The harmonic Cesàro and Copson operators on the spaces $L^{p}(\mathbb{R}), 1 \leq p \leq 2$

by

Ferenc Móricz (Szeged)

Dedicated to Professor Paul R. Halmos on his 85th birthday

Abstract

The harmonic Cesàro operator \mathcal{C} is defined for a function f in $L^{p}(\mathbb{R})$ for some $1 \leq p<\infty$ by setting $\mathcal{C}(f)(x):=\int_{x}^{\infty}(f(u) / u) d u$ for $x>0$ and $\mathcal{C}(f)(x):=$ $-\int_{-\infty}^{x}(f(u) / u) d u$ for $x<0$; the harmonic Copson operator \mathcal{C}^{*} is defined for a function f in $L_{\text {loc }}^{1}(\mathbb{R})$ by setting $\mathcal{C}^{*}(f)(x):=(1 / x) \int_{0}^{x} f(u) d u$ for $x \neq 0$. The notation indicates that \mathcal{C} and \mathcal{C}^{*} are adjoint operators in a certain sense.

We present rigorous proofs of the following two commuting relations: (i) If $f \in L^{p}(\mathbb{R})$ for some $1 \leq p \leq 2$, then $(\mathcal{C}(f))^{\wedge}(t)=\mathcal{C}^{*}(\widehat{f})(t)$ a.e., where \widehat{f} denotes the Fourier transform of f. (ii) If $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$, then $\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t)=\mathcal{C}(\widehat{f})(t)$ a.e.

As a by-product of our proofs, we obtain representations of $(\mathcal{C}(f))^{\wedge}(t)$ and $\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t)$ in terms of Lebesgue integrals in case f belongs to $L^{p}(\mathbb{R})$ for some $1<p \leq 2$. These representations are valid for almost every t and may be useful in other contexts.

1. Definitions. First, we recall that the harmonic Cesàro operator \mathcal{C} is defined for a function f in $L^{p}(\mathbb{R})$ for some $1 \leq p<\infty$ by setting

$$
\mathcal{C}(f)(x):= \begin{cases}\int_{x}^{\infty}(f(u) / u) d u & \text { for } x>0 \\ -\int_{-\infty}^{x}(f(u) / u) d u & \text { for } x<0\end{cases}
$$

the harmonic Copson operator \mathcal{C}^{*} is defined for a function f in $L_{\mathrm{loc}}^{1}(\mathbb{R})$ by setting

$$
\mathcal{C}^{*}(f)(x):=\frac{1}{x} \int_{0}^{x} f(u) d u \quad \text { for } x \neq 0
$$

[^0]The notation \mathcal{C}^{*} (as the adjoint operator of \mathcal{C}) is justified by the fact that if $f \in L^{p}(\mathbb{R})$ for some $1 \leq p<\infty$ and $g \in L^{p^{*}}(\mathbb{R})$, where $1 / p+1 / p^{*}=1$, then

$$
\begin{equation*}
\int_{\mathbb{R}} \mathcal{C}(f)(x) g(x) d x=\int_{\mathbb{R}} f(x) \mathcal{C}^{*}(g)(x) d x \tag{1.1}
\end{equation*}
$$

See, for example, Golubov [3, p. 329] for the case when f and g are defined on \mathbb{R}_{+}.

The integrals on both sides of (1.1) exist in the Lebesgue sense. Indeed, it follows from the well known inequalities of Hardy [4, Theorems 327 and 328] that if $f \in L^{p}(\mathbb{R})$ for some p, then $\mathcal{C}(f) \in L^{p}(\mathbb{R})$ in case $1 \leq p<\infty$, and $\mathcal{C}^{*}(f) \in L^{p}(\mathbb{R})$ in case $1<p \leq \infty$. More exactly, we have

$$
\|\mathcal{C}\|_{p}:=\sup _{\|f\|_{p} \leq 1}\|\mathcal{C}(f)\|_{p}=p \quad \text { and } \quad\left\|\mathcal{C}^{*}\right\|_{p}=p^{*}
$$

where

$$
\begin{aligned}
\|f\|_{p} & :=\left\{\int_{\mathbb{R}}|f(x)|^{p} d x\right\}^{1 / p} \quad \text { for } 1 \leq p<\infty \\
\|f\|_{\infty} & :=\operatorname{ess} \sup \{|f(x)|: x \in \mathbb{R}\}
\end{aligned}
$$

Second, we remind the reader that the Fourier transform of a function f in $L^{1}(\mathbb{R})$ is defined by

$$
\begin{equation*}
\widehat{f}(t):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i t x} d x, \quad t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

It is well known that \widehat{f} is continuous on \mathbb{R} and, by the Riemann-Lebesgue lemma, $\widehat{f}(t)$ vanishes as $|t| \rightarrow \infty$. In case $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$, the Fourier transform of f is defined in terms of a limit in the norm of $L^{p^{*}}(\mathbb{R})$:

$$
\widehat{f}:=L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty} \widehat{f}_{a}, \quad \text { where } \quad f_{a}:=f \chi_{(-a, a)}, \widehat{f}_{a}:=\left(f_{a}\right)^{\wedge}
$$

and $\chi_{(-a, a)}$ denotes the characteristic function of the interval $(-a, a)$. (See e.g. [6, Vol. 2, p. 254].) That is, $\widehat{f} \in L^{p^{*}}(\mathbb{R})$ and

$$
\begin{equation*}
\lim _{a \rightarrow \infty}\left\|\widehat{f}_{a}-\widehat{f}\right\|_{p^{*}}=0 \tag{1.3}
\end{equation*}
$$

We note that if $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$, then the existence of $\widehat{f}(t)$ is guaranteed only at almost every t. In particular, this time \widehat{f} is no longer continuous on \mathbb{R} or vanishes at infinity (unlike the case when $f \in L^{1}(\mathbb{R})$).

