T ) > 0, we suppose
that the ideal T (A) is closed in A and consider T (A) as a Banach algebra
in its own right. Recall that, as seen above, closedness of the set ∆(T̂ ) in
(A∗,weak) does not imply that δ(T ) > 0.

Theorem 2.8. Suppose that ∆(A) is closed in (A∗,weak) and the ideal
B = T (A) is closed in A. Then δ(T ) > 0 iff the spectrum of the algebra B
is closed in (B∗,weak).

Proof. First we remark that ∆(B) = ∆(T̂ ). Now suppose that δ(T ) > 0.
Then, by Lemma 2.1, the set T ∗(∆(T̂ )) is weakly closed in A∗. In particular,
zero is not in the weak closure of this set. Hence no net (T ∗(fα))α∈I in
T ∗(∆(T̂ )) can converge weakly to zero in A∗. Since B∗∗ = T ∗∗(A∗∗), this
implies that no net (fα)α∈I in ∆(T̂ ) can converge weakly in B∗ to zero.
So zero is not in the σ(B∗, B∗∗)-closure of ∆(B). Hence ∆(B) is closed in
(B∗,weak).

Conversely, suppose that ∆(B) is closed in (B∗,weak). Then, since zero
is not in ∆(B), there exists a σ(B∗, B∗∗) neighborhood

V m1,...,mk = {g ∈ B∗ : |〈mi, g〉| < ε for i = 1, . . . , k}
of zero that does not meet ∆(B). Here ε > 0 and mi ∈ B∗∗. Hence, for
each f ∈ ∆(B), for at least one i, |〈mi, f〉| ≥ ε. For each i = 1, . . . , k,
let

∆i = {f ∈ ∆(B) : |〈mi, f〉| ≥ ε}.
Then ∆1 ∪ . . . ∪∆k = ∆(B). Some of ∆i’s may be empty; dropping them,
we can assume that none of ∆i’s is empty. Since mi ∈ B∗∗ and B∗∗ =
T ∗∗(A∗∗), each mi is of the form mi = T ∗∗(ni) for some ni ∈ A∗∗. As, for
f ∈ ∆i,

|〈T ∗∗(ni), f〉| = |〈ni, T ∗(f)〉| = |〈ni, f〉| · |T̂ (f)| ≥ ε,
we see that the infimum of |T̂ (f)| on ∆i is strictly positive. Hence, since
∆1 ∪ . . . ∪∆k = ∆(T̂ ), we conclude that δ(T ) > 0.

The above result raises naturally the question of exactly when the spec-
trum of a commutative semisimple Banach algebra B is weakly closed in its
dual. If for some m ∈ B∗∗, inf{|〈m, f〉| : f ∈ ∆(B)} > 0 then this is the case
[Ü]. For a large class of Banach algebras, the converse is also true. Recall
that a commutative semisimple Banach algebra B is said to be self-adjoint
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if, for each a ∈ B, there exists an a∗ ∈ B such that ‖a∗‖ ≤ ‖a‖ and, for
f ∈ ∆(B), 〈a∗, f〉 = 〈a, f〉, the complex conjugate of 〈a, f〉.

Proposition 2.9. Let B be commutative semisimple self-adjoint Ba-
nach algebra. Then ∆(B) is closed in (B∗,weak) iff there exists an element
m ∈ B∗∗ such that inf{|〈m, f〉| : f ∈ ∆(B)} > 0.

Proof. Suppose that ∆(B) is closed in (B∗,weak). Then, as the zero
functional is not in ∆(B), for some weak neighborhood V m1,...,mk

ε of zero in
B∗, we have

V m1,...,mk
ε ∩∆(B) = ∅.

So, for each f ∈ ∆(B), |〈mi, f〉| ≥ ε for at least one i = 1, . . . , k. Let
(ai,α)α∈I be a bounded net in B that converges weak-star in B∗∗ to mi.
Consider the elements aα = a1,αa

∗
1,α + . . .+ ak,αa

∗
k,α of B; the net (aα)α∈I

is bounded. Let m ∈ B∗∗ be any weak-star cluster point of it in B∗∗. Then,
for each f ∈ ∆(B), |〈m, f〉| ≥ ε. The converse is easy [Ü].

Suppose A has a BAI and T (A) is closed in A. Theorem 2.8 shows that
the condition δ(T ) > 0 is necessary for the existence of a BAI in T (A); find-
ing out the conditions under which it is sufficient is the main open problem
around which this paper is centered.

2.b. The case where A is regular. The characterizations of the condition
δ(T ) > 0 given above are in a sense “external”. In this subsection we give an
“internal” characterization; that is, a characterization that does not involve
the dual space A∗. Glicksberg’s paper [G] (see also [A-L] and [L-N; p. 418])
also contains a sufficient condition of this type; we shall consider this con-
dition below. In the following definition, the letter u (both lower case and
capital) stands for Urysohn. U-sets will be used in the next section.

Definition 2.10. An open subset O of ∆(A) is said to be a u-set (resp.
U-set) with respect to A if there exists a constant c > 0 such that, for each
f ∈ O (resp. for each compact K ⊆ O), there exists an element a ∈ A for
which ‖a‖ ≤ c, the support of â is contained in O and â(f) = 1 (â = 1
on K).

