On the range of the derivative of a real-valued function with bounded support

by

T. GASPARI (Bordeaux)

Abstract. We study the set \(f'(X) = \{ f'(x) : x \in X \} \) when \(f : X \to \mathbb{R} \) is a differentiable bump. We first prove that for any \(C^2 \)-smooth bump \(f : \mathbb{R}^2 \to \mathbb{R} \) the range of the derivative of \(f \) must be the closure of its interior. Next we show that if \(X \) is an infinite-dimensional separable Banach space with a \(C^p \)-smooth bump \(b : X \to \mathbb{R} \) such that \(\|b^{(p)}\|_\infty \) is finite, then any connected open subset of \(X^* \) containing 0 is the range of the derivative of a \(C^p \)-smooth bump. We also study the finite-dimensional case which is quite different. Finally, we show that in infinite-dimensional separable smooth Banach spaces, every analytic subset of \(X^* \) which satisfies a natural linkage condition is the range of the derivative of a \(C^1 \)-smooth bump. We then find an analogue of this condition in the finite-dimensional case.

1. Introduction. A bump is a function from a Banach space \(X \) to \(\mathbb{R} \) with a bounded nonempty support. In this paper we study the set \(f'(X) = \{ f'(x) : x \in X \} \), which is the range of the derivative of \(f \), when \(f \) is a Fréchet differentiable bump. More precisely we will try to find necessary or sufficient conditions for a subset \(A \) of \(X^* \) to be the range of the derivative of a bump.

D. Azagra and M. Jiménez-Sevilla proved in [2] that Rolle’s theorem fails in infinite dimensions. As a consequence, they deduce that there is a \(C^1 \)-smooth Lipschitz bump on \(l_2 \) such that the range of its derivative has an empty interior. However it can be shown by using Ekeland’s Variational Principle ([4]) that \(0 \in \operatorname{int}(f'(X)) \) even if \(f \) is only Gateaux differentiable. Thus, if \(f \) is a \(C^1 \)-smooth bump on \(\mathbb{R}^n \), then \(f'(\mathbb{R}^n) \) is a compact neighbourhood of 0.

Let us introduce some notations. The symbol \(\mathbb{N} \) means the set \(\{1, 2, \ldots\} \). We write \(B(x, r) \) for the closed ball of centre \(x \) and radius \(r \), and \(S(x, r) \) for the sphere of centre \(x \) and radius \(r \). Sometimes \(B_X \) is used for \(B(0, 1) \). For a function \(f : X \to \mathbb{R} \), the support of \(f \) is \(\operatorname{supp}(f) = \{ x \in X : f(x) \neq 0 \} \). As said before, \(f \) is called a bump if its support is nonempty and bounded. Recall that a function \(f : X \to \mathbb{R} \) is said to be Fréchet differentiable at

\[2000\] Mathematics Subject Classification: 46G05, 26B05, 46B20, 46T20.
$x_0 \in X$ if there exists $f'(x_0)$ in X^* such that

$$\lim_{y \to 0} \frac{f(x_0 + y) - f(x_0) - f'(x_0)(y)}{\|y\|} = 0.$$

$f'(x_0)$ is then called the derivative of f at x_0. The set $f'(X) = \{f'(x) : x \in X\}$ is the range of the derivative of f. We will be concerned only with Fréchet differentiability.

Let us recall some notations for multiindices. The symbol $\mathbb{N}^{<\mathbb{N}}$ stands for the set of finite sequences of natural numbers. If $\sigma = (q_1, \ldots, q_k) \in \mathbb{N}^{<\mathbb{N}}$, then k is called the length of σ and we write $k = |\sigma|$. If $k \geq 2$ we define $\sigma_\prec = (q_1, \ldots, q_{k-1})$. For $j \in \{1, \ldots, k\}$, $\sigma(j) = q_j$ and $\sigma^j = (\sigma(1), \ldots, \sigma(j))$. For $\tau = (r_1, \ldots, r_m) \in \mathbb{N}^{<\mathbb{N}}$, $\sigma^\tau = (q_1, \ldots, q_k, r_1, \ldots, r_m)$. The symbol $\mathbb{N}^\mathbb{N}$ denotes the set of infinite sequences of natural numbers. For $\sigma = (q_j)_{j \geq 1} \in \mathbb{N}^\mathbb{N}$ and $j \in \mathbb{N}$, $\sigma^j = q_j$ and $\sigma^j = (\sigma(1), \ldots, \sigma(j))$.

Now we describe our main results and the organization of the paper.

The goal in Section 2 is to try to answer the following question of [3]: If $f : \mathbb{R}^n \to \mathbb{R}$ is a C^1-smooth bump, is $f'(\mathbb{R}^n)$ equal to the closure of its interior? We give a partial answer when $n = 2$ and f is C^2-smooth in Theorem 2.1. Notice that in infinite dimensions, $f'(X)$ has no reason to be closed and $\text{int}(f'(X))$ can be empty (see [5]).

Section 3 is devoted to finding sufficient conditions for a connected open set to be the range of the derivative of a bump. We recall that $f'(X)$ is connected if f is a Fréchet differentiable bump. This extension of Darboux’s theorem is proved by J. Malý in [7]. However $f'(X)$ is not always simply connected (see [3]). In finite dimensions we prove that any connected open subset of \mathbb{R}^n containing 0 is the range of the derivative of a Fréchet differentiable bump (Theorem 3.1). We then extend this result to the case when X is an infinite-dimensional separable Banach space with a C^p-smooth bump $b : X \to \mathbb{R}$ such that $\|b^{(p)}\|_\infty$ is finite (Theorem 3.6).

In Section 4, we find a sufficient condition for an analytic subset of X^* to be the range of the derivative of a C^1-smooth bump when X^* is separable (Proposition 4.2). We then exhibit analytic sets, neither closed nor open, which are the range of the derivative of a C^1-smooth bump (Theorem 4.4). We obtain an analogue of Proposition 4.2 in finite dimensions in Theorem 4.6. Finally, we study the relationship between Theorem 4.6 and a result of [3].

2. The range of the derivative of a C^n-bump. In this section we focus on the case $X = \mathbb{R}^n$ with $n \geq 2$. Our main result is

Theorem 2.1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^2-smooth bump. Then $f'(\mathbb{R}^2)$ is equal to the closure of its interior.
Before proceeding with the proof of this result we recall that the range of the derivative of a C^1-smooth bump on \mathbb{R}^n is a connected compact neighbourhood of the origin. We now show other properties which, applied to the case $n = 2$, will allow us to prove Theorem 2.1.

Proposition 2.2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^n-smooth function. If $f' = 0$ on a compact connected set K, then f is constant on K.

Proof. If C is the set of critical points of f, Sard’s Theorem shows that $f(C)$ is of Lebesgue measure 0. Since K is a compact connected subset of C, $f(K)$ is a compact interval of \mathbb{R} of measure 0, and hence a single point. ■

We need a result on connectedness.

Lemma 2.3. Let C be a connected compact subset of \mathbb{R}^n and G the unbounded connected component of $\mathbb{R}^n \setminus C$. Then ∂G, the boundary of G, is connected.

This follows from [6, §52.III.6 and §52.I.9].

Proposition 2.4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^n-smooth bump and $z \in \partial(f'(\mathbb{R}^n))$. Then $\mathbb{R}^n \setminus f'^{-1}(z)$ is connected.

Proof. Assume that $\mathbb{R}^n \setminus f'^{-1}(z)$ is not connected. Since $z \neq 0$, $f'^{-1}(z)$ is bounded and thus $\mathbb{R}^n \setminus f'^{-1}(z)$ has a bounded nonempty connected component, which we call B. If we denote by G the unbounded connected component of $\mathbb{R}^n \setminus \bar{B}$, Lemma 2.3 asserts that ∂G is connected. We put $g(x) = f(x) - \langle z, x \rangle$ for $x \in \mathbb{R}^n$. Since $\partial G \subset \partial B$ (see [6, §44.III.3]), $g'(x) = 0$ for all x in ∂G. Proposition 2.2 implies that g is constant, equal to some C on ∂G. We define $h(x) = 0$ if $x \in G$ and $h(x) = g(x) - C$ if $x \notin G$. Then supp h is bounded and nonempty, since $h'(x) = f'(x) - z \neq 0$ if $x \in B$. Clearly h is C^1, so h is a C^1-smooth bump, and hence $0 \in \text{int}(h'(\mathbb{R}^n))$. But $h'(\mathbb{R}^n) \subset f'(\mathbb{R}^n) - z$, so $z \in \text{int}(f'(\mathbb{R}^n))$. This contradicts the fact that $z \in \partial(f'(\mathbb{R}^n))$. ■

Proposition 2.5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^n-smooth bump. Then $f'(\mathbb{R}^n)$ cannot be the union of compact sets A and B such that $0 \notin B \subset A$ and $A \cap B$ is a totally disconnected subset of $\partial(f'(\mathbb{R}^n))$.

