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Weighted inequalities for rough square functions
through extrapolation

by

Javier Duoandikoetxea (Bilbao) and Edurne Seijo (Donostia)

Abstract. Weighted inequalities for some square functions are studied. L2 results
are proved first using the particular structure of the operator and then extrapolation of
weights is applied to extend the results to other Lp spaces. In particular, previous results
for square functions with rough kernel are obtained in a simpler way and extended to a
larger class of weights.

1. Introduction. Littlewood–Paley and Marcinkiewicz type operators
are given by square functions. For a historical overview of this topic and
its several aspects the reader can consult the paper by E. Stein [15]. A
typical case is the following: given a function N in Rn satisfying appropriate
conditions, define Nt(x) = t−nN(t−1x) for t > 0 and construct the square
function

g(f)(x) =
(∞�

0

|Nt ∗ f(x)|2 dt
t

)1/2

.

Although they were originally concerned with dyadic decompositions
of Fourier series and integrals, we use the term Littlewood–Paley square
functions (in continuous form) for those g obtained by taking N ∈ S (the
Schwartz class of functions) with N̂(0) = 0. In this case,

‖g(f)‖p ≤ C‖f‖p, 1 < p <∞.(1)

When n = 1 and N(x) = χ[−1,0](x)−χ[0,1](x), g(f) becomes the Marcin-
kiewicz operator

g(f)(x) =
(∞�

0

|F (x+ t)− 2F (x) + F (x− t)|2 dt
t3

)1/2
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where F is a primitive of f . That this operator also satisfies (1) was first
proved by Zygmund in 1944. As a generalization of the Marcinkiewicz op-
erator to higher dimensions, Stein [14] proposed the choice

N(x) = |x|1−nΩ(x′)χ{|x|≤1}(x)

where x′ = |x|−1x and Ω defined on the unit sphere is a Lipschitz function
with zero integral (in fact, the conditions on Ω were related to the conditions
required on the kernel of a smooth singular integral of Calderón–Zygmund
type). In that paper he proved that (1) holds for the square function if
1 < p ≤ 2, and the result was extended by A. Benedek, A. Calderón, and
R. Panzone [1] to 1 < p < ∞ assuming that Ω is C1. Later on the case
of rough kernels (Ω satisfies only size and cancellation conditions but no
regularity is assumed) became of interest for singular integral operators and
the analogous operator was also defined for square functions.

D. Kurtz [11] proved that for the Littlewood–Paley case, (1) holds also in
Lp(w), the Lp space with respect to the measure w(x) dx, when 1 < p <∞
and w ∈ Ap (the Muckenhoupt class of weights for which the Hardy–
Littlewood maximal operator is bounded in Lp(w)). We will use this result
in our approach. In [19] the square operators defined by Stein were studied
and among other interesting results weighted inequalities were proved: again
boundedness holds on Lp(w) for w ∈ Ap when 1 < p <∞. In a recent paper,
Y. Ding, D. Fan, and Y. Pan [3] have studied weighted inequalities for square
functions with rough kernel. If Ω ∈ Lq(Sn−1) they proved the boundedness
for w ∈ Ap/q′ for p > q′ and dual-type results for smaller values of p as
had previously been obtained for similar singular integral operators. For the
definition and properties of Ap weights see [9], for instance.

The aim of this paper is to study weighted inequalities for a large class of
square functions. Due to the special feature of the operator, it is well adapted
to deducing weighted inequalities in the case p = 2. Our first main result is
that assuming some decay properties on the Fourier transform of Nt (which
we do not take in general as dilations of a fixed N), the square function is
bounded on L2(ws) if w ∈ A2 is a uniform weight for the operators given
by convolution with Nt and 0 ≤ s < 1. Then we introduce a powerful tool:
extrapolation. This tool has been missed in the preceding approaches or
used only with Ap classes ([13]), which limits its strength.

Following the spirit of the first extrapolation theorem by J. L. Rubio de
Francia [12], Lp-weighted inequalities for a large class of weights are deduced
from L2-weighted inequalities. In particular, the case of Ω ∈ L∞ (which
includes Ω smooth) is trivially deduced from the extrapolation theorem of
Rubio de Francia.

The paper is organized as follows. In Section 2 we prove the L2 result;
in Section 3 we state some Lp results for weights related to a maximal
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function and in Section 4 we present some applications which cover and
extend previously known results. In Section 5 we deal with a more singular
case related to spherical means which has the drawback of the behaviour of
the spherical maximal function; nevertheless we show that even in this case
our method is useful. Finally in Section 6 we show some further extensions.