In case $f \in L^{p}(\mathbb{R})$ for some $2<p \leq \infty$, the Fourier transform of f cannot be defined as an ordinary function in any reasonable way either by making a passage to the limit in the norm of $L^{p^{*}}(\mathbb{R})$, or by using any linear method of summation. (See e.g. [6, Vol. 2, p. 258].) However, this time \widehat{f} can be defined as a tempered distribution. (See e.g. [5, pp. 19-30].) But we are not concerned with distributions in this paper.
2. Interrelations with Fourier transform. We prove the following two commuting relations.

Theorem 1. If $f \in L^{p}(\mathbb{R})$ for some $1 \leq p \leq 2$, then

$$
\begin{equation*}
(\mathcal{C}(f))^{\wedge}(t)=\mathcal{C}^{*}(\widehat{f})(t) \quad \text { a.e. } \tag{2.1}
\end{equation*}
$$

THEOREM 2. If $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$, then

$$
\begin{equation*}
\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t)=\mathcal{C}(\widehat{f})(t) \quad \text { a.e. } \tag{2.2}
\end{equation*}
$$

Theorem 1 justifies the term "harmonic Cesàro operator" since (2.1) can be rewritten in the form

$$
\begin{equation*}
(\mathcal{C}(f))^{\wedge}(t)=\frac{1}{t} \int_{0}^{t} \widehat{f}(u) d u \quad \text { a.e. } \tag{2.3}
\end{equation*}
$$

By the uniqueness theorem for Fourier transforms, we could have defined $\mathcal{C}(f)$ by (2.3), at least for functions f belonging to $L^{p}(\mathbb{R})$ for some $1 \leq p \leq 2$. Analogously, for functions f belonging to $L^{p}(\mathbb{R})$ for some $1<p \leq 2$, we could have defined the harmonic Copson operator $\mathcal{C}^{*}(f)$ as follows (due to (2.2)):

$$
\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t)= \begin{cases}\int_{t}^{\infty}(\widehat{f}(u) / u) d u & \text { for } t>0 \\ -\int_{-\infty}^{t}(\widehat{f}(u) / u) d u & \text { for } t<0\end{cases}
$$

Theorems 1 and 2 were formulated by Bellman [1] with heuristic motivations. Later Golubov [3, Theorems 3 and 4] presented proofs for them in the case of cosine Fourier transform, without recognizing the forms of the Cesàro and Copson operators. Equality (2.1) for $p=1$ was independently proved in [2] by Giang and the present author.

Unfortunately, the proofs of [3, Theorems 3 and 4] are not complete. To be specific, there is a deficiency in the proof of [3, Theorem 3] in case $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$. The reason is that this time

$$
\begin{equation*}
\int_{x}^{\infty} \frac{f(u)}{u} d u \notin L^{1}\left(\mathbb{R}_{+}\right) \quad\left(\in L^{p}\left(\mathbb{R}_{+}\right)\right) \tag{2.4}
\end{equation*}
$$

Therefore, the right-hand side in [3, formula (26)] can be integrated by parts only over a finite interval, say $\left[x_{1}, x_{2}\right]$ with $0<x_{1}<x_{2}<\infty$. As a result, we have

$$
\begin{align*}
\int_{x_{1}}^{x_{2}} f(x) \frac{\sin t x}{x} & d x \tag{2.5}\\
= & {\left[-\sin t x \int_{x}^{\infty} \frac{f(u)}{u} d u\right]_{x=x_{1}}^{x_{2}}+t \int_{x_{1}}^{x_{2}} \cos t x d x \int_{x}^{\infty} \frac{f(u)}{u} d u }
\end{align*}
$$

In order to obtain [3, formula (27)], we have to let $x_{1} \rightarrow+0$ and $x_{2} \rightarrow \infty$ in (2.5). The integrated-out terms converge to 0 at this passage. The problem is
that we cannot apply Lebesgue's dominated convergence theorem as $x_{1} \rightarrow 0$ and $x_{2} \rightarrow \infty$: for the integral on the left-hand side of (2.5) because $f(x) / x \notin$ $L^{1}\left(\mathbb{R}_{+}\right)$, and for the integral on the right-hand side because of (2.4).