Proof. We suppose that $f'(\mathbb{R}^n) = A \cup B$ with A and B as in the statement. Let $K = f'^{-1}(B)$. Then K is compact, since B is closed and $0 \notin B$. Let $x_0 \in K$ be so that $f'(x_0) \notin A \cap B$. We denote by C the connected component of x_0 in K and by G the unbounded connected component of $\mathbb{R}^n \setminus C$. Then $\partial G \subset \partial C \subset \partial K$ ([6, §44.III.3]) and ∂G is connected (Lemma 2.3). Thus $f'(\partial G)$ is a connected subset of $A \cap B$ and hence $f'(\partial G)$ is a single point, called y. Proposition 2.4 asserts that $\mathbb{R}^n \setminus f'^{-1}(y)$ is connected. Recall that $0 \notin B$, hence $y \neq 0$ and $\mathbb{R}^n \setminus f'^{-1}(y)$ is unbounded. Since $f'(x_0) \notin A \cap B$, $x_0 \in \mathbb{R}^n \setminus f'^{-1}(y)$. So it is possible to join x_0 to infinity with a continuous
path staying in $\mathbb{R}^n \setminus f'^{-1}(y)$. This is absurd, because such a path must cross ∂G which is included in $f'^{-1}(y)$. ■

Corollary 2.6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^2-smooth bump. Let $y \in f'(\mathbb{R}^2)$. Then there is $\alpha > 0$ such that for all $0 < \varepsilon < \alpha$, the set $f'(\mathbb{R}^2) \cap S(y, \varepsilon)$ contains a nontrivial arc of a circle.

Proof. Let $y \in f'(\mathbb{R}^2)$. If $y = 0$ the conclusion is obvious. If $y \neq 0$, let $\varepsilon \in [0, \|y\|/2]$. If $S(y, \varepsilon) \cap \text{int}(f'(\mathbb{R}^2)) \neq \emptyset$ the result follows. Otherwise, $S(y, \varepsilon) \cap f'(\mathbb{R}^2) \subset \partial(f'(\mathbb{R}^2))$. We define $A = f'(\mathbb{R}^2) \cap \{z : \|z - y\| \geq \varepsilon\}$ and $B = f'(\mathbb{R}^2) \cap \{z : \|z - y\| \leq \varepsilon\}$. The sets A and B are both compact, $0 \notin B$ and $y \in B \setminus A$. By Proposition 2.5, $f'(\mathbb{R}^2) \cap S(y, \varepsilon) = A \cap B$ cannot be a totally disconnected subset of $\partial(f'(\mathbb{R}^2))$. So $f'(\mathbb{R}^2) \cap S(y, \varepsilon)$ has a nontrivial connected component. It is easy to see that a closed connected subset of $S(y, \varepsilon)$ is an arc. ■

Proof of Theorem 2.1. We set $K = f'(\mathbb{R}^2)$. As K is closed, $\overline{\text{int}K} \subset K$. To show the other inclusion, let $y \in K$. For our f and y we find $\alpha > 0$ by Corollary 2.6. We fix $0 < \beta < \alpha$. For $q \in \mathbb{N}$ and $k \in \{1, \ldots, 2q\}$ we define

$$U_k(q) = \{y + t(\cos \theta, \sin \theta) : t \in [0, \beta], \theta \in [(k-1)\pi/q, k\pi/q]\},$$

$$F_{q,k} = \{\varepsilon \in [0, \beta] : U_k(q) \cap S(y, \varepsilon) \subset K\}.$$

Thanks to Corollary 2.6,

$$[0, \beta] = \bigcup_{q \in \mathbb{N}} \bigcup_{k=1}^{2q} F_{q,k}.$$

Furthermore each $F_{q,k}$ is closed. Indeed, let $(\varepsilon_j)_j$ be a sequence in $F_{q,k}$ which has a limit ε. Then $\varepsilon \in [0, \beta]$. Let $z \in U_k(q) \cap S(y, \varepsilon)$ and $\theta \in [(k-1)\pi/q, k\pi/q]$ so that $z = y + \varepsilon_j(\cos \theta, \sin \theta)$. Then $z_j = y + \varepsilon_j(\cos \theta, \sin \theta)$ is a sequence in K which converges to z. Thus $z \in K$ and $U_k(q) \cap S(y, \varepsilon) \subset K$. So $\varepsilon \in F_{q,k}$ and $F_{q,k}$ is closed.

By Baire’s theorem, there are $q_0 \in \mathbb{N}$ and $k_0 \in \{1, \ldots, 2q_0\}$ such that F_{q_0,k_0} has a nonempty interior. Thus

$$U_{k_0}(q_0) \cap \{y + t(\cos \theta, \sin \theta) : t \in \text{int}F_{q_0,k_0}, \theta \in [0, 2\pi]\}$$

is an open subset of $K \cap B(y, \beta)$. Since β can be taken arbitrarily small, $y \in \overline{\text{int}K}$. ■

3. Connected open subsets of X^* and ranges of derivative. First we study the finite-dimensional case. Our main result is

Theorem 3.1. Let U be a connected open subset of \mathbb{R}^n containing 0. Then there is a differentiable bump $f : \mathbb{R}^n \to \mathbb{R}$ such that $f'(\mathbb{R}^n) = U$.

We first recall some tools introduced in [3].
Definition 3.2. Let \((y, a) \in (\mathbb{R}^n)^2\) and \(0 < \varepsilon < \|y\|\). We define
\[
D_\varepsilon(y) = \{(1 - t)u + \sqrt{t}y : t \in [0, 1], \|u\| \leq \varepsilon\}.
\]
The set \(T(a, y, \varepsilon) = a + D_\varepsilon(y - a)\) is called the drop with centre \(a\), vertex \(y\), and thickness \(\varepsilon\).

We also introduce the notion of stationary images.

Definition 3.3. Let \(g : X \to Y\) be a mapping and \(y \in Y\). We call \(y\) a stationary image of \(g\) if there is a nonempty open subset \(\Omega\) of \(X\) such that \(g(\Omega) = \{y\}\).

The following lemma is proved in [3].

Lemma 3.4. For every \(y \in \mathbb{R}^n \setminus \{0\}\) and every \(0 < \varepsilon < \|y\|\) there exists a \(C^1\)-smooth bump \(g : \mathbb{R}^n \to \mathbb{R}\) such that \(g'(\mathbb{R}^n) = D_\varepsilon(y)\) and \(y\) is a stationary image of \(g'\).

Lemma 3.5. Let \(q \in \mathbb{N}\) and \(T_1, \ldots, T_q\) be drops with \(T_i = T(a_i, y_i, \varepsilon_i)\), \(a_{i+1} = y_i\) for all \(i\) in \(\{1, \ldots, q - 1\}\) and \(a_1 = 0\). Then there exists a \(C^1\)-smooth bump \(g : \mathbb{R}^n \to \mathbb{R}\) such that
\[
g'(\mathbb{R}^n) = T_1 \cup \ldots \cup T_q.
\]

Proof. The proof is a simple induction. We want to show that the following holds for every \(q \in \mathbb{N}\): “For every \(T_1, \ldots, T_q\) as in the lemma there is a \(C^1\)-smooth bump \(g\) such that \(g'(\mathbb{R}^n) = T_1 \cup \ldots \cup T_q\) and \(y_q\) is a stationary image of \(g'\).”

If \(q = 1\) this is Lemma 3.4. Suppose that the property is true for some \(q \geq 1\). Consider a finite set \(T_1, \ldots, T_{q+1}\) of drops with \(T_i = T(a_i, y_i, \varepsilon_i)\), \(a_1 = 0\), \(a_{i+1} = y_i\) for \(1 \leq i \leq q\). There are a \(C^1\)-smooth bump \(g : \mathbb{R}^n \to \mathbb{R}\), \(x_0 \in X\) and \(r > 0\) such that \(g'(\mathbb{R}^n) = \bigcup_{1 \leq i \leq q} T_i\) and \(g'(x) = y_q\) for all \(x\) in \(B(x_0, r)\). We apply Lemma 3.4 with the drop \(T_{q+1} - a_{q+1} = T(0, y_{q+1} - y_q, \varepsilon_{q+1})\). It gives a \(C^1\)-smooth bump \(h\) so that \(h'(\mathbb{R}^n) = T_{q+1} - y_q\) and \(y_{q+1} - y_q\) is a stationary image of \(h'\). Let \(M\) be large enough to ensure that \(\text{supp}(h) \subset B(0, M)\). Define \(b(x) = g(x) + (2M)^{-1}rh(2Mr^{-1}(x - x_0))\) for \(x \in \mathbb{R}^n\). The function \(b\) is a \(C^1\)-smooth bump, \(y_{q+1}\) is a stationary image of \(b'\), and
\[
b'(\mathbb{R}^n) = g'(\mathbb{R}^n) \cup (y_q + h'(\mathbb{R}^n)) = \bigcup_{1 \leq i \leq q+1} T_i. \quad \blacksquare
\]

Now we can prove Theorem 3.1. The idea is the following: Lemma 3.5 allows us to write any finite union of drops as the range of the derivative of a smooth bump. We cover \(U\) by a countable sequence of such sets. We show that the bumps can be taken in such a way that the series is convergent, differentiable, and that the range of its derivative is \(U\).
Proof of Theorem 3.1.