We denote by ‖f‖p,w the norm of f in Lp(w) and by ArBs the set
{urvs : u ∈ A, v ∈ B}. M will always be used to denote the Hardy–
Littlewood maximal operator.

2. L2 theorems

Theorem 1. Assume that for each t > 0 and for some α, β > 0,

|N̂t(ξ)| ≤ C min(|tξ|−α, |tξ|β)(2)

and that w ∈ A2 satisfies

sup
t>0

�

Rn
|Nt ∗ f(x)|2w(x) dx ≤ C

�

Rn
|f(x)|2w(x) dx.(3)

Then, if 0 ≤ s < 1,
�

Rn
|g(f)(x)|2ws(x) dx ≤ C

�

Rn
|f(x)|2ws(x) dx.(4)

Proof. Let ψ ∈ S(Rn) be a radial function with supp ψ̂ ⊂ {ξ : 1/2 <

|ξ| ≤ 2} and such that
∑∞

k=−∞ ψ̂(2kξ) = 1 for all ξ 6= 0. For each integer

k and for t > 0 define (ψk)t as the function satisfying ̂(ψk)t(ξ) = ψ̂(2ktξ).
Then for each t > 0 we can write

Nt ∗ f(x) =
∞∑

k=−∞
Nt ∗ (ψk)t ∗ f(x).

Let gk(f) be the square function associated with Nt ∗ (ψk)t, that is,

gk(f)(x) =
(∞�

0

|Nt ∗ (ψk)t ∗ f(x)|2 dt
t

)1/2

.

Then using Minkowski’s inequality we have

‖g(f)‖p,w ≤
∞∑

k=−∞
‖gk(f)‖p,w.

We first compute the L2 norm of gk; using the Fubini and Plancherel
theorems we get

‖gk(f)‖22 =
∞�

0

�

Rn
|N̂t(ξ)|2|ψ̂(2ktξ)|2|f̂(ξ)|2 dξ dt

t
.
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Using now the support of ψ and condition (2) on Nt we get

‖gk(f)‖22 ≤ C
�

Rn

2−k+1|ξ|−1
�

2−k−1|ξ|−1

(min(|tξ|−α, |tξ|β))2 dt

t
|f̂(ξ)|2 dξ

≤ C 2−2|k|σ �

Rn
|f |2

where σ = min(α, β). Therefore, for all integers k,

‖gk(f)‖2 ≤ C 2−|k|σ ‖f‖2 with σ > 0.(5)

We now find a weighted estimate for gk(f) in L2(w). Fix w ∈ A2. Then

‖gk(f)‖22,w =
∞�

0

�

Rn
|Nt ∗ (ψk)t ∗ f(x)|2 w(x) dx

dt

t

≤ C
�

Rn

∞�

0

|(ψk)t ∗ f(x)|2 dt
t
w(x) dx

≤ C
�

Rn
|f(x)|2w(x) dx

where the first inequality is due to (3) and for the second one we use the
weighted estimate for the Littlewood–Paley square function with w ∈ A2,
mentioned in the introduction and due to Kurtz.

Apply interpolation with change of measure (see [18]) to this uniform
weighted estimate and to (5) to get, for 0 ≤ s < 1,

‖gk(f)‖2,ws ≤ C 2−|k|σ(1−s)‖f‖2,ws .
Summing over k we deduce the theorem.

Remarks. 1. From the Plancherel theorem it is immediate that

sup
ξ

∞�

0

|N̂t(ξ)|2
dt

t
<∞

is necessary and sufficient for the L2 boundedness of g. Nevertheless this
condition is too general to deduce other boundedness properties from it.

2. Condition (2) is simple to state and works in all our examples but the
proof of the theorem shows that it can be replaced by a more general one:

sup
u∈Sn−1

1
R

2R�

R

|N̂t(u)|2 dt ≤ C min(R,R−1)σ for some σ > 0.