Remarks and Examples 2.11. (a) If the algebra A is regular and O
is an open subset of ∆(A), then for each f ∈ O, there is an element a ∈ A
such that the support of â is contained in O and â(f) = 1 but in general we
do not have any control of the norm of a. In this definition, the important
point is that ‖a‖ ≤ c, where the constant c, which depends on the open set
O, does not depend on f (or the compact set K) in O.

(b) If A = C0(Ω), where Ω is a locally compact space, then by the
Urysohn Lemma, every open subset of Ω is a U-set (so u-set) with respect
to A.
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(c) By the Shilov Idempotent Theorem, each compact open subset of
∆(A) is a U-set with respect to A.

(d) Let G be any locally compact group and A = A(G) be its Fourier al-
gebra. Then every open subsetO ofG is a u-set with respect to A(G). Indeed,
let O be an open subset of G and f be an element of O. Let U be a compact
neighborhood of the identity element of G such that fUU−1∩F = ∅, where
F is the complement of O in G. Let b = χU/µ(U) and c = χfU . Here χU
is the characteristic function of U and µ is the left Haar measure of G. The
functions b and c are both in L2(G) so that a = c ∗ b∨ (here b∨(g) = b(g−1))
is in A(G), its norm is one, a(f) = 1 and the support of a is contained
in O.

(e) At the end of his paper [G] (see also [L-N; p. 418]), Glicksberg con-
siders the following condition.

(I) There is a constant c > 0 such that, for each f ∈ ∆(A) and each neigh-
borhood O of f , there is an a ∈ A for which ‖a‖ ≤ c, the support of
â is contained in O and â(f) = 1.

A Banach algebra satisfying this condition is called in [L-N; p. 418]
“boundedly regular”. This condition involves the whole of the space ∆(A);
whereas being a u-set is a local property, it just concerns the subset O
of ∆(A). Clearly, if A satisfies condition (I), then every open subset of
∆(A) is a u-set with respect to A. As we shall see below, (I) is a strong
condition; it implies that the set ∆(A) under the weak topology is dis-
crete.

(f) If the algebra A has a BAI, or more generally if we have an m ∈ A∗∗
for which inf {|〈m, f〉| : f ∈ ∆(A)} > 0, then ∆(A) is a u-set with respect
to A. Indeed, let (aa)α∈I be a bounded net in A that converges in the weak-
star topology of A∗∗ to m. We can suppose that, for each α ∈ I, ‖aα‖ ≤ ‖m‖.
Fix an f ∈ ∆(A) and choose an α such that |〈aα, f〉| ≥ 1

2 |〈m, f〉|. Let
a = aα/〈aα, f〉. Then 〈a, f〉 = 1 and ‖a‖ ≤ 2‖m‖.

This last remark shows that a necessary condition for the existence of a
BAI in a closed ideal B of A is that ∆(B) should be a u-set with respect
to B. However, as part (d) of the above remark shows, this condition is too
weak to be sufficient for the existence of a BAI in B.

Theorem 2.12. Suppose that the algebra A is regular , ∆(A) is weakly
closed in A∗ and the ideal T (A) is closed in A. Then δ(T ) > 0 iff the open
set ∆(T̂ ) is a u-set with respect to A.

Proof. Suppose that δ(T ) > 0, and let B = T (A). Since, by Theorem
2.8, ∆(B) is closed in (B∗,weak), there exists a weak neighborhood (with
ε = 1 and ni = T ∗∗(mi) ∈ B∗∗)

V n1,...,nk = {g ∈ B∗ : |〈T ∗∗(mi), g〉| < 1 for i = 1, . . . , k}
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of the zero of B∗ which does not meet ∆(T̂ ). Let c = max{‖T ∗∗(mi)‖ : i =
1, . . . , k}, and fix an f ∈ ∆(T̂ ). Then for at least one i, |〈T ∗∗(mi), f〉| ≥ 1.
Choose such an i, and let (aα)α∈I be a net inB, bounded by c, that converges
in (B∗∗,weak∗) to T ∗∗(mi). Fix an α such that |〈aα, f〉| ≥ 1/2. Let a =
aα/〈aα, f〉. Then ‖a‖ ≤ 2c and 〈a, f〉 = 1. The support of â is contained
in ∆(T̂ ) since a ∈ T (A) and, δ(T ) being strictly positive, ∆(T̂ ) is closed in
∆(A). Hence ∆(T̂ ) is a u-set with respect to the algebra A.