Step 1: *U is covered by a countable sequence of good finite unions of drops.*

Consider the following set:

\[W = \{ y \in U : \text{there are } q \in \mathbb{N} \text{ and } q \text{ drops} \} \]

\[T_1 = T(a_1, y_1, \varepsilon_1), \ldots, T_q = T(a_q, y_q, \varepsilon_q) \text{ in } U \text{ such that} \]

\[a_1 = 0, \ y_q = y \text{ and } a_{i+1} = y_i \text{ for all } 1 \leq i \leq q - 1. \]

We are going to show that \(W = U \). Since \(U \) is connected, it is sufficient to prove that \(W \) is a closed open nonempty subset of \(U \). Of course \(0 \in W \), so \(W \neq \emptyset \). Let \(y \in W \) and \(\varepsilon > 0 \) with \(B(y, \varepsilon) \subset U \). If \(z \in B(y, \varepsilon/2) \), then \(T(y, z, \|z - y\|/10) \subset U \), so \(z \in W \) and \(W \) is open. We take a sequence \((z_k)\) in \(W \) which has a limit \(z \) in \(U \). There is \(\varepsilon > 0 \) with \(B(z, 2\varepsilon) \subset U \). Find \(k > 0 \) so that \(z_k \in B(z, \varepsilon) \). Then \(T(z_k, z, \|z - z_k\|/10) \subset U \), thus \(z \in W \). Therefore \(W \) is a closed subset of \(U \). Hence \(W = U \).

If \(y \in U = W \), there exist \(q \) drops \(T_1 = T(a_1, y_1, \varepsilon_1), \ldots, T_q = T(a_q, y_q, \varepsilon_q) \) in \(U \) such that \(a_1 = 0, \ y_q = y \) and \(a_{i+1} = y_i \) for all \(1 \leq i \leq q - 1 \). We take \(\varepsilon_y > 0 \) such that \(B(y, 2\varepsilon_y) \subset U \) and \(w_y \) in \(B(y, \varepsilon_y) \). We define \(P_y = T_1 \cup \ldots T_q \cup T(y, w_y, \|w_y - y\|/10) \). Then

\[U = \bigcup_{y \in U} \text{int } P_y. \]

By Lindelöf’s theorem ([8]), there exists a countable sequence \((y_k)_{k \in \mathbb{N}}\) in \(U \) such that

\[U = \bigcup_{k \geq 1} \text{int } P_{y_k}. \]

Step 2: *There is a differentiable bump \(f \) such that each \(P_{y_k} \) is in \(f'(\mathbb{R}^n) \).*

According to Lemma 3.5, for all \(k \in \mathbb{N} \), there is a \(C^1 \)-smooth bump \(f_k \) with \(f'_k(\mathbb{R}^n) = P_{y_k} \). After a possible homothety we can suppose that

\[\|f_k\|_{\infty} \leq 1. \]

Let \(M_k \geq 1 \) be such that \(\text{supp}(f_k) \subset B(0, M_k) \). We define

\[x_k = (2^{-1} + \ldots + 2^{-k}, 0, \ldots, 0), \quad b_k(x) = 8^{-k}M_k^{-1}f_k(8^k M_k(x - x_k)). \]

Then \(b'_k(\mathbb{R}^n) = P_{y_k} \) and \(\text{supp}(b_k) \subset B(x_k, 8^{-k}) = S_k \). If \(k \neq j \), then \(S_k \cap S_j = \emptyset \) and \(\bigcup_{k \in \mathbb{N}} S_k \subset B(0, 2) \). We denote by \(x_\infty \) the point \((1, 0, \ldots, 0)\). The function

\[f = \sum_{k \geq 1} b_k \]

is obviously \(C^1 \) on \(\mathbb{R}^n \setminus \{x_\infty\} \). Let \(x \in \mathbb{R}^n \) and \(k \geq 1 \). If \(x \not\in S_k \), then \(b_k(x) = 0 \). If \(x \in S_k \), then \(|b_k(x)| \leq 8^{-k}M_k^{-1}\|f_k\|_{\infty} \leq 8^{-k} \) and \(\|x - x_\infty\| \geq \)
1 - ((2^{-1} + \ldots + 2^{-k}) + 8^{-k}) \geq 2^{-k-1}. Thus \(|b_k(x)| \leq 4\|x - x_\infty\|^2 \) and
\[
\frac{|f(x) - f(x_\infty)|}{\|x - x_\infty\|} \leq \sup_k |b_k(x)| \leq 4\|x - x_\infty\|,
\]
so \(f \) is differentiable at \(x_\infty \) and \(f'(x_\infty) = 0 \). Therefore \(f \) is a differentiable bump on \(\mathbb{R}^n \) and
\[
f'(\mathbb{R}^n) = \bigcup_{k \in \mathbb{N}} P_{y_k} = U. \quad \blacksquare
\]

We remark that \(f \) is not \(C^1 \)-smooth because if it were, \(U \) would be closed. \(f \) is nevertheless \(C^1 \)-smooth on \(\mathbb{R}^n \setminus \{x_\infty\} \).

We now obtain similar results in infinite dimensions. Our main result is

Theorem 3.6. Let \(X \) be an infinite-dimensional Banach space with a separable dual. Let \(p \in \mathbb{N} \) be such that there exists a \(C^p \)-smooth bump \(b : X \to \mathbb{R} \) with \(\|b^{(p)}\|_\infty \) finite. Let \(U \) be a connected open subset of \(X^* \) containing 0. Then there is a \(C^p \)-smooth bump \(f : X \to \mathbb{R} \) such that \(f'(X) = U \).

Until the end of this section, \(X \) is as in Theorem 3.6. Notice that the separability of \(X^* \) implies that there exists indeed \(p \geq 1 \) and a \(C^p \)-smooth bump \(b : X \to \mathbb{R} \) such that \(\|b^{(p)}\|_\infty \) is finite ([4, p. 58]). We remark that the mean value theorem implies that \(\|b^{(j)}\|_\infty \) is finite for all \(j \in \{0, \ldots, p\} \).

In [1], it was proved that there is a \(C^1 \)-smooth bump such that the range of its derivative is equal to \(X^* \). Theorem 3.6 is an improvement of this result. We now establish results which will be used to prove Theorem 3.6.

Lemma 3.7. There is a \(C^p \)-smooth bump \(F : X \to \mathbb{R} \) such that \(B_{X^*} \subset F'(X) \) and \(\|F^{(p)}\|_\infty \) is finite.

Proof.

Step 1: There is a \(C^p \)-smooth bump \(f \) so that \(f(x) = 1 \) for all \(x \in 2B_X \) and \(\|f^{(p)}\|_\infty \) is finite.

After maybe a translation and multiplication by \(-1\), we can suppose \(b(0) > 0 \). We take a \(C^\infty \)-smooth bump \(\varphi : \mathbb{R} \to \mathbb{R} \) such that \(0 \leq \varphi \leq 1 \), \(\varphi(t) = 1 \) if \(t \in [2^{-1}b(0), 2^{-1}3b(0)] \), and \(\varphi(0) < 1 \). By the continuity of \(b \) there is \(\delta > 0 \) such that \(b(x) \in [2^{-1}b(0), 2^{-1}3b(0)] \) if \(x \in \delta B_X \). We put \(f(x) = (1 - \varphi(0))^{-1}(\varphi(b(\delta x/2)) - \varphi(0)) \) and the result follows.

Step 2: There is a \(C^p \)-smooth bump \(f_0 \) such that the stationary images of \(f_0' \) are dense in \(B_{X^*} \) and \(\|f_0^{(p)}\|_\infty \) is finite.

Since \(X^* \) is separable, there is a dense sequence \((y_k^*)_{k \geq 1} \) in \(B_{X^*} \). Let \(M > 1 \) be so large that \(\text{supp}(f) \subset MB_X \) and \(\|f^{(j)}\|_\infty < M \) for all \(j \in \{0, \ldots, p\} \). Fix now a sequence \((x_k)_{k \geq 1} \) in \(X \) so that \(\|x_k - x_q\| \geq 2M + 1 > 3 \)
if \(k \neq q \) and \(\| x_k \| < 4M + 3 \). We define

\[
 f_0(x) = \sum_{k \geq 1} \langle y_k^*, x \rangle f(x - x_k),
\]

which is a sum of \(C^p \)-smooth functions with separated supports. Thus \(f_0 \) is \(C^p \)-smooth, \(\text{supp}(f_0) \subset (5M + 3)B_X \) and \(f_0^{(j)}(x) = y_k^* \) if \(x \in B(x_k, 1) \). If \(x \in \text{supp}(f_0) \), then

\[
 \| f_0^{(p)}(x) \| \leq \sup_{k \geq 1} \{ \| y_k^* \| \cdot \| x \| \cdot \| f^{(p)}(x - x_k) \| + p \| y_k^* \| \cdot \| f^{(p-1)}(x - x_k) \| \} \\
 \leq (5M + 3)M + pM = (5M + 3 + p)M.
\]

Step 3: We construct a sequence \((f_j)_{j \geq 1} \) of \(C^p \)-smooth bump functions.