3. If Nt(x) = t−nN(t−1x), (2) reduces to |N̂(ξ)| ≤ min(|ξ|−α, |ξ|β).
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3. Lp results through extrapolation. Assume that (3) is satisfied by
all A2 weights; then the same is true for the conclusion of Theorem 1 in view
of the property Aq =

⋃
0<s<1{ws : w ∈ Aq} of this class of weights. Then

using the extrapolation theorem of Rubio de Francia ([12, 9]) we deduce
that g is bounded on Lp(w) for w ∈ Ap. In a similar way, if (3) is satisfied
by all Ar weights (r < 2) then by extrapolation g is bounded on Lp(w) for
w ∈ Ap/r when p > r. But the scope of the extrapolation theorem is larger
than Ap weights, and in this section we give a result which applies in greater
generality.

Given an operator T we define, for 1 < p <∞,

Wp(T ) =
{
w :

�

Rn
|Tf |pw ≤ C

�

Rn
|f |pw

}

and for p = 1,
W1(T ) = {w : Tw(x) ≤ Cw(x) a.e.}.

We also define, for 1 ≤ p <∞,

AWp(T ) = {w ∈Wp(T ) : ws ∈Wp(T ) for some s > 1}.
When applied to the Hardy–Littlewood maximal function, this class is the
same as Ap but in general AWp(T ) can be strictly contained in Wp(T ).

In order to get weights for which (3) holds, we can proceed as follows.
Assume M is a positive sublinear operator and C a constant such that

sup
t>0
|Nt ∗ f(x)| ≤ CM(|f |)(x) a.e.(6)

It is clear that weights inW2(M) satisfy (3). Thus the conclusion of Theorem
1 is valid for {ws : w ∈W2(M+M), 0 ≤ s < 1}. This observation is enough
for the applications of the following section.

A possibly larger class of weights satisfying (3) can be obtained. We
first recall a result for positive linear operators. Let S be a positive linear
operator and S∗ its adjoint, and let w0, w1 be such that

Sw1 ≤ B1w1 a.e., S∗w0 ≤ B0w0 a.e.(7)

Then S is bounded on Lp(w0w
1−p
1 ) with a bound depending only on B0 and

B1. (This follows by interpolation since (7) implies that f 7→ w−1
1 S(w1f) is

bounded on L1(w0w1) and on L∞(w0w1).) The converse is also true but we
only need this easy part of the factorization in what follows.

Let St be the linear positive operator defined by convolution with |Nt|
and S∗t its adjoint (given by convolution with |Nt(−x)|). If supt |Stf | ≤
Mf and supt |S∗t f | ≤ M∗f then according to the result for positive linear
operators, (3) holds for all weights in the class W1(M∗)W1(M)−1. Thus the
conclusion of Theorem 1 holds when w is in AW1(M∗+M)AW1(M+M)−1.
This result will be used in the example studied in Section 5.
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In many cases, weights in these classes are adequate to use extrapolation
theorems; the following is a useful version for us.

Theorem 2. Assume that M and M∗ are two positive sublinear oper-
ators such that 1 ∈ AW1(M∗) ∩ AW1(M) and for all 1 < p <∞,

AW1(M∗)AW1(M)1−p = AWp(M),(8)

AW1(M)AW1(M∗)1−p = AWp(M∗).(9)

If T is an operator which is bounded on L2(w) for all w ∈ AW2(M), then
T is bounded on Lp(w) for all w in AWp(M).

The proof of the theorem is essentially the same as the proof of the
extrapolation theorem given by Rubio de Francia [12] or by Jawerth [10].

Corollary 3. If Nt satisfies (2) and if there exist operators M and
M∗ such that (6), (8), and (9) hold , then the square function g is bounded
on Lp(w) for all weights w in AWp(M+M).

For the rough operators in the next section the conditions of the corollary
appear in [20]. In a more abstract setting the following result is given in [6]:
let {µj}j∈Z be a sequence of positive Borel measures and M the maximal
operator Mf(x) = supj∈Z|µj ∗ f(x)|; if for all j ∈ Z,

|µ̂j(ξ)| ≤ C|2jξ|−a for some a > 0,

|µ̂j(ξ)− µ̂j(0)| ≤ C|2jξ|,
and {µ̂j(0)}j∈Z are uniformly bounded, then the factorization properties
hold for M and M∗ (defined using the adjoint operators).