A similar problem arises in the proof of [3, Theorem 4] when the integral on the right-hand side of the formula preceding [3, formula (34)] is integrated by parts. Namely, due to the fact that $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$, the integral

$$
\int_{0}^{\infty}\left\{\frac{1}{x} \int_{0}^{x} f(u) d u\right\} \cos t x d x
$$

on the right-hand side of [3, formula (34)] does not exist in the Lebesgue sense. Thus, the integration by parts which would yield [3, formula (34)] is not allowed.

Analysing our proof of (2.1), we see that if $f \in L^{p}(\mathbb{R})$ for some $1 \leq p \leq 2$, then

$$
(\mathcal{C}(f))^{\wedge}(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(u) \frac{1-e^{-i t u}}{i t u} d u \quad \text { a.e. }
$$

(see (3.10) below). This can be rewritten in the following form:

$$
\begin{align*}
\sqrt{2 \pi}(\mathcal{C}(f))^{\wedge}(t) & =\int_{\mathbb{R}} f(u)\left\{\frac{1}{u} \int_{0}^{u} e^{-i t x} d x\right\} d u \tag{2.6}\\
& =\int_{\mathbb{R}} f(u) \mathcal{C}^{*}\left(e^{-i t \cdot}\right)(u) d u \quad \text { a.e. }
\end{align*}
$$

Observe that in this way we have actually extended the validity of (1.1) to the case when $f \in L^{p}(\mathbb{R})$ for some $1 \leq p \leq 2$ and $g(x):=e^{-i t x}$. The left-hand side in (2.6) could be "formally" interpreted as the integral

$$
\int_{\mathbb{R}} \mathcal{C}(f)(x) e^{-i t x} d x
$$

However, this integral exists in the Lebesgue sense only if $p=1$; while if $1<p \leq 2$, it exists only as the limit of $\left((\mathcal{C}(f))_{a}\right)^{\wedge}$ as $a \rightarrow \infty$ in the norm of $L^{p^{*}}(\mathbb{R}):$

$$
(\mathcal{C}(f))^{\wedge}(t):=L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{|x|<a} \mathcal{C}(f)(x) e^{-i t x} d x
$$

Analysing our proof of (2.2), we find that if $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$, then

$$
\begin{aligned}
& \sqrt{2 \pi}\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t) \\
& \quad=\int_{0}^{\infty} f(x) d x \int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u-\int_{-\infty}^{0} f(x) d x \int_{\rightarrow-\infty}^{x} \frac{e^{-i t u}}{u} d u \quad \text { a.e. }
\end{aligned}
$$

(see (4.16)). This can be rewritten in the following form:

$$
\begin{align*}
\sqrt{2 \pi}\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t) & =\int_{0}^{\infty} f(x) \mathcal{C}\left(e^{-i t \cdot}\right)(x) d x+\int_{-\infty}^{0} f(x) \mathcal{C}\left(e^{-i t \cdot}\right)(x) d x \tag{2.7}\\
& =\int_{\mathbb{R}} f(x) \mathcal{C}\left(e^{-i t \cdot}\right)(x) d x \quad \text { a.e. }
\end{align*}
$$

where $\mathcal{C}\left(e^{-i t \cdot}\right)(x)$ should be defined as an improper integral:

$$
\mathcal{C}\left(e^{-i t \cdot}\right)(x):= \begin{cases}\lim _{b \rightarrow \infty} \int_{x}^{b} \frac{e^{-i t u}}{u} d u & \text { for } x>0 \\ \lim _{b \rightarrow-\infty} \int_{b}^{x} \frac{e^{-i t u}}{u} d u & \text { for } x<0\end{cases}
$$

The left-hand side in (2.7) could be "formally" interpreted as the integral

$$
\int_{\mathbb{R}} \mathcal{C}^{*}(f)(x) e^{-i t x} d x
$$

But this integral does not exist generally in the Lebesgue sense; it exists only as the limit of $\left(\left(\mathcal{C}^{*}(f)\right)_{a}\right)^{\wedge}$ as $a \rightarrow \infty$ in the norm of $L^{p^{*}}(\mathbb{R})$:

$$
\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t):=L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty} \int_{|x|<a} \mathcal{C}^{*}(f)(x) e^{-i t x} d x
$$

3. Proof of Theorem 1

Case $p=1$. By definition,

$$
\sqrt{2 \pi}(\mathcal{C}(f))^{\wedge}(t):=\int_{0}^{\infty} e^{-i t x} d x \int_{x}^{\infty} \frac{f(u)}{u} d u-\int_{-\infty}^{0} e^{-i t x} d x \int_{-\infty}^{x} \frac{f(u)}{u} d u
$$

whence by Fubini's theorem,

$$
\begin{align*}
\sqrt{2 \pi}(\mathcal{C}(f))^{\wedge}(t) & =\int_{\mathbb{R}} \frac{f(u)}{u} d u \int_{0}^{u} e^{-i t x} d x \tag{3.1}\\
& =\int_{\mathbb{R}} f(u) \frac{1-e^{-i t u}}{i t u} d u, \quad t \neq 0
\end{align*}
$$

The last integral in (3.1) exists in the Lebesgue sense, since

$$
\begin{equation*}
\left|\frac{1-e^{-i t u}}{i t u}\right|=\left|\frac{2 \sin (t u / 2)}{t u}\right| \quad \text { for all } t \neq 0 \text { and } u \neq 0 \tag{3.2}
\end{equation*}
$$