We set \(L = 5M + 3 \). Then \(L \geq 8 \), \(\text{supp}(f_0) \subset LB_X \) and \(\| x_k \| < L - 1 \) for all \(k \geq 1 \). For \(j \geq 0 \) we define

\[
 f_{j+1}(x) = \sum_{k \geq 1} L^{-p-1} f_j(L(x - x_k)).
\]

For \(\sigma = (k_1, \ldots, k_j) \in \mathbb{N}^< \mathbb{N} \) we put

\[
 S(\sigma) = B(x_{k_1} + L^{-1}x_{k_2} + \ldots + L^{-j+1}x_{k_j}, L^{-j+1})
\]

and we prove that

\[
 \begin{cases}
 S(\sigma \kappa) \subset S(\sigma) \text{ for all } \sigma \in \mathbb{N}^< \mathbb{N} \text{ and } k \in \mathbb{N}.
 \\
 \text{For all } \sigma, \tau \text{ in } \mathbb{N}^< \mathbb{N}, |\sigma| = |\tau| \text{ and } \sigma \neq \tau \Rightarrow S(\sigma) \cap S(\tau) = \emptyset.
 \end{cases}
\]

For \(j \geq 1 \) we denote by \(\mathcal{P}(j) \) the following statement:

\[
 \begin{cases}
 \text{supp}(f_j) \subset \bigcup_{\sigma \in \mathbb{N}^j} S(\sigma) \text{ and } f_j \text{ is } C^p \text{-smooth.}
 \\
 \text{For all } \sigma \in \mathbb{N}^j \text{ and } k \in \mathbb{N}, x \in S(\sigma \kappa) \Rightarrow f'_j(x) = L^{-j} p y_k^*.
 \end{cases}
\]

We have \(\text{supp}(f_1) \subset \bigcup_{\sigma \in \mathbb{N}} S(\sigma) \). Let \(x \in \text{supp}(f_1) \) and \(\sigma \in \mathbb{N} \) so that \(x \in S(\sigma) \). If \(z \) is in a small neighbourhood of \(x \), then \(f_1(z) = L^{-p-1} f_0(L(z - x_\sigma)) \). Therefore \(f_1 \) is \(C^p \)-smooth. Let \(k \in \mathbb{N} \) and \(x \in S(\sigma \kappa) \). We have \(S(\sigma \kappa) \subset S(\sigma) \) so \(f_1(z) = L^{-p-1} f_0(L(z - x_\sigma)) \) in a neighbourhood of \(x \). Thus \(f'_j(x) = L^{-p} f'_0(L(x - x_\sigma)) = L^{-p} y_k^* \), since \(L(x - x_\sigma) \in B(x_k, 1) \). Consequently, \(\mathcal{P}(1) \) holds.

Let \(j \geq 1 \) and suppose that \(\mathcal{P}(j) \) holds. Then

\[
 \text{supp}(f_{j+1}) \subset \bigcup_{k \geq 1} \text{supp}(x \mapsto f_j(L(x - x_k))) \subset \bigcup_{k \geq 1} (x_k + L^{-1} \text{supp}(f_j))
\]

\[
 \subset \bigcup_{k \geq 1} \bigcup_{\sigma \in \mathbb{N}^j} S(k^\sigma) \subset \bigcup_{\sigma \in \mathbb{N}^{j+1}} S(\sigma).
\]

Let \(x \in \text{supp}(f_{j+1}) \) and \(\sigma \in \mathbb{N}^{j+1} \) be such that \(x \in S(\sigma) \). Clearly \(f_{j+1}(z) = L^{-p-1} f_j(L(z - x_{\sigma(1)})) \) in a neighbourhood of \(x \), so \(f_{j+1} \) is \(C^p \)-smooth. Let \(\sigma \in \mathbb{N}^{j+1} \), \(k \in \mathbb{N} \) and \(x \in S(\sigma \kappa) \). In a neighbourhood of \(x \), \(f_{j+1}(z) = \)
$L^{-p-1} f_j(L(z - x_{\sigma(1)}))$. Thus $f_{j+1}'(x) = L^{-p} f_j'(L(x - x_{\sigma(1)})) = L^{-(j+1)p} y_k^*$, since $L(x - x_{\sigma(1)}) \in S(\sigma(2), \ldots, \sigma(j+1), k)$. Finally, $P(j+1)$ holds.

STEP 4: $F = \sum_{j \geq 0} f_j$ is a C^p-smooth function and $\|F^{(p)}\|_\infty$ is finite.

For all $j \geq 0$, $\|f_{j+1}\|_\infty \leq L^{-p-1} \|f_j\|_\infty$. Thus the series of the $\|f_j\|_\infty$ is convergent. This proves the existence of F and its continuity. For $j \geq 1$ and $\sigma \in \mathbb{N}$, $S(\sigma) \subseteq S(\sigma(1)) \subseteq LB_X$. Thus $\text{supp}(f_j) \subseteq LB_x$ for all $j \geq 0$ and hence F has a bounded support. If $m \in \{0, \ldots, p\}$, then $\|f_j^{(m)}\|_\infty \leq L^{m-p-1} \|f_j^{(m)}\|_\infty \leq L^{-1} \|f_j^{(m)}\|_\infty$, so $\sum_{j \geq 0} \|f_j^{(m)}\|_\infty < \infty$. Therefore F is a C^p-smooth function and $\|F^{(m)}\|_\infty$ is finite for all $0 \leq m \leq p$.

STEP 5: Any point in B_{X^*} is in the range of the derivative of F.

Fix z^* in B_{X^*}. There exists $k_1 \geq 1$ such that $\|z^* - y_{k_1}^*\|_2 \leq L^{-p}$. Then $L^p(z^* - y_{k_1}^*)$ is in B_{X^*}, so there is $k_2 \geq 1$ such that $\|L^p(z^* - y_{k_1}^* - y_{k_2}^*)\|_2 \leq L^{-p}$. Thus $\|z^* - (y_{k_1}^* + L^{-p} y_{k_2}^*)\|_2 \leq L^{-2p}$. We construct inductively a sequence $\sigma = (k_j)_{j \geq 1} \in \mathbb{N}^\mathbb{N}$ such that $\|z^* - (y_{\sigma(1)}^* + L^{-p} y_{\sigma(2)}^* + \ldots + L^{-j-1} p y_{\sigma(j)}^*)\|_2 \leq L^{-jp}$ for all $j \geq 1$. Then

$$z^* = \sum_{j \geq 0} L^{-jp} y_{\sigma(j+1)}^*.$$

For $q \geq 1$ we define $z_q^* = \sum_{j=0}^{q-1} L^{-jp} y_{\sigma(j+1)}^*$ and $F_q = \sum_{j=0}^{q-1} f_j$. Let $w = \sum_{j \geq 0} L^{-j} x_{\sigma(j+1)}$ and $w_q = \sum_{j=0}^{q-1} L^{-j} x_{\sigma(j+1)}$. For all $j \in \{0, \ldots, q-1\}$, $w_q \in S(\sigma, j+1)$ so $f_j(w_q) = L^{-jp} y_{\sigma(j+1)}$. Thus $F_q'(w_q) = z_q^*$. The sequence $(F_q')_q$ is uniformly convergent, $(w_q)_q$ converges to w and $(z_q^*)_q$ converges to z^*, so $F'(w) = z^*$.

The next result provides the existence of plateau functions.

LEMMA 3.8. There is a C^p-smooth bump $b : X \to \mathbb{R}$ such that $b(X) \subseteq [0, 1]$, $b(x) = 1$ if $\|x\| \leq 2$ and $\|b'\|_\infty \leq 1$.

Proof. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a C^∞-smooth function so that $\varphi(t) = 0$ if $t \leq 0$, $0 \leq \varphi \leq 1$, $\varphi(t) = 1$ if $t \geq 2$, and $|\varphi'(t)| \leq 1$ for all $t \in \mathbb{R}$. Let $b_0 : X \to \mathbb{R}$ be a C^p-smooth bump with $b_0(0) > 2$ and $\|b_0^{(p)}\|_\infty < \infty$. We define $b(x) = b_0(rx)$ with $r > 0$ small enough to have $b(x) \geq 2$ if $\|x\| \leq 2$, and $\|b'\|_\infty \leq 1$. Then the function given by $F(x) = \varphi(b(x))$ satisfies the conditions of the lemma.

LEMMA 3.9. There is a constant K such that for all x^* in X^*, there are a C^p-smooth bump $f : X \to \mathbb{R}$ and a real number $a > 0$ such that $y^* + aB_{X^*} \subset f'(X) \subset K\|y^*\|B_{X^*}$ and $f'(x) = y^*$ if $\|x\| \leq 1$.
Proof. Let b be the C^p-smooth bump given by Lemma 3.8 and G the C^p-smooth bump given by Lemma 3.7. There is an $A > 1$ such that $B_{X*} \subset G'(X) \subset AB_{X*}$, supp$(G) \subset AB_X$ and supp$(b) \subset AB_X$. We put $F(x) = A^{-2}||y^*||G(Ax)$. Then $A^{-1}||y^*||B_{X*} \subset F'(X) \subset ||y^*||B_{X*}$ and supp$(F) \subset B_X$. We now fix a point $x_0 \in X$ with $|x_0| = 3/2$ and we define

$$f(x) = 2y^*(x/2 - x_0)b(x/2 - x_0) + 2F(x/2 - x_0).$$

Then supp$(f) \subset (2A + 3)B_X$. We set $K = 2A + 8$ and $a = A^{-1}||y^*||$. We remark that K is independent of y^*. It is clear that K and f satisfy the conditions of the lemma. ■

In what follows, K is the constant given by Lemma 3.9.

