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The harmonic Cesàro and Copson operators
on the spaces Lp(R), 1 ≤ p ≤ 2
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Dedicated to Professor Paul R. Halmos on his 85th birthday

Abstract. The harmonic Cesàro operator C is defined for a function f in Lp(R)
for some 1 ≤ p < ∞ by setting C(f)(x) :=

� ∞
x

(f(u)/u) du for x > 0 and C(f)(x) :=

−
� x
−∞(f(u)/u) du for x < 0; the harmonic Copson operator C∗ is defined for a function f

in L1
loc(R) by setting C∗(f)(x) := (1/x)

� x
0
f(u) du for x 6= 0. The notation indicates that

C and C∗ are adjoint operators in a certain sense.
We present rigorous proofs of the following two commuting relations:

(i) If f ∈ Lp(R) for some 1 ≤ p ≤ 2, then (C(f))∧(t) = C∗(f̂ )(t) a.e., where f̂ denotes
the Fourier transform of f .

(ii) If f ∈ Lp(R) for some 1 < p ≤ 2, then (C∗(f))∧(t) = C(f̂ )(t) a.e.

As a by-product of our proofs, we obtain representations of (C(f))∧(t) and (C∗(f))∧(t)
in terms of Lebesgue integrals in case f belongs to Lp(R) for some 1 < p ≤ 2. These
representations are valid for almost every t and may be useful in other contexts.

1. Definitions. First, we recall that the harmonic Cesàro operator C is
defined for a function f in Lp(R) for some 1 ≤ p <∞ by setting

C(f)(x) :=
{ � ∞

x
(f(u)/u) du for x > 0,

−
� x
−∞(f(u)/u) du for x < 0;

the harmonic Copson operator C∗ is defined for a function f in L1
loc(R) by

setting

C∗(f)(x) :=
1
x

x�

0

f(u) du for x 6= 0.
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268 F. Móricz

The notation C∗ (as the adjoint operator of C) is justified by the fact that if
f ∈ Lp(R) for some 1 ≤ p <∞ and g ∈ Lp∗(R), where 1/p+ 1/p∗ = 1, then

(1.1)
�

R
C(f)(x)g(x) dx =

�

R
f(x)C∗(g)(x) dx.

See, for example, Golubov [3, p. 329] for the case when f and g are defined
on R+.

The integrals on both sides of (1.1) exist in the Lebesgue sense. Indeed,
it follows from the well known inequalities of Hardy [4, Theorems 327 and
328] that if f ∈ Lp(R) for some p, then C(f) ∈ Lp(R) in case 1 ≤ p < ∞,
and C∗(f) ∈ Lp(R) in case 1 < p ≤ ∞. More exactly, we have

‖C‖p := sup
‖f‖p≤1

‖C(f)‖p = p and ‖C∗‖p = p∗,

where

‖f‖p :=
{ �

R
|f(x)|p dx

}1/p
for 1 ≤ p <∞,

‖f‖∞ := ess sup{|f(x)| : x ∈ R}.
Second, we remind the reader that the Fourier transform of a function

f in L1(R) is defined by

(1.2) f̂(t) :=
1√
2π

�

R
f(x)e−itx dx, t ∈ R.

It is well known that f̂ is continuous on R and, by the Riemann–Lebesgue
lemma, f̂(t) vanishes as |t| → ∞. In case f ∈ Lp(R) for some 1 < p ≤ 2, the
Fourier transform of f is defined in terms of a limit in the norm of Lp

∗
(R):

f̂ := Lp
∗
(R)- lim

a→∞
f̂a, where fa := fχ(−a,a), f̂a := (fa)∧

and χ(−a,a) denotes the characteristic function of the interval (−a, a). (See
e.g. [6, Vol. 2, p. 254].) That is, f̂ ∈ Lp∗(R) and

(1.3) lim
a→∞

‖f̂a − f̂‖p∗ = 0.

We note that if f ∈ Lp(R) for some 1 < p ≤ 2, then the existence of f̂(t)
is guaranteed only at almost every t. In particular, this time f̂ is no longer
continuous on R or vanishes at infinity (unlike the case when f ∈ L1(R)).

In case f ∈ Lp(R) for some 2 < p ≤ ∞, the Fourier transform of f
cannot be defined as an ordinary function in any reasonable way either by
making a passage to the limit in the norm of Lp

∗
(R), or by using any linear

method of summation. (See e.g. [6, Vol. 2, p. 258].) However, this time f̂
can be defined as a tempered distribution. (See e.g. [5, pp. 19–30].) But we
are not concerned with distributions in this paper.
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2. Interrelations with Fourier transform. We prove the following
two commuting relations.