Conversely, suppose that ∆(T̂ ) is a u-set with respect to A. So there is
a constant c1 > 0 such that, for each f ∈ ∆(T̂ ), there is an a ∈ A for which
‖a‖ ≤ c1, 〈a, f〉 = 1 and supp(â) ⊆ ∆(T̂ ). Fix an f ∈ ∆(T̂ ) and let a ∈ A
be as above. Let I be the closure of the ideal

{x ∈ A : x̂ is null on an open set Ox containing ∆0(T̂ )}.
Then I ⊆ T (A) since the hull of the closed ideal T (A) is ∆0(T̂ ) (see [La2;
p. 182, Theorem 8.1.1]). As the support of â is contained in ∆(T̂ ), â is null
on an open set Oa containing ∆0(T̂ ) so that a ∈ T (A). Hence a = T (b) for
some b ∈ A. Since T (A) is closed in A, by the Open Mapping Theorem,
we can assume that the norm of b is less than a certain constant c2, which
depends on c1 but not on a or f . This constant being independent of the f
chosen in ∆(T̂ ),

1 = 〈a, f〉 = 〈T (b), f〉 = T̂ (f)〈b, f〉 ≤ |T̂ (f)|c2
so that inf{|T̂ (f)| : f ∈ ∆(T̂ )} ≥ 1/c2. Hence δ(T ) > 0.

The example indicated in the introduction (the disk algebra) shows that
without regularity the preceding theorem does not hold even if the algebra
is unital. The next example shows that, even if A is regular, one direction
of this theorem fails if ∆(A) is not closed in (A∗,weak).

Example 2.13. Let B be the algebra of complex sequences ϕ : N → C
such that limn→∞ nϕ(n) = 0. The space B, with the coordinatewise multi-
plication and the norm ‖ϕ‖ = sup {n|ϕ(n)| : n ≥ 1}, is a Banach algebra and
∆(B) = {δn : n ∈ N}, where 〈δn, ϕ〉 = ϕ(n). The space ∆(B) is discrete,
so B is regular. If (ϕn)n∈N is any bounded sequence in B, say ‖ϕn‖ ≤ c
for all n ∈ N, then, since ‖ϕn‖ = sup {k|ϕn(k)| : k ≥ 1} ≤ c, we see that
|ϕn(n)| ≤ c/n for all n ≥ 1. This shows that no infinite subset of ∆(B) is a
u-set. This also shows that

‖δn‖ = sup{|〈δn, ϕ〉| : ‖ϕ‖ ≤ 1} = sup{|ϕ(n)| : ‖ϕ‖ ≤ 1} = 1/n.

Hence ∆(B) is not norm closed, so not weakly closed, in B∗. The multiplier
algebra of B is `∞ (see [L-N; p. 303]). Now consider the sequence e =
(1, 0, 1, 0, 1, . . .), and let T : B → B be the mapping defined by T (ϕ) = eϕ
(pointwise multiplication). Then T is an idempotent multiplier on B so that
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T (B) is closed in B. For this multiplier, ∆(T̂ ) = {δn : n = 2k + 1, k ∈ N}
and δ(T ) = 1 although ∆(T̂ ) is not a u-set with respect to B. Observe also
that although T 2(B) = T (B), T (B) does not have a BAI.

Next we present an implication of the Glicksberg condition (I). As we
shall see below this result is closely connected with the problems under study
in this paper. In this result we do not assume that A is regular.

Theorem 2.14. Suppose that A satisfies Condition (I) and that ∆(A) is
closed in (A∗,weak). Then every weakly compact homomorphism from A into
another commutative semisimple Banach algebra B has a finite-dimensional
range.

Proof. By Theorem 2.14 of [Ü], it is enough to prove that∆(A), equipped
with the weak topology induced by that of A∗, is discrete. By condition (I),
there exists a constant c > 0 such that, for each f ∈ ∆(A) and for each
neighborhood V of f , there is an a ∈ A with ‖a‖ ≤ c, supp(â) ⊆ V and
〈a, f〉 = 1. Fix an f ∈ ∆(A), and let (Va)a∈I be a basic neighborhood
system of f in the Gelfand space ∆(A), ordered by reverse inclusion. For
each α ∈ I, let aα be an element of A such that ‖aα‖ ≤ c, supp(â) ⊆ Vα
and 〈aα, f〉 = 1. Let mf be a weak∗-cluster point of the net (aα)α∈I in A∗∗.
Then 〈mf , f〉 = 1 and 〈mf , g〉 = 0 for each g ∈ ∆(A), g 6= f . This implies
that (∆(A),weak) is discrete.

To avoid long paraphrasing, let us say that a Banach algebra B has the
Hewitt property if each multiplier T on B with a closed range factors as a
product of an invertible and an idempotent multiplier. Host and Parreau’s
famous result says that the group algebra L1(G) of any locally compact
abelian group G has the Hewitt property.

Theorem 2.15. Suppose that A is regular , ∆(A) is closed in (A,weak)
and every open subset of ∆(A) is a u-set with respect to A. If there exists a
one-to-one weakly compact homomorphism from A into some Banach algebra
B then A has the Hewitt property.

Proof. Let h : A→ B be a one-to-one weakly compact homomorphism.
Replacing B by h(A) we can assume that the range of h is dense in B and
B is commutative. Let us first see that the condition that ∆(A) is closed in
(A,weak) forces A to be unital.