Lemmas 3.10. Let U be a connected open subset of X^*. Let $y^* \in U$ be such that there are $q \geq 1$ and a sequence y_0^*, \ldots, y_q^* of points of U with $y_0^* = 0$, $y_1^* = y^*$ and $B(y_i^*, K||y_{i+1}^* - y_i^*||) \subset U$ for all $i \in \{0, \ldots, q - 1\}$. Then there exist a C^p-smooth bump $f : X \to \mathbb{R}$ and $\delta > 0$ such that

$$y^* \in \text{int}(f'(X)), \quad f'(X) \subset U \quad \text{and} \quad f'(x) = y^* \quad \text{if} \quad |x| \leq \delta.$$

Proof (by induction). The case $q = 1$ is immediate from Lemma 3.9. We fix $q \geq 2$ and suppose that the property is true for $q - 1$. Let y_0^*, \ldots, y_q^* satisfy the hypotheses. By the induction hypothesis we have a C^p-smooth bump g and $\alpha > 0$ such that $y_{q-1}^* \in \text{int}(g'(X))$, $g'(X) \subset U$ and $g'(x) = y_{q-1}^*$ for all $x \in \alpha B_X$. Furthermore Lemma 3.9 gives a C^p-smooth bump h such that $y_q^* - y_{q-1}^* \in \text{int}(h'(X))$, $h'(X) \subset K||y_q^* - y_{q-1}^*||B_{X*}$ and $h'(x) = y_q^* - y_{q-1}^*$ for all $x \in B_X$. We take $L \geq 1$ large enough to have supp$(h) \subset LB_X$ and we define

$$f(x) = g(x) + L^{-1}\alpha h(\alpha^{-1}Lx).$$

Then $y_q^* \in \text{int}(f'(X))$, $f'(X) \subset g'(X) \cup (y_{q-1}^* + h'(X)) \subset U$ and $f'(x) = y_q^*$ if $|x| \leq L^{-1}\alpha$. ■

We are now able to prove Theorem 3.6.

Proof of Theorem 3.6.

Step 1: Each point y^* in U satisfies the condition of Lemma 3.10.

Define

$$\mathcal{A} = \{y^* \in U : \exists q \in \mathbb{N}, \exists (y_0^* = 0, y_1^*, \ldots, y_q^* = y^*) \in U^{q+1} \text{ so that }$$

$$B(y_i^*, K||y_{i+1}^* - y_i^*||) \subset U \text{ for all } i \in \{0, \ldots, q - 1\}\}.$$

We are going to prove that $\mathcal{A} = U$. Since $0 \in \mathcal{A}$, \mathcal{A} is not empty. Clearly \mathcal{A} is an open subset of U. Let $(y_k^*)_k$ be a sequence in \mathcal{A} which has a limit y^* in U. There is $\alpha > 0$ such that $B(y^*, 2\alpha) \subset U$. If k_0 is large enough, then $y_{k_0}^* \in B(y^*, K^{-1}\alpha)$. Thus $B(y_{k_0}^*, K||y^* - y_{k_0}^*||) \subset U$ and hence $y^* \in \mathcal{A}$. Therefore \mathcal{A} is a closed subset of U. Since U is connected, $\mathcal{A} = U$.

STEP 2: There is a sequence \((f_k)_{k \geq 1}\) of \(C^p\)-smooth bumps with \(U = \bigcup_{k \geq 1} f'_k(X)\).

If \(y^* \in U\), then \(y^* \in \mathcal{A}\) so Lemma 3.10 can be applied. We let \(f_{y^*}\) be the function given by Lemma 3.10. We have

\[
U = \bigcup_{y^* \in U} \text{int}(f'_{y^*}(X)).
\]

As \(X^*\) is separable, we can apply Lindelöf’s theorem ([8]): There is a countable sequence \((y^*_k)_{k \geq 1}\) in \(U\) such that

\[
U = \bigcup_{k \geq 1} \text{int}(f'_{y^*_k}(X)) \quad \text{and therefore} \quad U = \bigcup_{k \geq 1} f'_{y^*_k}(X).
\]

We put \(f_k = f_{y^*_k}\).

STEP 3: There is a \(C^p\)-smooth bump \(f\) such that \(U = f'(X)\).

After possible homotheties we can suppose that supp\((f_k) \subset B_X\) for all \(k \geq 1\). Since \(X\) is infinite-dimensional, there exists a sequence \((x_k)_{k \geq 1}\) in \(X\) such that \(\|x_k\| < 7\) for every \(k \geq 1\) and \(\|x_k - x_q\| > 3\) if \(q \neq k\). We define

\[
f(x) = \sum_{k \geq 1} f_k(x - x_k).
\]

If \(\|x - x_k\| > 3/2\) for all \(k\), then \(f\) is zero and so is \(C^p\)-smooth in a neighbourhood of \(x\). If there is \(k\) so that \(\|x - x_k\| \leq 3/2\), then \(\|x - x_q\| > 3/2\) for all \(q \neq k\), so \(f(z) = f_k(z)\) and \(f'(z) = f'_k(z)\) when \(z\) is in a neighbourhood of \(x\). Thus \(f\) is a \(C^p\)-smooth function and \(f'(X) = \bigcup_{k \geq 1} f'_k(X) = U\).

We give a stronger version of Theorem 3.6 which will be needed in what follows.

PROPOSITION 3.11. Let \(X\) be as in Theorem 3.6. Let \(U\) be a connected open subset of \(X^*\) containing 0. Let \((z^*_k)_{k \geq 1}\) be a sequence of points of \(U\). There is a \(C^p\)-smooth bump \(f : X \to \mathbb{R}\) such that \(f'(X) = U\) and each \(z^*_k\) is a stationary image of \(f'\).

Proof. In the proof of Theorem 3.6, when we use Lindelöf’s theorem to extract the sequence \((y^*_k)_{k}\), we can add to this family some elements in such a way that \(\{z^*_q : q \in \mathbb{N}\} \subset \{y^*_k : k \in \mathbb{N}\}\). The function \(f\) which is then constructed satisfies the following statement: For all \(k\), there is \(\delta_k > 0\) so that \(f'(x) = y^*_k\) if \(\|x - x_k\| < \delta_k\). So every \(z^*_k\) is a stationary image of \(f'\).

4. Well-linked sets and ranges of derivative. In finite dimensions the range of the derivative of a \(C^1\)-smooth bump is compact. If \(X\) is an infinite-dimensional separable Banach space we see, by the definition, that the range of the derivative of a \(C^1\)-smooth bump is an analytic set. Moreover, if \(f\) is a \(C^1\)-smooth bump and \(f'\) is Lipschitzian, there exists \(M > 0\) such that
each point of $f'(X)$ can be joined to 0 by an M-Lipschitzian path contained in $f'(X)$. It is sufficient to consider the path $\gamma(t) = f'((1-t)x_0 + tx)$ with x_0 so that $f'(x_0) = 0$. Furthermore we have seen in Section 2 that it makes sense to assume $f'(X) = \text{int}(f'(X))$. Consequently, Proposition 4.2 and Theorem 4.6 are partial converses of these necessary conditions. In the first result of this section (Proposition 4.2), we give a sufficient condition for an analytic subset of X^* to be the range of the derivative of a C^1-smooth bump when X^* is separable. Let us introduce this condition.

Definition 4.1. Let F be a subset of X^*. We say that F satisfies condition (A_{∞}) if there are a mapping $\varphi: \mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N} \to X^*$ and a summable sequence $(\delta_k)_{k \geq 1}$ of positive numbers such that

\[
\begin{align*}
\varphi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N}) &= F, \\
\sigma \in \mathbb{N}^{<\mathbb{N}} \text{ and } |\sigma| = 1 &\Rightarrow [0, \varphi(\sigma)] \subset \text{int} F \text{ and } \|\varphi(\sigma)\| < \delta_1, \\
\sigma \in \mathbb{N}^{<\mathbb{N}} \text{ and } |\sigma| \geq 2 &\Rightarrow [\varphi(\sigma), \varphi(\sigma)] \subset \text{int} F \text{ and } \|\varphi(\sigma) - \varphi(\sigma_\cdot)\| < \delta_{|\sigma|}, \\
\sigma \in \mathbb{N}^\mathbb{N} &\Rightarrow \varphi(\sigma) = \lim_k \varphi(\sigma|k).
\end{align*}
\]

Proposition 4.2. Let X be an infinite-dimensional Banach space with a separable dual. Let F be a subset of X^*. If F satisfies (A_{∞}), then there is a C^1-smooth bump $f: X \to \mathbb{R}$ such that $f'(X) = F$.

Proof. Since X^* is separable, Theorem 3.6 and Proposition 3.11 can be applied with $p = 1$. Since X is infinite-dimensional, for a given $x \in X$, there is a sequence $(w_k)_{k \in \mathbb{N}}$ in $B(x, \beta/2)$ such that $\|w_k - w_q\| > \beta/5$ if $k \neq q$. We write $w_k = w_k(x, \beta)$. We will proceed by induction on $k := |\sigma|$. In the following, if $|\sigma| = 1$, we put $\varphi(\sigma) = 0$, $\alpha_{\sigma_\cdot} = 1$, $x_{\sigma_\cdot} = 0$.