Theorem 1. If f ∈ Lp(R) for some 1 ≤ p ≤ 2, then

(2.1) (C(f))∧(t) = C∗(f̂ )(t) a.e.

Theorem 2. If f ∈ Lp(R) for some 1 < p ≤ 2, then

(2.2) (C∗(f))∧(t) = C(f̂ )(t) a.e.

Theorem 1 justifies the term “harmonic Cesàro operator” since (2.1) can
be rewritten in the form

(2.3) (C(f))∧(t) =
1
t

t�

0

f̂(u) du a.e.

By the uniqueness theorem for Fourier transforms, we could have defined
C(f) by (2.3), at least for functions f belonging to Lp(R) for some 1 ≤ p ≤ 2.
Analogously, for functions f belonging to Lp(R) for some 1 < p ≤ 2, we could
have defined the harmonic Copson operator C∗(f) as follows (due to (2.2)):

(C∗(f))∧(t) =

{ � ∞
t

(f̂(u)/u) du for t > 0,

−
� t
−∞(f̂(u)/u) du for t < 0.

Theorems 1 and 2 were formulated by Bellman [1] with heuristic moti-
vations. Later Golubov [3, Theorems 3 and 4] presented proofs for them in
the case of cosine Fourier transform, without recognizing the forms of the
Cesàro and Copson operators. Equality (2.1) for p = 1 was independently
proved in [2] by Giang and the present author.

Unfortunately, the proofs of [3, Theorems 3 and 4] are not complete.
To be specific, there is a deficiency in the proof of [3, Theorem 3] in case
f ∈ Lp(R) for some 1 < p ≤ 2. The reason is that this time

(2.4)
∞�

x

f(u)
u

du 6∈ L1(R+) (∈ Lp(R+)).

Therefore, the right-hand side in [3, formula (26)] can be integrated by parts
only over a finite interval, say [x1, x2] with 0 < x1 < x2 < ∞. As a result,
we have

(2.5)
x2�

x1

f(x)
sin tx
x

dx

=
[
− sin tx

∞�

x

f(u)
u

du

]x2

x=x1

+ t

x2�

x1

cos tx dx
∞�

x

f(u)
u

du.

In order to obtain [3, formula (27)], we have to let x1 → +0 and x2 →∞ in
(2.5). The integrated-out terms converge to 0 at this passage. The problem is
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that we cannot apply Lebesgue’s dominated convergence theorem as x1 → 0
and x2 →∞: for the integral on the left-hand side of (2.5) because f(x)/x 6∈
L1(R+), and for the integral on the right-hand side because of (2.4).

A similar problem arises in the proof of [3, Theorem 4] when the integral
on the right-hand side of the formula preceding [3, formula (34)] is integrated
by parts. Namely, due to the fact that f ∈ Lp(R) for some 1 < p ≤ 2, the
integral

∞�

0

{
1
x

x�

0

f(u) du
}

cos tx dx

on the right-hand side of [3, formula (34)] does not exist in the Lebesgue
sense. Thus, the integration by parts which would yield [3, formula (34)] is
not allowed.

Analysing our proof of (2.1), we see that if f ∈Lp(R) for some 1≤p≤2,
then

(C(f))∧(t) =
1√
2π

�

R
f(u)

1− e−itu
itu

du a.e.

(see (3.10) below). This can be rewritten in the following form:

√
2π (C(f))∧(t) =

�

R
f(u)

{
1
u

u�

0

e−itx dx

}
du(2.6)

=
�

R
f(u)C∗(e−it·)(u) du a.e.

Observe that in this way we have actually extended the validity of (1.1)
to the case when f ∈ Lp(R) for some 1 ≤ p ≤ 2 and g(x) := e−itx. The
left-hand side in (2.6) could be “formally” interpreted as the integral�

R
C(f)(x)e−itx dx.

However, this integral exists in the Lebesgue sense only if p = 1; while if
1 < p ≤ 2, it exists only as the limit of ((C(f))a)∧ as a→∞ in the norm of
Lp
∗
(R):

(C(f))∧(t) := Lp
∗
(R)- lim

a→∞
1√
2π

�

|x|<a
C(f)(x)e−itx dx.

Analysing our proof of (2.2), we find that if f ∈Lp(R) for some 1<p≤2,
then
√

2π (C∗(f))∧(t)

=
∞�

0

f(x) dx
→∞�

x

e−itu

u
du−

0�

−∞
f(x) dx

x�

→−∞

e−itu

u
du a.e.
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(see (4.16)). This can be rewritten in the following form:

√
2π (C∗(f))∧(t) =

∞�

0

f(x)C(e−it·)(x) dx+
0�

−∞
f(x)C(e−it·)(x) dx(2.7)

=
�

R
f(x)C(e−it·)(x) dx a.e.,

where C(e−it·)(x) should be defined as an improper integral:

C(e−it·)(x) :=





lim
b→∞

b�

x

e−itu

u
du for x > 0,

lim
b→−∞

x�

b

e−itu

u
du for x < 0.