To this end, we first show that h∗(∆(B)) is closed in ∆(A). Indeed, let
(h∗(fα))α∈I be a net that converges weakly in A∗ to some g ∈ ∆(A). So
g 6= 0. Passing to a subnet, we can assume that (fα)α∈I converges in the
weak-star topology of B∗ to a functional f ∈ B∗. The fact that g 6= 0 implies
that f 6= 0. So f ∈ ∆(B), g = h∗(f) is in h∗(∆(B)), and h∗(∆(B)) is closed
in (∆(A),weak).
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Hence, h being weakly compact, h∗(∆(B)) is weakly compact. In par-
ticular, h∗(∆(B)) is closed in the Gelfand space ∆(A). Now using the fact
that A is regular and h is one-to-one, we deduce that h∗(∆(B)) = ∆(A) so
that ∆(A) is also weakly compact, so weak-star compact. Hence A, being
semisimple, is unital.

Thus every multiplier on A is of the form La for some a ∈ A. Now sup-
pose that La(A) = Aa is closed in A. Then, by Theorem 2.12, δ(La) > 0.
This implies that the set ∆(â) = {f ∈ ∆(A) : â(f) 6= 0} is compact, which
in turn implies that the ideal Aa is unital. Let u = ae be the unit element
of Aa. Then, as one can readily check, La = LuLv, where v = a+ 1− u and
1 is the unit element of A. Clearly Lu is an idempotent multiplier and Lv is
an invertible multiplier since, as one can easily see, v̂ 6= 0 on ∆(A). Hence
A has the Hewitt property.

Thus the Hewitt property is of interest only for those commutative regu-
lar algebras on which there is no weakly compact one-to-one homomorphism.
The Fourier algebra A(G) of any amenable group is such an algebra (see for
instance [Ü; Corollary 2.16]). On the other hand, as proved by E. Granirer
[Gr], if G contains the free group F2 then there exist weakly compact homo-
morphisms on A(G) with infinite-dimensional ranges. We include here the
following result, which seems to have been unnoticed.

Proposition 2.16. Let G be any locally compact group. Then every
compact homomorphism from A(G) into any Banach algebra B has a finite-
dimensional range.

Proof. Put A = A(G). We first remark that the set ∆(A) is norm closed
in A∗ and is discrete under the norm topology since it is discrete under the
weak topology [Ü]. Let I be a closed ideal of A and ϕ : A → A/I be the
quotient homomorphism. Using this homomorphism we show easily that the
spectrum of the algebra A/I is also norm closed and norm discrete in its
dual space.

Now let h : A→ B be a compact homomorphism. Replacing B by h(B)
we can assume that B is commutative and the range of h is dense. Let
h̃ : A/Kerh → B be the induced homomorphism. Then h̃ is one-to-one
and compact. The algebra A/Kerh being regular, as in the proof of the
above theorem, we deduce that its spectrum is norm compact, so finite.
Hence the hull of the ideal Kerh is finite. Since one-point subsets of G are
sets of synthesis [E; p. 229, Corollary 2], the finite set hull(Kerh) is a set
of synthesis (see e.g. Corollary 5.7 of [Ü]). Then Kerh = ker(hull(Kerh)).
This implies that the algebra A/Kerh is semisimple. As the spectrum of
A/Kerh is finite, it is finite-dimensional. Hence the dimension of h(A) is
also finite.
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3. Existence of BAI in T (A) and idempotent elements of M(A).
In this section we present an analysis of the following two problems: (a)
When is the ideal T (A) closed in A and does it have a BAI? (b) How to
characterize the idempotent elements of M(A) in terms of subsets of ∆(A)?
We first give a couple of general results and then consider these two problems
in more special settings.

3.a. Existence of BAI in T (A). LetG be a locally compact abelian group
and µ ∈ M(G) be a regular Borel measure on G. As proved by Glicksberg
[G], the ideal L1(G) ∗ µ is closed in L1(G) iff the ideal M(G) ∗ µ is closed
in M(G). Moreover, by the Host–Parreau Theorem, in this case the ideal
L1(G)∗µ has a BAI. The next proposition shows that this is a general result.

Proposition 3.1. Suppose that A has a BAI. Then the ideal T (A) is
closed in A and has a BAI iff the ideal T ◦M(A) = {T ◦ S : S ∈ M(A)} is
closed in M(A) and has a unit element.

Proof. (a)⇒(b). Suppose that T (A) is closed in A and has a BAI. Then
by the Cohen–Hewitt Factorization Theorem [He-R; 32.22], AA = A and
T (A)T (A) = T (A). Hence T 2(A) = T (A). This implies that T factors as
T = S ◦ θ = θ ◦ S (see [L-M; Theorems 5 and 6]), where the multiplier S
is invertible and θ is idempotent. Hence T ◦M(A) = θ ◦M(A) is closed in
M(A) and θ ◦ I is the unit element of T ◦M(A), where I is the unit element
of M(A).

(b)⇒(a). Suppose that T ◦M(A) = {T ◦ S : S ∈ M(A)} is closed in
M(A) and has a unit element, say T ◦ U . As T ◦ I = T ◦ I ◦ T ◦ U =
T 2 ◦ U , we have T (A) = T 2 ◦ U(A) ⊆ T 2(A). Hence T (A) = T 2(A).
This implies that T (A) is closed in A and has a BAI [L-M; Theorems 5
and 6].