For $k \in \mathbb{N}$, denote by $P(k)$ the following statement: “For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$ with $|\sigma| = k$, there are $x_{\sigma} \in B_X$, $\alpha_{\sigma} \in]0, 2^{-k}[, \varepsilon_{\sigma} \in]0, \min(2^{-k}, \delta_k)]$ and a C^1-smooth bump $h_{\sigma}: X \to \mathbb{R}$ such that

\[
\begin{align*}
(i) &\quad \varphi(\sigma_\cdot) + h'_{\sigma}(x) = [\varphi(\sigma_\cdot), \varphi(\sigma)] + \varepsilon_{\sigma} \text{ int } B_X \subset \text{int } F, \\
(ii) &\quad h'_{\sigma}(x) = \varphi(\sigma) - \varphi(\sigma_\cdot) \text{ for all } x \in B(x_{\sigma}, \alpha_{\sigma}), \\
(iii) &\quad \text{supp}(h_{\sigma}) \subset B(x_{\sigma_\cdot}, \alpha_{\sigma_\cdot}) \subset B_X, \\
(iv) &\quad \text{If } |\tau| = |\sigma| \text{ and } \tau \neq \sigma, \text{ then supp}(h_{\sigma}) \cap \text{supp}(h_{\tau}) = \emptyset.
\end{align*}
\]

Step 1: $P(1)$ holds.

Let $\sigma \in \mathbb{N}^{<\mathbb{N}}$ with $|\sigma| = 1$. Since $[0, \varphi(\sigma)] \subset \text{int } F$, there is $0 < \varepsilon_{\sigma} < \delta_1$ with $[0, \varphi(\sigma)] + \varepsilon_{\sigma} B_{X^*} \subset \text{int } F$. We apply Proposition 3.11 to obtain a C^1-smooth bump g_{σ} such that $g'_{\sigma}(X) = [0, \varphi(\sigma)] + \varepsilon_{\sigma} \text{ int } B_{X^*}$ and $\varphi(\sigma)$ is a stationary image of g'_{σ}. We can suppose that supp(g_{σ}) $\subset B_X$. Define

\[
h_{\sigma}(x) = 12^{-1}g_{\sigma}(12(x - w_{\sigma(1)}(0, 1))).
\]

Then supp(h_{σ}) $\subset B(w_{\sigma(1)}(0, 1), 12^{-1}) \subset B_X$. Moreover there are x_{σ} in B_X and $0 < \alpha_{\sigma} < 1$ such that $h'_{\sigma}(x) = \varphi(\sigma)$ for all x in $B(x_{\sigma}, \alpha_{\sigma})$.

Finally, if $|\sigma| = |\tau| = 1$ and $\sigma \neq \tau$, then supp$(h_\sigma) \cap$ supp$(h_\tau) = \emptyset$, because $\|w_{\sigma(1)}(0,1) - w_{\tau(1)}(0,1)\| > 5^{-1}$.

Step 2: $\mathcal{P}(k)$ holds for all $k \geq 1$.

Take $k \geq 1$ and suppose that $\mathcal{P}(k)$ holds. Let $\sigma \in \mathbb{N}^{<\mathbb{N}}$ with $|\sigma| = k + 1$. There is $0 < \varepsilon_\sigma < \delta_{k+1}$ such that $[\varphi(\sigma_-), \varphi(\sigma)] + \varepsilon_\sigma B_{X^*} \subset \text{int } F$. Proposition 3.11 gives a C^1-smooth bump g_σ such that $g'_\sigma(X) = [0, \varphi(\sigma) - \varphi(\sigma_-)] + \varepsilon_\sigma \text{int } B_{X^*}$, $\varphi(\sigma) - \varphi(\sigma_-)$ is a stationary image of g'_σ and supp$(g_\sigma) \subset B_X$. We put

$$h_\sigma(x) = 12^{-1} \alpha_\sigma g_\sigma(12\alpha_\sigma^{-1}(x - w_{\sigma(k+1)}(x_{\sigma_-}, \alpha_{\sigma_-}))).$$

We have supp$(h_\sigma) \subset B(w_{\sigma(k+1)}(x_{\sigma_-}, \alpha_{\sigma_-}), 12^{-1}\alpha_{\sigma_-}) \subset B(x_{\sigma_-}, \alpha_{\sigma_-}) \subset B_X$. If $|\sigma| = |\tau| = k + 1$ and $\sigma \neq \tau$, we can easily check that

$$B(w_{\sigma(k+1)}(x_{\sigma_-}, \alpha_{\sigma_-}), 12^{-1}\alpha_{\sigma_-}) \cap B(w_{\tau(k+1)}(x_{\tau_-}, \alpha_{\tau_-}), 12^{-1}\alpha_{\tau_-}) = \emptyset,$$

so supp(h_σ) \cap supp$(h_\tau) = \emptyset$. Moreover $\varphi(\sigma) - \varphi(\sigma_-)$ clearly a stationary image of h'_σ. So there are $x_\sigma \in B_X$ and $\alpha_\sigma \in [0, 2^{-k}]$ such that $h'_\sigma(x) = \varphi(\sigma) - \varphi(\sigma_-)$ for all $x \in B(x_\sigma, \alpha_\sigma)$. Finally, $\mathcal{P}(k + 1)$ holds.

Step 3: The function $f = \sum_{k \geq 1} \sum_{|\sigma| = k} h_\sigma$ is a C^1-smooth bump.

For $k \geq 1$ we define $G_k(x) = \sum_{|\sigma| = k} h_\sigma(x)$. Since this is a sum of C^1-smooth functions with disjoint supports, it is C^1-smooth. We recall that for all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $h'_\sigma(X) = g'_\sigma(X) = [0, \varphi(\sigma) - \varphi(\sigma_-)] + \varepsilon_\sigma \text{int } B_{X^*}$. For all $x \in X$,

$$\|G'_k(x)\| \leq \sup\{\|h'_\sigma(x)\| : |\sigma| = k\} \leq \sup\{\|\varphi(\sigma) - \varphi(\sigma_-)\| + \varepsilon_\sigma : |\sigma| = k\} \leq 2\delta_k.$$

By the mean value theorem we get $|G_k(x)| \leq 2\delta_k$ since supp$(G_k) \subset B_X$. Therefore f is a C^1-smooth bump.

Step 4: $f'(X)$ is equal to F.

Let $f_k(x) = \sum_{1 \leq j \leq k} G_j(x)$. For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $B(x_\sigma, \alpha_\sigma) \subset B(x_{\sigma_-}, \alpha_{\sigma_-})$. Thus, if $k \geq 1$ and $|\sigma| = k$, then $G'_j(x_\sigma) = \varphi(\sigma|j) - \varphi(\sigma|j-1)$ for all $1 \leq j \leq k$ and hence $f'_k(x_\sigma) = \varphi(\sigma)$.

Let $x \in X$. Three cases can arise:

Case 1: For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $x \notin B(x_\sigma, \alpha_\sigma)$. Then $f'(x) = 0$.

Case 2: There is $\sigma \in \mathbb{N}^\mathbb{N}$ so that $x \in B(x_{\sigma|k}, \alpha_{\sigma|k})$ for all $k \geq 1$. Thus $(x_{\sigma|k})_k$ converges to x and since $(f'_k)_k$ is uniformly convergent, we have $f'(x) = \lim_k f'_k(x_{\sigma|k}) = \lim_k \varphi(\sigma|k) = \varphi(\sigma)$.

Case 3: There is $\sigma \in \mathbb{N}^{<\mathbb{N}}$ such that $x \in B(x_\sigma, \alpha_\sigma)$ and $x \notin \bigcup_{j \in \mathbb{N}} B(x_{\sigma^-j}, \alpha_{\sigma^-j})$. Then $f'(x) = f'_k(x) = \varphi(\sigma)$.

It is therefore clear that $f'(X) = \varphi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N}) = F$. ■
For closed sets we can rewrite condition \((A_\infty)\) using sequences. Indeed, it is not hard to prove that a closed subset \(F\) of \(X^*\) satisfies \((A_\infty)\) if and only if there are a summable sequence \((\delta_k)_{k \geq 1}\) of positive numbers and a sequence \((y^*_k)_{k \geq 1}\) of points in \(\text{int } F\) with \(y^*_1 = 0\) such that for all \(y^*\) in \(F\), there is a nondecreasing function \(\psi : \mathbb{N} \to \mathbb{N}\) so that \(\lim_{k \to \infty} y^*_\psi(k) = y^*\), \(\psi(1) = 1\) and for all \(k \geq 1\),

\[
[y^*_\psi(k), y^*_\psi(k+1)] \subset \text{int } F \quad \text{and} \quad \|y^*_\psi(k+1) - y^*_\psi(k)\| < \delta_k.
\]

Proposition 4.2 is false in finite dimensions. Indeed, we can construct a compact subset \(P\) of \(\mathbb{R}^2\) which satisfies condition \((A_\infty)\) but which is not the range of the derivative of a \(C^1\)-smooth bump. Because of its form, we call this set a *comb*. We define

\[
P_1 = ([1,2] \times [-1,0]) \cup ([1,2] \times [-1,1]),
\]

\[
P_2 = \left(\bigcup_{q \geq 1} [2^{-1} + \ldots + 2^{-q} - 8^{-q}, 2^{-1} + \ldots + 2^{-q} + 8^{-q}] \right) \times [0,1]
\]

(comb’s teeth) and

\[
P = (-3/2, 0) + (P_1 \cup P_2).
\]

The comb in \(\mathbb{R}^2\)

If \(n \geq 2\), then \(P \times B_{\mathbb{R}^{n-2}}\) is not the range of the derivative of a \(C^1\)-smooth bump, because of the following lemma:

Lemma 4.3. For \(x\) and \(y\) in \(F\) define \(r(x, y) = \inf\{\text{diam}(\gamma([0,1])) : \gamma : [0,1] \to F\text{ is continuous, } \gamma(0) = x \text{ and } \gamma(1) = y\}\). If \(F = b'(\mathbb{R}^n)\) with \(b : \mathbb{R}^n \to \mathbb{R}\) a \(C^1\)-smooth bump, then for all \(\varepsilon > 0\) there exists a finite \(\varepsilon\)-net in \(F\) for the metric \(r\).