4. Some applications. Let Ω be a function defined on the unit sphere
Sn−1 which is in Lq(Sn−1) for some q > 1 and has mean value zero; for
each t > 0, let bt be a bounded radial function with bound uniform in t and
β < n. Define the square function

g(f)(x) =
(∞�

0

∣∣∣∣
1

tn−β
�

|y|≤t
bt(|y|)

Ω(y′)
|y|β f(x− y) dy

∣∣∣∣
2 dt

t

)1/2

,

and consider the maximal operator

MΩf(x) = sup
r>0

1
rn

�

|y|≤r
|Ω(y′)| · |f(x− y)| dy.(10)

LetM = MΩ +M andM∗ = MΩ̃ +M where Ω̃(u) = Ω(−u) and M is the
Hardy–Littlewood maximal function. Then (8) and (9) hold.
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Theorem 4. With the above notation and assumptions on Ω and bt, the
weighted norm inequality

‖g(f)‖p,w ≤ C‖f‖p,w
holds for 1 < p <∞ and all weights in AWp(MΩ +M).

Proof. Define

Nt(x) =
1

tn−β
bt(|x|)

Ω(x′)
|x|β χ{|x|≤t}.

To prove the theorem we only need to check (2) and the majorization byM.
The latter comes from
∣∣|Nt| ∗ f(x)

∣∣ ≤ 1
tn−β

�

|y|≤t
|bt(|y|)|

|Ω(y′)|
|y|β |f(x− y)| dy

≤ ‖bt‖∞
∞∑

k=1

2(k+1)β

tn

�

2−k−1t<|y|≤2−kt

|Ω(y′)| · |f(x− y)| dy

≤ C(β)‖bt‖∞MΩf(x)

with C(β) finite if β < n.
Concerning the bounds of the Fourier transform we have

|N̂t(ξ)| =
∣∣∣∣

�

|x|≤t
bt(|x|)

Ω (x′)
tn−β|x|β (e−2πix·ξ − 1) dx

∣∣∣∣

≤ 2π|ξ| · ‖bt‖∞
�

|x|≤t

|Ω(x′)|
tn−β|x|β−1 dx ≤ Ct|ξ|

using the fact that Ω has integral zero. On the other hand,

|N̂t(ξ)| =
∣∣∣∣

1
tn−β

t�

0

bt(r)rn−1−β
( �

Sn−1

Ω(u)e−2πiru·ξ dσ(u)
)
dr

∣∣∣∣

=
∣∣∣

1�

0

bt(tr)rn−1−β
( �

Sn−1

Ω(u)e−2πiru·tξ dσ(u)
)
dr
∣∣∣.

Define Ir(ξ) = � Sn−1 Ω(u)e−2πiru·ξ dσ(u). Then

|N̂t(ξ)|2 ≤ Cβ‖bt‖∞
1�

0

rn−1−β|Ir(tξ)|2 dr

= Cβ‖bt‖∞
1�

0

rn−1−β � �

Sn−1×Sn−1

Ω(u)Ω(v)e−2πir(u−v)·tξ dσ(u) dσ(v) dr.
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Now for n− 1 < β < n, we have
∣∣∣

1�

0

rn−1−βe−iru·ξ dr
∣∣∣ ≤ C min(1, |u · ξ|β−n) ≤ C(|u · ξ′| · |ξ|)(β−n)ε(11)

for any 0 ≤ ε ≤ 1, and for β ≤ n− 1,
∣∣∣

1�

0

rn−1−βe−iru·ξ dr
∣∣∣ ≤ C min(1, |u · ξ|−1) ≤ C(|u · ξ′| · |ξ|)−ε.(12)

The estimate with an absolute constant is immediate and to get the bound
C|u · ξ|β−n in (11) when |u · ξ| is large, split the integral into two parts, from
0 to A and from A to 1. For the first part the bound CAn−β is immediate
and in the second one integration by parts gives CAn−β−1|u · ξ|−1; choose
then A = |u ·ξ|−1. To prove the bound C|u ·ξ|−1 when β < n−1 it is enough
to integrate by parts due to the integrability of rn−2−β.

When n− 1 < β < n, using (11) we have

|N̂t(ξ)|2 ≤ Cβ‖bt‖∞|tξ|(β−n)ε

×
� �

Sn−1×Sn−1

|Ω(u)Ω(v)| · |(u− v) · ξ′|(β−n)ε dσ(u) dσ(v).

Apply Hölder’s inequality and choose ε so that (n − β)εq′ < 1 to get the
desired bound. When β ≤ n− 1 use (12) and choose ε < 1/q′.