Theorem 3.2. Suppose that A has a BAI. Then T (A) is closed in A and
has a BAI iff there is a multiplier S ∈M(A) such that T̂ Ŝ = 1 on ∆(T̂ ).

Proof. Suppose first that T (A) is closed and has a BAI. Then as in the
preceding proof, T factors as T = B ◦ θ, where B is invertible in M(A)
and θ is an idempotent of M(A). Let S be the inverse of B. Then, since
∆(T̂ ) = ∆(θ̂), T̂ Ŝ = 1 on ∆(T̂ ).

Conversely, suppose that there is an S ∈ M(A) such that T̂ Ŝ = 1 on
∆(T̂ ). Put θ = T ◦ S. Then θ̂ = 1 on ∆(T̂ ) and θ̂ = 0 on ∆0(T̂ ). Hence, A
being semisimple, for each a ∈ A, θ(a) = θ2(a) so that θ is an idempotent
multiplier (so a homomorphism), θ(A) is closed in A and has a BAI. Hence
it is enough to show that T (A) = θ(A). We have θ(A) = T (S(A)) ⊆ T (A).
To prove the reverse inclusion, we first remark that, again by semisimplicity
of A, for each a ∈ A, T (a) = T (θ(a)). Hence T (A) = T (θ(A)) = θ(T (A)) ⊆
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θ(A) so that T (A) = θ(A), and therefore T (A) is closed in A and has a
BAI.

In view of this result it is convenient to introduce the following no-
tion.

We say that a multiplier T ∈ M(A) is spectrally invertible if there is a
multiplier S ∈M(A) such that T̂ Ŝ = 1 on ∆(T̂ ).

In this terminology, the preceding theorem says that a commutative
semisimple Banach algebra B with a BAI has the Hewitt property iff every
multiplier S ∈ M(B) with closed range is spectrally invertible. It is also
clear that if S is spectrally invertible then S(B) is complemented in B and
δ(S) > 0. To continue, we need the following notion introduced by Takahasi
and Hatori in [T-Ha].

A commutative semisimple Banach algebra B with a BAI is said to be
a BSE-algebra (= Bochner–Schoenberg–Eberlein) if any u ∈ B∗∗ for which
û : ∆(B)→ C is continuous on ∆(B) belongs to the set

Λ(B) = {m ∈ B∗∗ : mB ⊆ B}.
Here û is defined by û(f) = 〈u, f〉.

As proved in [T-Ha], besides the commutative group algebra L1(G) and
the C∗-algebra C0(Ω), the classical disk algebra A(D) and Hardy space
H∞(D) are BSE-algebras. For an amenable locally compact group G, by
Corollary 2 of [E; p. 202], the Fourier algebra A(G) is also a BSE-algebra.

The next result gives a necessary and sufficient condition for T to be
spectrally invertible.

Theorem 3.3. Suppose A is a BSE-algebra with a BAI. Then T is spec-
trally invertible iff there exists a constant c > 0 such that

∀λ1, . . . , λn ∈ C, ∀f1, . . . , fn ∈ ∆(T̂ ),
∣∣∣
n∑

i=1

λi

∣∣∣ ≤ c
∥∥∥

n∑

i=1

λiT̂ (fi)fi
∥∥∥.

Proof. Let u ∈ A∗∗ be a right unit for the Arens product of this space.
This is just a weak-star cluster point in A∗∗ of a BAI of A. Put e = T ∗∗(u),
and let Le : A → A be the multiplier defined by Le(a) = ae. Then T = Le
and, for f ∈ ∆(A), T̂ (f) = 〈e, f〉. We shall work with e instead of T .

Suppose first that T is spectrally invertible. So there exists an S ∈M(A)
such that T̂ Ŝ = 1 on ∆(T̂ ). Let ẽ ∈ A∗∗ be the element defined by ẽ =
S∗∗(u). Then, for each f ∈ ∆(T̂ ), 〈ẽ, f〉〈e, f〉 = 1. Let complex numbers
λ1, . . . , λn and functionals f1, . . . , fn ∈ ∆(T̂ ) be given. Then

∥∥∥
n∑

i=1

λi〈e, fi〉fi
∥∥∥ ≥ 1

‖ẽ‖
∣∣∣
n∑

i=1

λi〈e, fi〉〈fi, ẽ〉
∣∣∣ =

1
‖ẽ‖

∣∣∣
n∑

i=1

λi

∣∣∣
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so that ∣∣∣
n∑

i=1

λi

∣∣∣ ≤ ‖ẽ‖
∥∥∥

n∑

i=1

λi〈e, fi〉fi
∥∥∥.

Hence |∑n
i=1 λi| ≤ c‖

∑n
i=1 λiT̂ (fi)fi‖ with c = ‖ẽ‖.

Conversely, suppose that

∃c > 0 ∀λ1, . . . , λn ∈ C, ∀f1, . . . , fn ∈ ∆(T̂ ),
∣∣∣
n∑

i=1

λi

∣∣∣ ≤ c
∥∥∥

n∑

i=1

λiT̂ (fi)fi
∥∥∥.