The proof of this lemma is clear: Since \(b'\) is uniformly continuous on \(\text{supp}(b)\), we find \(\delta > 0\) such that \(\|b'(x) - b'(y)\| < \varepsilon\) if \(\|x - y\| < \delta\). Take a finite \(\delta\)-net in \(\text{supp}(b)\) for the norm; then its range under \(b'\) is a finite \(\varepsilon\)-net in \(F\) for the metric \(r\). Notice that if \(H\) is an infinite-dimensional separable Hilbert space, then \(P \times B_H\) is a subset of \(\mathbb{R}^2 \times H\) which satisfies condition \((A_\infty)\), hence is the range of the derivative of a \(C^1\)-smooth bump on \(\mathbb{R}^2 \times H\).

We now give examples of subsets of \(X^*\), neither closed nor open, which satisfy \((A_\infty)\).
Theorem 4.4. Let X be an infinite-dimensional Banach space with a separable dual. Let U be a bounded open convex subset of X^* containing 0 and let $U \subset A \subset \overline{U}$ be any analytic set. Then there exists a C^1-smooth bump $f : X \to \mathbb{R}$ such that $f'(X) = A$.

Proof. Let U and A be as in the theorem. We put $\alpha_k = 2^{-k}, k \in \mathbb{N}$.

Step 1: We construct a mapping $\psi : \mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N} \to X^*$ such that

\[
\begin{align*}
\psi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N}) &= A = \psi(\mathbb{N}^\mathbb{N}) , \\
\sigma \in \mathbb{N}^{<\mathbb{N}} \text{ and } |\sigma| &\geq 2 \Rightarrow \|\psi(\sigma) - \psi(\sigma^-)\| < \alpha_{|\sigma|} , \\
\sigma \in \mathbb{N}^\mathbb{N} \Rightarrow \psi(\sigma) &= \lim_k \psi(\sigma|k) .
\end{align*}
\]

Let g be a bijection from \mathbb{N} onto $\mathbb{N}^{<\mathbb{N}}$. Since A is analytic, there is a continuous mapping χ_0 on $\mathbb{N}^\mathbb{N}$ such that $\chi_0(\mathbb{N}^\mathbb{N}) = A$. We define the map χ on $\mathbb{N}^\mathbb{N} \cup \mathbb{N}^{<\mathbb{N}}$ by $\chi(\sigma) = \chi_0(\sigma)$ if $\sigma \in \mathbb{N}^{<\mathbb{N}}$, and $\chi(\sigma) \in \{\chi_0(\tau) : \tau \in \mathbb{N}^\mathbb{N} \text{ and } \sigma < \tau\}$ if $\sigma \in \mathbb{N}^{<\mathbb{N}}$. Then $\chi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N}) = A$ and for all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $(\chi(\sigma|k))_k$ converges and $\chi(\sigma) = \lim_k \chi(\sigma|k)$.

We will define $h : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by induction over $k := |\sigma|$. If $|\sigma| = 1$, then $h(\sigma) = g(\sigma(1))$. If $|\sigma| = k \geq 2$, we put

\[
h(\sigma) = \begin{cases}
 h(\sigma^-)g(\sigma(k)) & \text{if } \|\chi(h(\sigma^-)g(\sigma(k))) - \chi(h(\sigma^-))\| < \alpha_k , \\
 h(\sigma^-) & \text{otherwise}.
\end{cases}
\]

So, if $\sigma \in \mathbb{N}^{<\mathbb{N}}$, there is a unique $u(\sigma) \in \mathbb{N}^{<\mathbb{N}} \cup \{\emptyset\}$ such that $h(\sigma) = h(\sigma^-)u(\sigma)$. Let $\sigma \in \mathbb{N}^\mathbb{N}$. There is a unique sequence $(u(\sigma|k))_{k \geq 1}$ in $\mathbb{N}^{<\mathbb{N}} \cup \{\emptyset\}$ such that $h(\sigma|k) = u(\sigma|1) \ldots u(\sigma|k)$ for all k. We then define

\[
h(\sigma) = u(\sigma|1) \ldots u(\sigma|k) \ldots
\]

The mapping h is a surjection from $\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N}$ onto itself. Indeed, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$, there is $p \in \mathbb{N}$ with $g(p) = \sigma$, thus $h(p) = g(p) = \sigma$. Now let $\sigma \in \mathbb{N}^\mathbb{N}$. There exists a strictly increasing sequence $(q_j)_{j \geq 1}$ of positive integers such that

\[
\forall j \geq 1, \forall k, p \geq q_j, \quad \|\chi(\sigma|k) - \chi(\sigma|p)\| < \alpha_{j+1}.
\]

We take $q_0 = 0$. For all $k \geq 1$, there is a unique $m_k \in \mathbb{N}$ so that $g(m_k) = (\sigma(q_{k-1} + 1), \ldots, \sigma(q_k))$. We set $\tau = (m_k)_{k \geq 1}$. For all $k \geq 2$ and all $j \in \{2, \ldots, k\}$,

\[
\|\chi(g(m_1) \ldots g(m_j)) - \chi(g(m_1) \ldots g(m_{j-1}))\| = \|\chi(\sigma|q_j) - \chi(\sigma|q_{j-1})\| < \alpha_j
\]

so $h(\tau|k) = g(m_1) \ldots g(m_k) = \sigma|q_k$ and hence $h(\tau) = \sigma$.

We define ψ on $\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^\mathbb{N}$ by $\psi(\sigma) = \chi(h(\sigma))$. The range of ψ is clearly included in A. Let $a \in A$ and $\sigma \in \mathbb{N}^\mathbb{N}$ with $a = \chi(\sigma)$. We have proved that there exists $\tau \in \mathbb{N}^\mathbb{N}$ such that $h(\tau) = \sigma$. Then $\psi(\tau) = \chi(h(\tau)) = \chi(\sigma) = a$.

Range of derivative 95
so \(A \subset \psi(\mathbb{N}^N) \). It is clear that if \(\sigma \in \mathbb{N}^{<N} \) and \(|\sigma| \geq 2 \), then
\[
\|\psi(\sigma) - \psi(\sigma_-)\| \leq \|\chi(h(\sigma)) - \chi(h(\sigma_-))\| < \alpha_{|\sigma|}.
\]
Finally, if \(\sigma \in \mathbb{N}^N \), then \((\psi(\sigma|k))_k \) converges and
\[
\lim_k \psi(\sigma|k) = \lim_k \chi(h(\sigma|k)) = \lim_k \chi((h(\sigma)|n_k) = \chi(h(\sigma)) = \psi(\sigma).
\]

Step 2: \(A \) satisfies \((A_\infty) \).

We define \(\varphi : \mathbb{N}^N \cup \mathbb{N}^{<N} \to X^* \) by \(\varphi(\sigma) = (1 - \alpha_{|\sigma|}) \psi(\sigma) \) if \(\sigma \in \mathbb{N}^{<N} \), and \(\varphi(\sigma) = \psi(\sigma) \) if \(\sigma \in \mathbb{N}^N \). We can easily verify that \((A_\infty) \) holds with \(\delta_k = 2\alpha_k \).

Then Proposition 4.2 completes the proof.

We now introduce a sufficient condition in finite dimensions which is not far from condition \((C_\infty) \).