This example covers several situations. If bt ≡ 1 we get Stein’s square
function as mentioned in Section 1 but with Ω ∈ Lq(Sn−1) and no regularity
assumption. But we can also introduce a fixed bounded function b in the
kernel N and define Nt by dilation; then bt(|x|) = b(t−1|x|). The case studied
in [3] corresponds to bt independent of t. In all cases the weights are given
by the corresponding weights for MΩ . All the results described in [3] are
immediately included (see [20] and [5]): w ∈ Ap/q′ for p ≥ q′ and w1−p for
w ∈ Ap′/q′ and 1 < p ≤ q satisfy the condition of Theorem 4 because they
are weights for MΩ . For power weights of the form w(x) = |x|α the operator
is bounded if

max(−n,−1− (n− 1)p/q′) < α < min(n(p− 1), p− 1 + (n− 1)p/q′)

(see [5]), and this result is better than the one given by the Ap type condi-
tions in [3].

Without any substantial modification of the proof of the estimate for the
Fourier transform of Nt, a more general condition on bt is possible when it
is independent of t, namely,

sup
t

1
tn−β

t�

0

|b(r)|2rn−1−β dr <∞.
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But in this case, the maximal function which controls Nt is not MΩ and has
to be modified to the following one:

MΩ,b(f)(x) = sup
r>0

1
rn

�

|y|≤r
|b(|y|)Ω(y′)f(x− y)| dy.

That this maximal function also satisfies the factorization conditions
(8) and (9) is deduced from the decay properties of the Fourier transform
of its dyadic decomposition by applying the result of [6] mentioned after
Corollary 3.

Another application of this method gives an improvement of Theorem
2 in Sato’s paper [13]. The operator is given through dilations of a fixed
N and two technical conditions are enough to insure the L2 result (instead
of (2) we would use Remark 2 following Theorem 1); then he introduces
the following hypotheses: |N(x)| ≤ b(|x|)Ω(x′) where b is non-increasing in
(0,∞) and B(x) = b(|x|) is integrable, and Ω ∈ Lq(Sn−1) for 2 ≤ q ≤ ∞.
The conclusion is that the square function is bounded on Lp(w) for w ∈ Ap/q′
when p > q′. Due to the pointwise bound on N it is easy to check that
convolution with Nt is controlled by the maximal operator MΩ defined in
(10). Using Theorem 1 and extrapolation we deduce that the square function
is bounded on Lp(w) for all w ∈ AWp(MΩ +M); thus the assumption q > 2
in Sato’s paper is unnecessary, but even in that case a larger class of weights
is obtained, as in the previous example.

5. A more singular example. Let N(x) = Ω(x′) dσ(x) where Ω is
a C∞ function defined on the unit sphere with mean value zero and dσ
is Lebesgue measure on Sn−1. Define Nt by dilation in such a way that
Nt(x) = Ω(x′) dσt(x) where dσt is the normalized Lebesgue measure on the
sphere of radius t. Then Nt is a singular finite Borel measure and not a
function. Let g be the square function defined with such a family Nt.

The maximal operator M which controls convolution with |Nt| will be
the spherical maximal function, that is, the maximal function defined as the
supremum over all means on spheres centered at each point. This maximal
operator is only bounded when p > n/(n − 1); its weighted inequalities
are only partially known and we will use results proved in [8], in particular
AWp(M) ⊂ Ap. We use the same maximal operator to control the adjoints
of the convolutions.

Theorem 5. The square function g satisfies the weighted inequalities

‖g(f)‖p,w ≤ C‖f‖p,w
when:

(i) 2n/(2n−1) < p ≤ 2 and w = w0w
(1−2n/p′)/(n−1)
1 with w0∈AW1(M)∩

AWp/(2−p)(M) and w1∈AW1(M);
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(ii) 2 ≤ p < 2n and w = w
(2n/p−1)/(n−1)
0 w1−p

1 with w0 ∈ AW1(M) and
w1 ∈ AW1(M) ∩ AWp/(p−2)(M).

In particular , g is bounded on Lp(|x|α) if 2n/(2n − 1) < p ≤ 2 and
1− n < α < 1− 2n/p′ or if 2 < p < 2n and 1− 2n/p < α < (n− 1)(p− 1).

If f is the characteristic function of the unit ball and Ω is 1 on a big
portion of the unit sphere, then for large x we have Nt ∗ f(x) ∼ |x|1−n if
|x| − 1/2 < t < |x| + 1/2; the integrability of the square function in x for
w ≡ 1 requires p > 2n/(2n− 1), which is the restriction of the theorem.