Define a linear functional m on the linear span span(∆(T̂ )) of ∆(T̂ ) in A∗

by

m
( n∑

i=1

λifi

)
=

n∑

i=1

λi/〈e, fi〉.

By the above condition, m is bounded. Let m̃ be a Hahn–Banach exten-
sion of m to A∗ so that m̃ ∈ A∗∗. Then, for f ∈ ∆(T̂ ), 〈m̃, f〉〈e, f〉 = 1.
From this equality and the fact that 〈e, f〉 = 〈T ∗∗u, f〉, we conclude that
δ(T ) > 0, the set ∆(T̂ ) is both open and closed in ∆(A) and the mapping
f 7→ 〈m̃, f〉 is continuous on ∆(A). Hence, A being a BSE-algebra, Am̃ ⊆ A
and S = Lm̃ is a multiplier on A. Since T̂ Ŝ = 1 on ∆(T̂ ), T is spectrally
invertible.

As mentioned above, if T is spectrally invertible then δ(T ) > 0. The
next corollary says that if ∆(T̂ ) is a “Sidon set” and δ(T ) > 0 then T is
spectrally invertible. At this point we remark that if A = C0(Ω) and b is a
bounded continuous function on Ω and T is the multiplier defined on C0(Ω)
by T (x) = bx then, as one can easily see, span(∆(T̂ )) = `1(∆(T̂ )).

Corollary 3.4. Suppose that A is a BSE-algebra with a BAI. Then, if
the closed linear span of ∆(T̂ ) in A∗ is isomorphic to the space `1(∆(T̂ ))
then T is spectrally invertible if (and only if ) δ(T ) > 0.

Proof. If span(∆(T̂ )) is isomorphic to `1(∆(T̂ )) then there exists a con-
stant c > 0 such that

∀λ1, . . . , λn ∈ C, ∀f1, . . . , fn ∈ ∆(ê),
∥∥∥

n∑

i=1

λifi

∥∥∥ ≥ c
n∑

i=1

|λi|.

So, if δ(T ) > 0, then
∥∥∥

n∑

i=1

λiT̂ (fi)fi
∥∥∥ ≥ c

n∑

i=1

|λiT̂ (fi)| ≥ cδ(T )
n∑

i=1

|λi| ≥ cδ(T )
∣∣∣
n∑

i=1

λi

∣∣∣.

Hence, by the preceding theorem, T is spectrally invertible.
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Next we present a characterization of the spectrally invertible multipli-
ers in terms of U-subsets of ∆(A). We recall that, as defined in Section 2
above, an open subset O of ∆(A) is said to be a U-set (or Urysohn set) with
respect to A if

∃c > 0 ∀K ⊆ O compact ∃a ∈ A :

‖a‖ ≤ c, supp(â) ⊆ O, â = 1 on K.

If B is a closed subalgebra of A and the element a above is in B then we
say that O is a U-set with respect to B. It is clear that if an open subset O
of ∆(A) is a U-set with respect to a closed subalgebra B then it is also a
U-set with respect to A.

We first give a general necessary and sufficient condition for the existence
of a BAI in a class of Banach algebras in terms of U-sets. This result is of
independent interest.

Lemma 3.5. Let B be a commutative, semisimple, regular Tauberian Ba-
nach algebra. Then B has a BAI iff ∆(B) is a U-set with respect to B.

Proof. First assume that B has a BAI, bounded by a certain constant
β > 0. Let K be a nonempty compact subset of ∆(B), and 0 < ε < 1 be a
fixed number. By regularity of B, there is an a ∈ B such that â = 1 on K.
By the Cohen–Hewitt Factorization Theorem [He-R; 32.22], there exist a0

and u in B such that a = a0u with ‖u‖ ≤ β and ‖a− a0‖ ≤ ε. Put

b = u+ u(a− a0).

Then b̂ = 1 on K and ‖b‖ ≤ β + ε. Hence, with c = β + 1, ∆(B) is a U-set
with respect to B. (Note that for the proof of this implication we did not
use the fact that B is Tauberian.)

Conversely, suppose that ∆(B) is a U-set with respect to B so that there
exists a constant c > 0 such that

∀K ⊆ ∆(B) compact ∃a ∈ A : ‖a‖ ≤ c and â = 1 on K.

Let Σ be the set of compact subsets of ∆(B). Ordered by inclusion, Σ is a
directed set. For each K ∈ Σ, there exists an aK ∈ B such that ‖aK‖ ≤ c
and âK = 1 on K. Then the net (aK)K∈Σ is a BAI in B. Indeed, let b be an
element of B with compact support, and K0 = supp(b̂). Then, for K ∈ Σ
with K ⊇ K0, aKb = b. As B is Tauberian, from this we conclude that B
has a BAI.

This lemma applied to the algebra A(G) shows that a locally compact
group G is amenable iff G is a U-set with respect to the algebra A(G). As
a first corollary of this lemma we give the following result.
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Corollary 3.6. Suppose that A is regular , and E ⊆ ∆(A) is a closed
set of synthesis. Then the ideal B = ker(E) has a BAI iff the set O =
∆(A) \E is a U-set with respect to A.