Definition 4.5. Let \(F \) be a subset of \(\mathbb{R}^n \). We say that \(F \) satisfies condition \((C) \) if \(F \) is closed, there are a summable sequence \((\delta_k)_{k \geq 2}\), a sequence \((q_k)_{k \geq 1}\) of positive integers with \(q_1 = 1 \) and a mapping \(\varphi : D \cup \bigcup_{k \geq 1} D_k \to \mathbb{R}^n \)

(\(D = \prod_{j \geq 1} \{1, \ldots, q_j \} \) and \(D_k = \prod_{1 \leq j \leq k} \{1, \ldots, q_j \} \)) such that
\[
\begin{align*}
\varphi(D \cup \bigcup_{k \geq 1} D_k) &= F, \quad \varphi(1) = 0 \quad \text{and, for all } k \geq 2, \\
\sigma \in D_k &\Rightarrow [\varphi(\sigma_-), \varphi(\sigma)] \subset \text{int } F \quad \text{and } \|\varphi(\sigma) - \varphi(\sigma_-)\| < \delta_k. \\
\sigma \in D &\Rightarrow \varphi(\sigma) = \lim_k \varphi(\sigma|k).
\end{align*}
\]

Again, we can rewrite this condition in terms of sequences: \(F \) satisfies condition \((C) \) if and only if \(F \) is closed, there is a sequence \((y_k^*)_{k \geq 1}\) of points in \(\text{int } F \) with \(y_1^* = 0 \), a nondecreasing sequence \((I_k)_{k \geq 1}\) of finite subsets of \(\mathbb{N} \)

with \(I_1 = \{1\} \) and a summable sequence \((\delta_k)_{k \geq 1}\) of positive numbers such that for all \(y^* \) in \(F \), there is a function \(\psi : \mathbb{N} \to \mathbb{N} \) so that \(\lim_k y_{\psi(k)}^* = y^* \) and

for all \(k \geq 1 \), \(\psi(k) \in I_k \), \([y_{\psi(k)}^*, y_{\psi(k+1)}^*] \subset \text{int } F \) and \(\|y_{\psi(k+1)} - y_{\psi(k)}\| < \delta_k \).

Using the same ideas as in the proof of Proposition 4.2, we get

Theorem 4.6. Let \(n \geq 1 \) and \(F \) be a subset of \(\mathbb{R}^n \). If \(F \) satisfies condition \((C) \), then there is a \(C^1 \) -smooth bump \(f : \mathbb{R}^n \to \mathbb{R} \) such that \(f'(\mathbb{R}^n) = F \).

Let us now recall the condition introduced in [3]:

A subset \(F \) of \(X^* \) is said to satisfy condition \(*(*) \) if there are a summable sequence \((\delta_k)_{k \geq 1}\) of positive numbers and a sequence \((C_k)_{k \geq 1}\) of bounded closed subsets of \(X^* \) such that \(F = \bigcup_{k \geq 1} C_k \), \(C_1 \) is convex and contains 0,

for all \(k \geq 1 \), \(C_k \subset \text{int } C_{k+1} \) and for all \(y \) in \(C_{k+1} \setminus \text{int } C_k \), there is \(z \) in \(C_k \)

such that \([z, y] \subset C_{k+1} \) and \(\|y - z\| < \delta_k \).

The authors of [3] prove that any subset of \(\mathbb{R}^n \) satisfying \((*) \) is the range of the derivative of a \(C^1 \) -smooth bump. We are going to show that condition \((*) \) is equivalent to condition \((C) \). Consequently, Theorem 4.6 is nothing but

Proposition 4.7. If \(X = \mathbb{R}^n \), then condition \((*) \) is equivalent to \((C) \).
Proof. Let F be a subset of \mathbb{R}^n.

Step 1: Condition (*) \Rightarrow Condition (C).

We suppose that F satisfies (*). We put $S_1 = \{0\}$. For $k \geq 1$ we define $\varepsilon_k = 2^{-1} \min(\delta_k, \text{dist}(C_{k+1}, \partial F))$,

$$S_{k+1} = S_k \cup \{\text{a finite } \varepsilon_k\text{-net of } C_k\},$$

$q_k = \text{Card } S_k$, $D = \prod_{j \geq 1} \{1, \ldots, q_j\}$ and $D_k = \prod_{1 \leq j \leq k} \{1, \ldots, q_j\}$. We define $\varphi : \bigcup_{k \geq 1} D_k \to \mathbb{R}^n$ by induction. First we set $\delta_0 = \text{diam}(C_1)$ and $\varphi(1) = 0$. We fix $k \geq 1$ and assume that φ is defined on D_k, $\varphi(D_k) = S_k$ and for all $\sigma \in D_k$, $[\varphi(\sigma_-), \varphi(\sigma)] \subset \text{int } F$ and $\|\varphi(\sigma) - \varphi(\sigma_-)\| < 2\delta_{k-1}$. We remark that if $y \in C_k$, then there is $z \in S_k$ such that $\|y - z\| < 2\delta_{k-1}$ and $[z, y] \subset \text{int } F$. If $\sigma \in D_k$ we set $T_\sigma = \{y \in S_{k+1} : \|y - \varphi(\sigma)\| < 2\delta_{k-1}$ and $[\varphi(\sigma), y] \subset \text{int } F\}$. We can write $T_\sigma = \{z_1, \ldots, z_r\}$ with $r \leq q_{k+1}$. We define $\varphi(\sigma^* j) = z_j$ if $1 \leq j \leq r$ and $\varphi(\sigma^- j) = \varphi(\sigma)$ if $r < j \leq q_{k+1}$. Then φ is defined on D_{k+1} and has all the required properties. The fact that $\varphi(D_{k+1}) = S_{k+1}$ follows from the remark. In this way we define φ on $\bigcup_{k \geq 1} D_k$. If $\sigma \in D$, then the sequence $(\varphi(\sigma|k))_k$ is convergent and we define $\varphi(\sigma) = \lim_k \varphi(\sigma|k)$.

Let $y \in F$. There is a sequence $(z_k)_{k \geq 1}$ such that $\lim_k z_k = y$ and $z_k \in C_k$ for all $k \geq 1$. For all $k \geq 1$, there is $\sigma_k \in D_{k+1}$ with $\|z_k - \varphi(\sigma_k)\| < \delta_k$ and $[\varphi(\sigma_k), z_k] \subset \text{int } F$. The sequence $(\sigma_k(1))_k$ takes a finite number of values in $\{1, \ldots, q_1\}$. Thus there is r_1 in $\{1, \ldots, q_1\}$ so that $\{k : \sigma_k(1) = r_1\}$ is infinite. By induction we build a sequence $(r_j)_{j \geq 1}$ in D such that for all j, $\{k : \sigma_k(i) = r_i \text{ for } 1 \leq i \leq j\}$ is infinite. Then $\tau = (r_1, \ldots, r_j, \ldots)$ is in D and $\varphi(\tau) = y$. Therefore (*) implies (C).

Step 2: Condition (C) \Rightarrow Condition (*).

We assume that F satisfies (C). There is $\varepsilon_1 > 0$ such that $B(0, \varepsilon_1) \subset \text{int } F$. We define $C_1 = B(0, \varepsilon_1)$. For $k \geq 1$, if $\sigma \in D_k$, then there is $0 < \varepsilon_\sigma < \delta_k$ with $[\varphi(\sigma_-), \varphi(\sigma)] + B(0, \varepsilon_\sigma) \subset \text{int } F$. The set

$$B_k = C_k \cup \left(\bigcup_{\sigma \in D_k} [\varphi(\sigma_-), \varphi(\sigma)] + B(0, \varepsilon_\sigma) \right)$$

is compact and is in $\text{int } F$. So $\alpha_k = \frac{1}{2} \min(\delta_k, \text{dist}(B_k, \partial F)) > 0$. Finally, we define $C_{k+1} = B_k + B(0, \alpha_k)$. The sequence $(C_k)_{k \geq 1}$ satisfies all the required conditions, thus F satisfies condition (*). ■

We have proved that condition (C) can be extended to infinite dimensions. Indeed, Proposition 4.2 shows that (A_∞) is a sufficient condition in smooth infinite-dimensional Banach spaces and (A_∞) can be considered as an extension of (C). The situation is different with condition (*). In fact, if X is an infinite-dimensional Banach space, we can construct a subset R of X^*
which satisfies condition (\(\ast \)) but which is not the range of the derivative of a \(C^1 \)-smooth bump. Let us describe \(R \). Since \(X \) is infinite-dimensional, there is \(\varepsilon > 0 \) and a \(3\varepsilon \)-separated sequence \((e_k)_{k \geq 1}\) in \(S_{X^*} \). We fix a point \(w \) in \(X^* \) with \(\|w\| = 3/2 \). We define

\[
D_k = \{tx : x \in S_{X^*} \cap B(e_k, \varepsilon), 1/k \leq t \leq 1\}, \quad D = \bigcup_{k \geq 1} D_k,
\]

\[
R = w + (\{x \in X^* : 1 \leq \|x\| \leq 2\} \cup D)
\]

\[
= (w + (\{x \in X^* : 1 \leq \|x\| \leq 2\} \cup D)) \cup \{w\}.
\]

We remark that the construction of \(R \) is only possible in an infinite-dimensional Banach space. Here is a 2-dimensional representation of \(R \):

\begin{center}
\includegraphics[width=0.3\textwidth]{wheel.png}
\end{center}

The wheel with broken spokes

Because of its form, \(R \) is called the “wheel with broken spokes”. In fact, in infinite dimensions, we can imagine that each spoke is in a new direction and comes closer to \(w \), the centre of the wheel. Then \(R \) satisfies condition (\(\ast \)) but \(R \) is not the range of the derivative of a \(C^1 \)-smooth bump, because \(w \) cannot be joined to 0 by a continuous path in \(R \). Thus condition (\(\ast \)) is not sufficient in infinite dimensions.

Acknowledgments. I wish to thank Robert Deville for his valuable help and the referee for his valuable suggestions and comments.

References

Mathématiques Pures de Bordeaux (MPB), UMR 5467 CNRS
Université Bordeaux 1
351, cours de la Libération
33400 Talence, France
E-mail: gaspari@math.u-bordeaux.fr

Received July 5, 2001
Revised version April 15, 2002