Proof. We first apply Theorem 1. Since the operators Nt are dilations
of a fixed one, we only need to check the conditions on N (see Remark 3
following Theorem 1). |N̂(ξ)| ≤ C|ξ| is immediate because N̂(0) = 0. The
decay property |N̂(ξ)| ≤ C|ξ|(1−n)/2 can be seen in [16], p. 348. Using now
the spherical maximal function to control the convolution operators we use
the discussion of Section 3 to deduce

‖g(f)‖2,w ≤ C‖f‖2,w
for all w ∈ AW1(M)AW1(M)−1.

The main difference with the results of the preceding section is that the
factorization used in Theorem 2 is false. Nevertheless the L2 result contains
enough information to deduce some Lp results.

Assume first that 2n/(2n − 1) < p < 2 and let f ∈ Lp(w) be non-
negative with w ∈ AW1(M) ∩AWp/(2−p)(M). There exists ε > 0 such that
w1+ε ∈ Wp/(2−p)(M) and since 1 ∈ Wq(M) for n/(n − 1) < q < p/(2 − p),
by interpolation with change of measure there exists s < 1 such that w ∈
Wps/(2−p)(M). On the other hand, f (2−p)/s ∈ Lps/(2−p)(w) so that we can
use the construction of Rubio de Francia (see [12]) to define

u1/s =
∞∑

k=0

Mk(f (2−p)/s)
(2‖M‖)k

where ‖M‖ is the norm of M in Lps/(2−p)(w) and Mk denotes the k-fold
iteration of M. The function u has the following properties easily deduced
from its definition:

|f |2−p ≤ u a.e., ‖u‖p/(2−p),w ≤ C‖f‖p,w, u1/s ∈W1(M).(13)

Then using Hölder’s inequality and the fact that u,w ∈ AW1(M) we have
�
g(f)pw =

�
g(f)pu−p/2up/2w ≤

( �
g(f)2u−1w

)p/2( �
up/(2−p)w

)1−p/2

≤ C
( �
f2u−1w

)p/2( �
fpw

)1−p/2
.

In the last inequality we also used the second property in (13); using the
first one we have u−1 ≤ fp−2 and this proves the boundedness of g on
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Lp(w) when w ∈ AW1(M) ∩ AWp/(2−p)(M). Interpolating with the L2(w)
boundedness we deduce the result of (i).

Let now p > 2 and w ∈ AW1(M) ∩ AWp/(p−2)(M). Then
( �
g(f)pw1−p

)2/p
=

�
(g(f)w−1)2vw =

�
g(f)2vw−1

for some v ∈ Lp/(p−2)(w) with norm 1. Applying again Rubio de Francia’s
construction as before (to v1/s ∈ Lps/(p−2)(w)) we have

v ≤ u a.e., ‖u‖p/(p−2),w ≤ C‖v‖p/(p−2),w, u1/s ∈W1(M).(14)

Applying the L2 result to the weight uw−1, Hölder’s inequality and the
properties of u, we deduce the Lp(w1−p) boundedness for w ∈ AW1(M) ∩
AWp/(p−2)(M). Interpolating again with the L2(w) boundedness for w ∈
AW1(M) we complete the proof of (ii).

The particular case is deduced from the fact that |x|α ∈ W1(M) if and
only if 1− n ≤ α ≤ 0 (see [8]).

It is an open question whether the inclusion AW1(M) ⊂ Wp(M) holds
for the values of p for which the spherical maximal operator is bounded,
that is, p > n/(n − 1). If the answer were positive, the statement of the
theorem would not require the extra assumptions w0 ∈ AWp/(2−p)(M) and
w1 ∈ AWp/(p−2)(M).

6. Further results

6.1. Product spaces. The general theorems in this work can be extended
to product spaces. For simplicity we consider the case of two spaces
Rn1 × Rn2 . The square functions we are interested in are

g(f)(x1, x2) =
(∞�

0

∞�

0

|Nt1,t2 ∗ f(x1, x2)|2 dt1
t1

dt2
t2

)1/2

.

In this case the conditions (2) on the Fourier transform of Theorem 1
are replaced by product type conditions

|N̂t1,t2(ξ1, ξ2)| ≤ C min(|t1ξ1|−α1 , |t1ξ1|σ1) min(|t2ξ2|−α2, |t2ξ2|σ2)

for ξ1 ∈ Rn1 , ξ2 ∈ Rn2 and for some positive α1, σ1, α2, σ2. Condition (3) is
the same (uniform L2 weights for all Nt1,t2) but w must now be in the class
A∗2, which is the class of weights w for which the strong maximal function
(the maximal function on cartesian products of balls in Rn1 and Rn2) is
bounded on L2(w).