On the other hand,

$$
t \sqrt{2 \pi} \mathcal{C}^{*}(\widehat{f})(t):=\sqrt{2 \pi} \int_{0}^{t} \widehat{f}(u) d u=\int_{0}^{t} d u \int_{\mathbb{R}} f(x) e^{-i u x} d x
$$

whence again by Fubini's theorem,

$$
\begin{equation*}
\sqrt{2 \pi} \mathcal{C}^{*}(\widehat{f})(t)=\frac{1}{t} \int_{\mathbb{R}} f(x) d x \int_{0}^{t} e^{-i u x} d u=\int_{\mathbb{R}} f(x) \frac{1-e^{-i t x}}{i t x} d x \tag{3.3}
\end{equation*}
$$

Clearly, the rightmost integrals in (3.1) and (3.3) are identical. Thus, we have proved (2.1) for all $t \neq 0$ provided $f \in L^{1}(\mathbb{R})$.

We note that for $t=0$ we clearly have

$$
\sqrt{2 \pi}(\mathcal{C}(f))^{\wedge}(0)=\int_{\mathbb{R}} f(u) d u=\sqrt{2 \pi} \widehat{f}(0)
$$

whence

$$
(\mathcal{C}(f))^{\wedge}(0)=\widehat{f}(0)
$$

Although $\mathcal{C}^{*}(f)(x)$ has not been defined for $x=0$ in general, in the particular case when f is continuous at $x=0$, it is reasonable to set

$$
\mathcal{C}^{*}(f)(0):=\lim _{x \rightarrow 0} \mathcal{C}^{*}(f)(x)=f(0)
$$

Since \widehat{f} is continuous if $f \in L^{1}(\mathbb{R})$, this supplementary definition applies to \widehat{f} in place of f. So, with this agreement, we have (2.1) for all $t \in \mathbb{R}$ provided $f \in L^{1}(\mathbb{R})$.

Case $1<p \leq 2$. Given $a>0$, let $f_{a}:=f \chi_{(-a, a)}$ and $\widehat{f}_{a}:=\left(f_{a}\right)^{\wedge}$, where $a>0$. Since $f_{a} \in L^{1}(\mathbb{R})$, we may apply (2.1) to obtain

$$
\begin{equation*}
\left(\mathcal{C}\left(f_{a}\right)\right)^{\wedge}(t)=\mathcal{C}^{*}\left(\widehat{f}_{a}\right)(t)=\frac{1}{\sqrt{2 \pi}} \int_{|u|<a} \frac{f(u)}{u} d u \int_{0}^{u} e^{-i t x} d x, \quad t \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

First, we claim that

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \mathcal{C}^{*}\left(\widehat{f}_{a}\right)(t)=\mathcal{C}^{*}(\widehat{f})(t) \quad \text { for all } t \neq 0 \tag{3.5}
\end{equation*}
$$

even uniformly in t provided $|t| \geq t_{0}$ for some $t_{0}>0$. Indeed, Hölder's inequality and (1.3) yield

$$
\begin{aligned}
\left|\mathcal{C}^{*}\left(\widehat{f_{a}}\right)(t)-\mathcal{C}^{*}(\widehat{f})(t)\right| & :=\left|\frac{1}{t} \int_{0}^{t}\left\{\widehat{f}_{a}(u)-\widehat{f}(u)\right\} d u\right| \\
& \leq \frac{1}{|t|}\left\|\widehat{f}_{a}-\widehat{f}\right\|_{p^{*}}|t|^{1 / p} \rightarrow 0 \quad \text { as } a \rightarrow \infty
\end{aligned}
$$

Second, we claim that

$$
\begin{equation*}
L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty}\left(\mathcal{C}\left(f_{a}\right)\right)^{\wedge}=(\mathcal{C}(f))^{\wedge} \tag{3.6}
\end{equation*}
$$

To see this, we start with the definition:

$$
\begin{aligned}
(\mathcal{C}(f))^{\wedge} & :=L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty}\left((\mathcal{C}(f))_{a}\right)^{\wedge} \\
& =L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{|x|<a} \mathcal{C}(f)(x) e^{-i \cdot x} d x
\end{aligned}
$$

By Fubini's theorem,

$$
\begin{aligned}
\int_{|x|<a} \mathcal{C}(f)(x) e^{-i t x} d x= & \int_{0}^{a} e^{-i t x} d x \int_{x}^{\infty} \frac{f(u)}{u} d u-\int_{-a}^{0} e^{-i t x} d x \int_{-\infty}^{x} \frac{f(u)}{u} d u \\
= & \int_{0}^{a} \frac{f(u)}{u} d u \int_{0}^{u} e^{-i t x} d x+\int_{a}^{\infty} \frac{f(u)}{u} d u \int_{0}^{a} e^{-i t x} d x \\
& -\int_{-a}^{0} \frac{f(u)}{u} d u \int_{u}^{0} e^{-i t x} d x-\int_{-\infty}^{-a} \frac{f(u)}{u} d u \int_{-a}^{0} e^{-i t x} d x \\
= & \int_{|u|<a} \frac{f(u)}{u} d u \int_{0}^{u} e^{-i t x} d x \\
& +\int_{a}^{\infty} \frac{f(u)}{u} \cdot \frac{1-e^{-i a t}}{i t} d u+\int_{-\infty}^{-a} \frac{f(u)}{u} \cdot \frac{1-e^{i a t}}{i t} d u
\end{aligned}
$$