Proof. First we remark that the ideal B = ker(E), regarded as a Banach
algebra in its own right, is a commutative semisimple regular Banach alge-
bra. As E is a set of synthesis, B is also Tauberian. If B has a BAI then,
by the preceding lemma, ∆(B) = ∆(A) \E is a U-set with respect to B, so
with respect to A.

Conversely, suppose that O is a U-set with respect to A. Then, since any
a ∈ A for which the support of â is contained in ∆(A) \E is in the ideal B,
the set ∆(A) \E is also a U-set with respect to B. Hence, by the preceding
lemma, B has a BAI.

The following theorem is one of the main results of this section. We re-
call that in a commutative semisimple regular Tauberian Banach algebra B
with a BAI and satisfying the Dinkin conditions for synthesis [La; p. 206],
all closed-open subsets of ∆(B) are sets of synthesis.

Theorem 3.7. Suppose that A is a regular , has a BAI and all closed-
open subsets of ∆(A) are sets of synthesis. Then the multiplier T is spec-
trally invertible iff T (A) is closed in A and the set ∆(T̂ ) is a U-set with
respect to A.

Proof. Suppose first that T is spectrally invertible. Then by Theorem 3.2
above, T (A) is closed and has a BAI. Moreover, by Theorem 2.8, δ(T ) > 0 so
that the sets ∆(T̂ ) and ∆0(T̂ ) are both closed and open. Therefore ∆0(T̂ ) is
a set of synthesis and T (A) = ker(∆0(T̂ )). Since ∆0(T̂ ) is a set of synthesis,
T (A), as a Banach algebra in its own right, is Tauberian. On the other
hand, T (A), being an ideal of A, is regular. Hence B = T (A) satisfies the
hypothesis of the preceding lemma so that ∆(B) = ∆(T̂ ) is a U-set with
respect to B, so with respect to A.

Conversely, suppose that ∆(T̂ ) is a U-set with respect to A. Then, by
Theorem 2.12, δ(T ) > 0. Hence ∆0(T ) is closed-open in ∆(A), so a set
of synthesis, T (A) = ker(∆0(T̂ )) and B = T (A), viewed as a Banach al-
gebra in its own right, is a commutative, semisimple, regular Tauberian
algebra. Now, since ∆(T̂ ) is a U-set with respect to A, there is a constant
c > 0 such that, for each compact K of ∆(T̂ ), there is an a ∈ A such
that

‖a‖ ≤ c, supp(â) ⊆ ∆(T̂ ) and â = 1 on K.

Since supp(â) ⊆ ∆(T̂ ) and T (A) = ker(∆0(T̂ )), we see that a ∈ T (A). Hence
∆(T̂ ) is a U-set with respect to T (A). Hence, by the preceding lemma, T (A)
has a BAI and, by Theorem 3.2, T is spectrally invertible.
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Since for an amenable locally compact group G the algebra A = A(G)
satisfies the Ditkin conditions for synthesis (see for instance [F; Lemma 5.2]),
we have the following result.

Corollary 3.8. Let G be an amenable locally compact group, A =
A(G) and u ∈ B(G). Then the following assertions are equivalent.

(a) The ideal A(G)u is closed in A(G) and has a BAI.
(b) B(G)u is closed in B(G) and has a unit element.
(c) u is spectrally invertible, i.e. there exists a v ∈ B(G) such that uv = 1

on the set ∆(û) = {f ∈ G : u(f) 6= 0}.
(d) The ideal A(G)u is closed in A(G) and ∆(û) is a U-set with respect

to A(G).
(e) There is a constant c > 0 such that , for λ1, . . . , λn ∈ C and f1, . . . , fn

∈ ∆(û), in the norm of VN(G), we have

∣∣∣
n∑

i=1

λi

∣∣∣ ≤ c
∥∥∥

n∑

i=1

λiu(fi)fi
∥∥∥.

We also remark that, with the notation of this corollary (and for G
amenable), if the closed linear span of ∆(û) in VN(G) is isomorphic to the
space `1(∆(û)) and δ(u) > 0 then, by Corollary 3.4, ∆(û) is a U-set with
respect to A(G) and the ideal A(G)u is complemented in A(G).

3.b. U-sets and idempotent elements of M(A). For a locally compact
abelian group G, the idempotent elements of M(G) have been character-
ized by P. Cohen [C]; and in the noncommutative case, those of B(G) by
B. Host [H]. The idempotent elements of M(G) (resp. B(G)) correspond
(via Fourier–Stieltjes transform) to the characteristic functions of the ele-
ments of the coset ring of Ĝ (resp. G) generated by the cosets of the open
subgroups of Ĝ (resp. G). The characterization of the idempotent elements
of M(A), for an abstract Banach algebra A, presents a certain interest since
this is connected with several other problems such as the characterization of
the complemented ideals of A and that of the multipliers with closed range.