The Marcinkiewicz-type square function with rough kernel in this con-
text will be defined with an Ω ∈ Lq(Sn1−1×Sn2−1) for some q > 1 satisfying
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a double cancellation condition�

Sn1−1

Ω(y′1, y
′
2) dσ(y′1) =

�

Sn2−1

Ω(y′1, y2
′) dσ(y′2) = 0,

and a bounded family of functions bt1,t2(|x1|, |x2|). Let β1 < n1, β2 < n2.
Then

Nt1,t2(x1, x2) =
bt1,t2(|x1|, |x2|)
tn1−β1
1 tn2−β2

2

· Ω(x′1, x
′
2)

|x1|β1 |x2|β2
χ{|x1|≤t1,|x2|≤t2}(x1, x2).

We can prove theorems similar to those in Section 4 with the obvious
modifications: the Ap weights of the Hardy–Littlewood maximal function are
replaced by the A∗p weights of the strong maximal function and the maximal
operator MΩ of (10) is adapted to the product structure. In particular,
when Ω is bounded the resulting square function is bounded on Lp(w) for
all w ∈ A∗p. The proof of the decay estimates required for N̂t1,t2 is similar
to that in the one-parameter case; a proof for the singular integral case is
in [4].

6.2. Non-isotropic dilations. The usual theory of Calderón–Zygmund
operators has been developed in a more general context than Euclidean
dilations on Rn. For instance, we can consider a more general group of
dilations and associate a pseudonorm to it as in [17]. Then the classical
theory is extended in the sense of spaces of homogeneous type ([2]). All the
ingredients we used in the proofs of our theorems have their counterpart in
this context and the same type of general results can be obtained. We leave
the details to the reader.

6.3. Other square functions. As mentioned in the introduction and can
be seen in [15], several types of square functions have been studied. It is
possible to define extensions with rough kernels for those related with the
so-called area integral and g∗λ function.

Let again Ω be in Lq(Sn−1) with mean value zero, and b a bounded
radial function. Define

µΩ,S(f)(x) =
( �

Γ (x)

|Ft(y)|2 dt

tn+1

)1/2

where Γ (x) = {(y, t) ∈ Rn × (0,∞) : |x− y| < t}, and for λ > 1,

µ∗Ω,λf(x) =
( �

Rn

∞�

0

(
t

t+ |x− y|

)nλ
|Ft(y)|2 dy dt

tn+1

)1/2

.

In both cases for each t > 0 and some β < n,

Ft(y) =
1

tn−β
�

|y|≤t

b(|y|)Ω(y′)

|y|β
f(x− y) dy.
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Theorem 6. Let p ≥ 2 and w ∈ AWp(MΩ)∩Ap/2. Then both operators,
µΩ,S and µ∗Ω,λ, are bounded on Lp(w).

The proof of the theorem is based on the integral inequality
�

Rn
|µ∗Ω,λ(f)(x)|2w(x) dx ≤ Cλ

�

Rn
|g(f)(x)|2Mw(x) dx

proved in [19] for the smooth case and in [3] for the rough case and the
pointwise inequality µΩ,S(f)(x) ≤ Cλµ∗Ω,λ(f)(x), which is easy to check. For
the L2(w) result we assume first that w ∈ A1 and then apply Theorem 1.
Due to this restriction extrapolation is only possible for p > 2.

In particular, w is in AWp(MΩ) ∩ Ap/2 if either one of the following
holds: (a) max(q′, 2) = α < p < ∞ and w ∈ Ap/α; (b) 2 < p < q and
w1−(p/2)′ ∈ Ap′/q′ ; (c) 2 ≤ p < ∞ and wq

′ ∈ Ap/2. Those are the weights
given in [3]. But our method produces more weights using AWp(MΩ), for
instance, the weights w(x) = |x|α satisfy the theorem when

max
(
−n,−1− (n− 1)

p

q′

)
< α < min

(
n

(
p

2
− 1
)
, p− 1 + (n− 1)

p

q′

)
,

which gives (even for p = 2) a larger range than the one deduced from the
results in [3].
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