whence, by (3.4), we conclude that

$$
\begin{align*}
(\mathcal{C}(f))^{\wedge}(t)= & L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty}\left\{\left(\mathcal{C}\left(f_{a}\right)\right)^{\wedge}(t)\right. \tag{3.7}\\
& \left.+\frac{1}{2 \pi}\left[\frac{1-e^{-i a t}}{i t} \int_{a}^{\infty} \frac{f(u)}{u} d u+\frac{1-e^{i a t}}{i t} \int_{-\infty}^{-a} \frac{f(u)}{u} d u\right]\right\}
\end{align*}
$$

Third, we claim that

$$
\begin{equation*}
L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty}\left[\frac{1-e^{-i a t}}{i t} \int_{a}^{\infty} \frac{f(u)}{u} d u+\frac{1-e^{i a t}}{i t} \int_{-\infty}^{-a} \frac{f(u)}{u} d u\right]=0 \tag{3.8}
\end{equation*}
$$

In fact, by Hölder's inequality we have

$$
\begin{aligned}
\int_{|u|>a}\left|\frac{f(u)}{u}\right| d u & \leq\left\{\int_{|u|>a}|f(u)|^{p} d u\right\}^{1 / p}\left\{\int_{|u|>a} u^{-p^{*}} d u\right\}^{1 / p^{*}} \\
& =o(1) O\left(a^{-p^{*}+1}\right)^{1 / p^{*}}=o\left(a^{-1 / p}\right) \quad \text { as } a \rightarrow \infty
\end{aligned}
$$

On the other hand, by (3.2) and Minkowski's inequality, we find

$$
\begin{aligned}
& \left\|\frac{1-e^{-i a t}}{i t} \int_{a}^{\infty} \frac{f(u)}{u} d u\right\|_{L^{p^{*}}(d t)} \\
& \quad \leq \int_{a}^{\infty}\left|\frac{f(u)}{u}\right| d u\left[\left\{\int_{|t| \leq 1 / a} a^{p^{*}} d t\right\}^{1 / p^{*}}+\left\{\int_{|t| \geq 1 / a}\left|\frac{2}{t}\right|^{p^{*}} d t\right\}^{1 / p^{*}}\right] \\
& \quad=o\left(a^{-1 / p}\right) O\left(a^{1 / p}\right)=o(1) \quad \text { as } a \rightarrow \infty
\end{aligned}
$$

The other term in (3.8) can be estimated analogously.
To sum up, (3.7), (3.8) and (3.4) yield

$$
\begin{equation*}
(C(f))^{\wedge}=L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty}\left(\mathcal{C}\left(f_{a}\right)\right)^{\wedge}=L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty} \mathcal{C}^{*}\left(\widehat{f}_{a}\right) \tag{3.9}
\end{equation*}
$$

Comparing (3.5) and (3.9) yields (2.1) to be proved.
As a by-product of (3.1) and (3.9), we have the following representation: If $f \in L^{p}(\mathbb{R})$ for some $1 \leq p \leq 2$, then

$$
\begin{align*}
(\mathcal{C}(f))^{\wedge}(t) & =\lim _{a \rightarrow \infty}\left(\mathcal{C}\left(f_{a}\right)\right)^{\wedge}(t)=\lim _{a \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{|u|<a} f(u) \frac{1-e^{-i t u}}{i t u} d u \tag{3.10}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(u) \frac{1-e^{-i t u}}{i t u} d u \quad \text { a.e. }
\end{align*}
$$

The pointwise limit exists for all $t \neq 0$, since $f \in L^{p}(\mathbb{R})$ and $\left(1-e^{-i t u}\right) /(i t u)$ $\in L^{q}(\mathbb{R})$ for all $1<q \leq \infty$ (cf. (3.2)).

One more remark is appropriate here. Observe that the right-hand side in (2.1) is continuous except possibly at $t=0$ and vanishes at infinity. Consequently, we may change the values of $(\mathcal{C}(f))^{\wedge}(t)$ (originally defined as a limit in the norm of $L^{p^{*}}(\mathbb{R})$) on a set of measure zero so that $(\mathcal{C}(f))^{\wedge}(t)$ becomes continuous except possibly at $t=0$ and vanishes at infinity.
4. Proof of Theorem 2. Consider again the truncated function $f_{a}:=$ $f \chi_{(-a, a)}$, where $a>0$. Then $f_{a} \in L^{1}(\mathbb{R})$ and (1.2) applies. For the sake of definiteness, let $0<t<\infty$ be fixed, and let $b>t$. By Fubini's theorem, we may write

$$
\sqrt{2 \pi} \int_{t}^{b} \frac{\widehat{f}_{a}(u)}{u} d u=\int_{t}^{b} \frac{d u}{u} \int_{|x|<a} f(x) e^{-i u x} d x=\int_{|x|<a} f(x) d x \int_{t}^{b} \frac{e^{-i u x}}{u} d u
$$