In this section we give a result which shows that, for a fairly large class
of Banach algebras, the idempotent elements of M(A) correspond to the
closed-open U-subsets of ∆(A) in the same way as the idempotent elements
of M(G) correspond to the elements of the coset ring of Ĝ.

As is well known, every open subgroup H of a locally compact group G
is also closed; so are the cosets of H. The cosets of the open subgroups of
G generate the so-called coset ring of G; the elements of this ring are both
closed and open in Ĝ. The following can be considered as an abstract analog
of this ring.
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Lemma 3.9. Suppose that A is a regular BSE-algebra with a BAI and
that closed-open subsets of ∆(A) are sets of synthesis. Then the set <(∆(A))
of closed-open U-subsets of A forms a ring.

Proof. We first remark that, since A has a BAI, by Lemma 3.5, ∆(A) is
a U-set with respect to A. Let now O1 and O2 be two closed-open U-subsets
of ∆(A), and K be a compact subset of O1 ∪ O2. Since ∆(A) is a locally
compact space, we can write K as a union of two compact sets K1 and K2,
with Ki ⊆ Oi (i = 1, 2). Since O1 and O2 are U-sets, there exist constants
ci > 0 and elements ai (i = 1, 2) in A such that ‖ai‖ ≤ ci, supp(âi) ⊆ Oi
and âi = 1 on Ki. Let a = a1 + a2 − a1a2. Then ‖a‖ ≤ c1 + c2 + c1c2,
supp(â) ⊆ O1 ∪O2 and â = 1 on K, so that O1 ∪O2 is a U-set with respect
to A.

Now let O be a closed-open U-subset of ∆(A), and E = ∆(A) \O. Then
E, being closed and open in ∆(A), is a set of synthesis. Hence the ideal
B = ker(E) of A, viewed as a Banach algebra in its own right, is semisim-
ple, regular and Tauberian. Since ∆(B) = O and since any a ∈ A with
supp(â) ⊆ O is in B, ∆(B) is also a U-set with respect to B. Hence, by
Lemma 3.5, B has a BAI. It follows that B∗∗ has a right unit e. Clearly ê
is just the characteristic function of O, so it is continuous on ∆(A). Hence,
A being a BSE-algebra, Ae ⊆ A. As the multiplier defined by e is idem-
potent, the ideal Ae is closed in A. Since the hulls of the ideals Ae and
B are the same, namely E, and E is a set of synthesis, B = Ae. Now
let (dα)α∈I be a BAI for A. Put eα = dα − edα. Then the net (eα)α∈I is
in the ideal I = ker(O) and a BAI for it. Hence, by Lemma 3.5, E is a
U-set with respect to I, so with respect to A. Thus the set <(∆(A)) is a
ring.

The next result is the second main result of this section. A subset O
of ∆(A) is said to support an idempotent multiplier if O = ∆(θ̂) for some
idempotent element θ of the algebra M(A).

Theorem 3.10. Suppose that A is a regular BSE-algebra with a BAI
satisfying Ditkin’s condition for synthesis. Then a closed-open subset O of
∆(A) supports an idempotent element of M(A) iff O is a U-set with respect
to A.

Proof. Let θ ∈M(A) be an idempotent multiplier and O = ∆(θ̂). Then
the ideal θ(A) has a BAI since A has one. Moreover, since θ(A) = ker(E),
where E = ∆(A)\O, and since E is a set of synthesis, the algebra B = θ(A)
is a regular Tauberian Banach algebra with a BAI. Hence O is a U-set with
respect to B, so with respect to A.

Conversely, let O be a closed-open U-subset of ∆(A). Then, as we have
seen in the proof of the above lemma, the set E = ∆(A) \ O is also a
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U-set with respect to A and, for some e ∈ A∗∗ for which Ae ⊆ A, we have
ker(E) = Ae. Moreover the multiplier defined by e is idempotent and, with
θ = Le, ∆(θ̂) = O. Thus there is a one-to-one correspondence between the
idempotent elements of M(A) and the elements of the ring of closed-open
U-subsets of ∆(A).

Host’s Idempotent Theorem combined with the preceding result gives
the following corollary.

Corollary 3.11. Let G be an amenable locally compact group and O
be a closed-open subset of G. Then O is in the coset ring of G iff O is a
U-set with respect to the algebra A(G).

The preceding corollary and Lemma 3.6 show that the following result
holds.

Corollary 3.12. Suppose that G is amenable and E is a closed-open
subset of G. Then the ideal I = ker(E) of A(G) has a BAI iff the set E
is a U-set with respect to A(G). If this is the case, I = A(G)u for some
idempotent u ∈ B(G).

In particular, if G is discrete then, for a subset E of G, the ideal I =
ker(E) has a BAI iff E is in the coset ring of G. In this case it is com-
plemented in A(G). We finish with the following question. Let G be an
amenable locally compact group and u ∈ B(G) be such that A(G)u is closed
in A(G). Then, by Theorem 2.12, δ(u) > 0 so that the set ∆(û) = {f ∈ G :
u(f) 6= 0} is both closed and open in G, so a set of synthesis. One impor-
tant question that remains unsolved is this. Is ∆(û) a U-set with respect to
A(G)?
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