First, letting a tend to ∞ gives

$$
\begin{equation*}
\sqrt{2 \pi} \int_{t}^{b} \frac{\widehat{f}(u)}{u} d u=\int_{\mathbb{R}} f(x) d x \int_{t}^{b} \frac{e^{-i u x}}{u} d u \tag{4.1}
\end{equation*}
$$

In fact, by (1.3) we have

$$
\left|\int_{t}^{b} \frac{\widehat{f}_{a}(u)}{u} d u-\int_{t}^{b} \frac{f_{a}(u)}{u} d u\right| \leq\left\|\widehat{f}_{a}-\widehat{f}\right\|_{p^{*}}\left\{\int_{t}^{b} \frac{d u}{u^{p}}\right\}^{1 / p} \rightarrow 0 \quad \text { as } a \rightarrow \infty
$$

On the other hand, introducing the auxiliary function

$$
\begin{equation*}
h_{t, b}(x):=\int_{t}^{b} \frac{e^{-i u x}}{u} d u \tag{4.2}
\end{equation*}
$$

from the second mean value theorem for integrals it follows that

$$
\begin{equation*}
\left|h_{t, b}(x)\right| \leq \frac{4}{t|x|} \quad \text { for all } t>0 \text { and } x \neq 0 \tag{4.3}
\end{equation*}
$$

Making use of (4.3) and Hölder's inequality, we obtain

$$
\begin{aligned}
& \left|\int_{\mathbb{R}} f(x) h_{t, b}(x) d x-\int_{|x|<a} f(x) h_{t, b}(x) d x\right| \\
& \quad \leq \frac{4}{t} \int_{|x|>a}\left|\frac{f(x)}{x}\right| d x \leq \frac{4}{t}\left\{\int_{|x|>a}|f(x)|^{p} d x\right\}^{1 / p}\left\{\int_{|x|>a} \frac{d x}{x^{p^{*}}}\right\}^{1 / p^{*}} \rightarrow 0
\end{aligned}
$$

as $a \rightarrow \infty$. This completes the proof of (4.1).
In what follows, we need another estimate: if $t|x| \leq 1 / e$ and $b|x| \geq 1$, then by (4.3) we have

$$
\begin{equation*}
\left|h_{t, b}(x)\right| \leq \int_{t}^{1 /|x|} \frac{1}{u} d u+\left|h_{1 /|x|, b}(x)\right| \leq \ln \frac{1}{t|x|}+4 \leq 5 \ln \frac{1}{t|x|} \tag{4.4}
\end{equation*}
$$

Set

$$
\begin{equation*}
h_{t}(x):=\lim _{b \rightarrow \infty} h_{t, b}(x)=\int_{t}^{\rightarrow \infty} \frac{e^{-i u x}}{u} d u \tag{4.5}
\end{equation*}
$$

Clearly, $h_{t}(x)$ exists as an improper integral. In fact, if $t<b<b_{1}<\infty$, then by (4.2) and (4.3) we have

$$
\left|h_{t, b}(x)-h_{t, b_{1}}(x)\right|=\left|\int_{b}^{b_{1}} \frac{e^{-i u x}}{u} d u\right| \leq \frac{5}{b|x|} \rightarrow 0 \quad \text { as } b \rightarrow \infty
$$

Furthermore, inequalities (4.3) and (4.4) (the latter for $t|x| \leq 1 / e$) remain valid for h_{t} in place of $h_{t, b}$.

Second, we claim that letting b tend to ∞ in (4.1) gives

$$
\begin{equation*}
\sqrt{2 \pi} \mathcal{C}(\widehat{f})(t):=\sqrt{2 \pi} \int_{t}^{\infty} \frac{\widehat{f}(u)}{u} d u=\int_{\mathbb{R}} f(x) h_{t}(x) d x \tag{4.6}
\end{equation*}
$$

where $h_{t}(x)$ is defined in (4.5). To see the validity of (4.6), first we notice that

$$
\lim _{b \rightarrow \infty} \int_{t}^{b} \frac{\widehat{f}(u)}{u} d u=\int_{t}^{\infty} \frac{\widehat{f}(u)}{u} d u
$$

since $\widehat{f} \in L^{p^{*}}(\mathbb{R})$ and $1 / u \in L^{p}(t, \infty)$; consequently, $\widehat{f}(u) / u \in L^{1}(t, \infty)$ for all $t>0$.

On the other hand, by (4.2)-(4.4) and Hölder's inequality we obtain

$$
\begin{align*}
& \left|\int_{\mathbb{R}} f(x) h_{t}(x) d x-\int_{\mathbb{R}} f(x) h_{t, b}(x) d x\right|=\left|\int_{\mathbb{R}} f(x) h_{b}(x) d x\right| \tag{4.7}\\
& \leq 5 \int_{|x|<1 /(b e)}|f(x)| \ln \frac{1}{b|x|} d x+\frac{4}{b} \int_{|x|>1 /(b e)}\left|\frac{f(x)}{x}\right| d x \\
& \leq \\
& \leq\left\{\int_{|x|<1 /(b e)}|f(x)|^{p} d x\right\}^{1 / p}\left\{\int_{|x|<1 /(b e)}\left(\ln \frac{1}{b|x|}\right)^{p^{*}} d x\right\}^{1 / p^{*}} \\
& \quad+\frac{4}{b}\left\{\int_{|x|>1 /(b e)}|f(x)|^{p} d x\right\}^{1 / p}\left\{\int_{|x|>1 /(b e)} \frac{d x}{|x|^{p^{*}}}\right\}^{1 / p^{*}} \rightarrow 0
\end{align*}
$$

as $b \rightarrow \infty$, since

$$
\begin{aligned}
\left\{\int_{0}^{1 /(b e)}\left(\ln \frac{1}{b x}\right)^{p^{*}} d x\right\}^{1 / p^{*}} & \left.\leq\left\{\int_{0}^{1 /(b e)}\left|\ln \frac{1}{b}\right|^{p^{*}} d x\right\}^{1 / p^{*}}+\int_{0}^{1 / b e}\left(\ln \frac{1}{x}\right)^{p^{*}} d x\right\}^{1 / p^{*}} \\
& \leq \frac{\ln b}{(b e)^{1 / p^{*}}}+\int_{1+\ln b}^{\infty} t^{p^{*}} e^{-t} d t=O(1)
\end{aligned}
$$

as $b \rightarrow \infty$. This completes the justification of (4.6).
Third, returning to (4.5), we may write

$$
h_{t}(x):=\int_{t}^{\rightarrow \infty} \frac{e^{-i u x}}{u} d u=\int_{t x}^{\rightarrow \infty} \frac{e^{-i v}}{v} d v=\int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u \quad \text { for } x>0
$$

(the last integral equals $h_{x}(t)$), and

$$
h_{t}(x):=-\int_{\rightarrow-\infty}^{t x} \frac{e^{-i v}}{v} d v=-\int_{\rightarrow-\infty}^{x} \frac{e^{-i t u}}{u} d u \quad \text { for } x<0
$$

Substituting these into (4.6), we obtain

$$
\begin{equation*}
\sqrt{2 \pi} \mathcal{C}(\widehat{f})(t)=\int_{0}^{\infty} f(x) d x \int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u-\int_{-\infty}^{0} f(x) d x \int_{\rightarrow-\infty}^{x} \frac{e^{-i t u}}{u} d u \tag{4.8}
\end{equation*}
$$

Fourth, we claim that
(4.9) $\sqrt{2 \pi} \mathcal{C}(\widehat{f})(t)=\lim _{a \rightarrow \infty}\left\{\int_{0}^{a} f(x) d x \int_{x}^{a} \frac{e^{-i t u}}{u} d u-\int_{-a}^{0} f(x) d x \int_{-a}^{x} \frac{e^{-i t u}}{u} d u\right\}$.

By (4.8), it is enough to check that

$$
\begin{align*}
\lim _{a \rightarrow \infty} \int_{0}^{a} f(x) d x \int_{x}^{a} \frac{e^{-i t u}}{u} d u & =\int_{0}^{\infty} f(x) d x \int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u \tag{4.10}\\
\lim _{a \rightarrow \infty} \int_{-a}^{0} f(x) d x \int_{-a}^{x} \frac{e^{-i t u}}{u} d u & =\int_{-\infty}^{0} f(x) d x \int_{\rightarrow-\infty}^{x} \frac{e^{-i t u}}{u} d u \tag{4.11}
\end{align*}
$$

We shall present the proof of (4.10) in detail. It will be done in two steps. By (4.3), (4.5) and Hölder's inequality, we obtain

$$
\begin{align*}
&\left|\int_{0}^{a} f(x) d x \int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u-\int_{0}^{a} f(x) d x \int_{x}^{a} \frac{e^{-i t u}}{u} d u\right| \tag{4.12}\\
&=\left|\int_{0}^{a} f(x) d x \int_{a}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u\right| \leq\left|h_{a}(t)\right| \int_{0}^{a}|f(x)| d x \\
& \leq \frac{4}{a t}\left\{\int_{0}^{a}|f(x)|^{p} d x\right\}^{1 / p} a^{1 / p^{*}} \rightarrow 0 \quad \text { as } a \rightarrow \infty
\end{align*}
$$

Again by (4.3), (4.5) and Hölder's inequality, we find that

$$
\begin{align*}
&\left|\int_{0}^{a} f(x) d x \int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u-\int_{0}^{\infty} f(x) d x \int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u\right| \tag{4.13}\\
&=\left|\int_{a}^{\infty} f(x) d x \int_{x}^{\infty} \frac{e^{-i t u}}{u} d u\right|=\left|\int_{a}^{\infty} f(x) h_{x}(t) d x\right| \\
& \leq\left\{\int_{a}^{\infty}|f(x)|^{p} d x\right\}^{1 / p}\left\{\int_{a}^{\infty}\left|h_{x}(t)\right|^{p^{*}} d x\right\}^{1 / p^{*}} \\
&=o(1)\left\{\int_{a}^{\infty}\left(\frac{4}{t x}\right)^{p^{*}} d x\right\}^{1 / p^{*}} \rightarrow 0 \quad \text { as } a \rightarrow \infty
\end{align*}
$$

Clearly, (4.10) follows immediately from (4.12) and (4.13).
The limit relation in (4.11) can be proved in a similar manner.
Fifth, by definition we have

$$
\begin{equation*}
\left(\mathcal{C}^{*}(f)\right)^{\wedge}:=L^{p^{*}}(\mathbb{R})-\lim _{a \rightarrow \infty}\left(\left(\mathcal{C}^{*}(f)\right)_{a}\right)^{\wedge} \tag{4.14}
\end{equation*}
$$

Since $\left(\mathcal{C}^{*}(f)\right)_{a} \in L^{1}(\mathbb{R})$, by (1.2) and Fubini's theorem, we may write

$$
\begin{align*}
\sqrt{2 \pi}\left(\left(\mathcal{C}^{*}(f)\right)_{a}\right)^{\wedge}(t) & :=\int_{|u|<a}\left\{\frac{1}{u} \int_{0}^{u} f(x) d x\right\} e^{-i t u} d u \tag{4.15}\\
& =\int_{0}^{a} f(x) d x \int_{x}^{a} \frac{e^{-i t u}}{u} d u-\int_{-a}^{0} f(x) d x \int_{-a}^{x} \frac{e^{-i t u}}{u} d u
\end{align*}
$$

A comparison of (4.9), (4.14) and (4.15) completes the proof of (2.2) for $t>0$. The proof of (2.2) for $t<0$ can be carried out in an analogous way.

As a by-product of (2.2), (4.5) and (4.8), we obtain the following representation: If $f \in L^{p}(\mathbb{R})$ for some $1<p \leq 2$, then

$$
\begin{align*}
& \sqrt{2 \pi}\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t) \tag{4.16}\\
& \quad=\int_{0}^{\infty} f(x) d x \int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u-\int_{-\infty}^{0} f(x) d x \int_{\rightarrow-\infty}^{x} \frac{e^{-i t u}}{u} d u \quad \text { a.e. }
\end{align*}
$$

Both outer integrals on the right-hand side exist in the Lebesgue sense for all $t \neq 0$, since $f \in L^{p}(\mathbb{R})$ and

$$
\begin{equation*}
\int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u \in L^{q}\left(\mathbb{R}_{+}, d x\right), \quad \int_{\rightarrow-\infty}^{x} \frac{e^{-i t u}}{u} d u \in L^{q}\left(\mathbb{R}_{-}, d x\right) \tag{4.17}
\end{equation*}
$$

for all $t \neq 0$ and $1<q<\infty$. In fact, let $t>0$, say; then by (4.3)-(4.5) we have

$$
\begin{aligned}
\int_{0}^{\infty} d x\left|\int_{x}^{\rightarrow \infty} \frac{e^{-i t u}}{u} d u\right|^{q} & \leq\left\{\int_{0}^{1 /(e t)}+\int_{1 /(e t)}^{\infty}\right\}\left|h_{t}(x)\right|^{q} d x \\
& \leq 5^{q} \int_{0}^{1 /(e t)}\left(\ln \frac{1}{t x}\right)^{q} d x+\frac{4^{q}}{t^{q}} \int_{1 /(e t)}^{\infty} \frac{1}{x^{q}} d x<\infty
\end{aligned}
$$

(cf. the computations in (4.7)). The above claim for $t<0$ as well as the second claim in (4.17) can be proved in a similar way.

We make one more remark. Observe that the right-hand side in (2.2) is continuous except possibly at $t=0$ and vanishes at infinity. Therefore, we may change the values of $\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t)$ (originally defined as a limit in the norm of $L^{p^{*}}(\mathbb{R})$) on a set of measure zero so that $\left(\mathcal{C}^{*}(f)\right)^{\wedge}(t)$ becomes continuous except possibly at $t=0$ and vanishes at infinity.

References

[1] R. Bellman, A note on a theorem of Hardy on Fourier constants, Bull. Amer. Math. Soc. 50 (1944), 741-744.
[2] D. V. Giang and F. Móricz, The Cesàro operator is bounded on the Hardy space H^{1}, Acta Sci. Math. (Szeged) 61 (1995), 535-544.
[3] B. I. Golubov, On a theorem of Bellman on Fourier coefficients, Russian Acad. Sci. Sb. Math. 83 (1995), 321-330.
[4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
[5] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
[6] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.
Bolyai Institute
University of Szeged
Aradi Vértanúk Tere 1
6720 Szeged, Hungary
E-mail: moricz@math.u-szeged.hu

> Received November 27, 2000
> Revised version August 27, 2001

[^0]: 2000 Mathematics Subject Classification: Primary 47B38; Secondary 42A38.
 Key words and phrases: harmonic Cesàro and Copson operators, Fourier transform, commuting relations, Hardy's inequalities, representations for Fourier transform.

 This research was partially supported by the Hungarian National Foundation for Scientific Research under Grant \# T 029094.