The left-hand side in (2.7) could be “formally” interpreted as the integral
�

R
C∗(f)(x)e−itx dx.

But this integral does not exist generally in the Lebesgue sense; it exists
only as the limit of ((C∗(f))a)∧ as a→∞ in the norm of Lp

∗
(R):

(C∗(f))∧(t) := Lp
∗
(R)- lim

a→∞

�

|x|<a
C∗(f)(x)e−itx dx.

3. Proof of Theorem 1

Case p = 1. By definition,

√
2π (C(f))∧(t) :=

∞�

0

e−itx dx
∞�

x

f(u)
u

du−
0�

−∞
e−itx dx

x�

−∞

f(u)
u

du,

whence by Fubini’s theorem,

√
2π (C(f))∧(t) =

�

R

f(u)
u

du

u�

0

e−itx dx(3.1)

=
�

R
f(u)

1− e−itu
itu

du, t 6= 0.

The last integral in (3.1) exists in the Lebesgue sense, since

(3.2)
∣∣∣∣
1− e−itu

itu

∣∣∣∣ =
∣∣∣∣
2 sin(tu/2)

tu

∣∣∣∣ for all t 6= 0 and u 6= 0.
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On the other hand,

t
√

2π C∗(f̂ )(t) :=
√

2π
t�

0

f̂(u) du =
t�

0

du

�

R
f(x)e−iux dx,

whence again by Fubini’s theorem,

(3.3)
√

2π C∗(f̂ )(t) =
1
t

�

R
f(x) dx

t�

0

e−iux du =
�

R
f(x)

1− e−itx
itx

dx.

Clearly, the rightmost integrals in (3.1) and (3.3) are identical. Thus, we
have proved (2.1) for all t 6= 0 provided f ∈ L1(R).

We note that for t = 0 we clearly have
√

2π (C(f))∧(0) =
�

R
f(u) du =

√
2π f̂(0),

whence
(C(f))∧(0) = f̂(0).

Although C∗(f)(x) has not been defined for x = 0 in general, in the
particular case when f is continuous at x = 0, it is reasonable to set

C∗(f)(0) := lim
x→0
C∗(f)(x) = f(0).

Since f̂ is continuous if f ∈ L1(R), this supplementary definition applies to
f̂ in place of f . So, with this agreement, we have (2.1) for all t ∈ R provided
f ∈ L1(R).

Case 1 < p ≤ 2. Given a > 0, let fa := fχ(−a,a) and f̂a := (fa)∧, where
a > 0. Since fa ∈ L1(R), we may apply (2.1) to obtain

(3.4) (C(fa))∧(t) = C∗(f̂a)(t) =
1√
2π

�

|u|<a

f(u)
u

du

u�

0

e−itx dx, t ∈ R.

First, we claim that

(3.5) lim
a→∞

C∗(f̂a)(t) = C∗(f̂ )(t) for all t 6= 0,

even uniformly in t provided |t| ≥ t0 for some t0 > 0. Indeed, Hölder’s
inequality and (1.3) yield

|C∗(f̂a)(t)− C∗(f̂ )(t)| :=
∣∣∣∣
1
t

t�

0

{f̂a(u)− f̂(u)} du
∣∣∣∣

≤ 1
|t|‖f̂a − f̂‖p∗ |t|

1/p → 0 as a→∞.

Second, we claim that

(3.6) Lp
∗
(R)- lim

a→∞
(C(fa))∧ = (C(f))∧.
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To see this, we start with the definition:

(C(f))∧ := Lp
∗
(R)- lim

a→∞
((C(f))a)∧

= Lp
∗
(R)- lim

a→∞
1√
2π

�

|x|<a
C(f)(x)e−i·x dx.

By Fubini’s theorem,

�

|x|<a
C(f)(x)e−itx dx =

a�

0

e−itxdx
∞�

x

f(u)
u

du−
0�

−a
e−itx dx

x�

−∞

f(u)
u

du

=
a�

0

f(u)
u

du

u�

0

e−itx dx+
∞�

a

f(u)
u

du

a�

0

e−itx dx

−
0�

−a

f(u)
u

du

0�

u

e−itx dx−
−a�

−∞

f(u)
u

du

0�

−a
e−itx dx

=
�

|u|<a

f(u)
u

du

u�

0

e−itx dx

+
∞�

a

f(u)
u
· 1− e−iat

it
du+

−a�

−∞

f(u)
u
· 1− eiat

it
du,

whence, by (3.4), we conclude that

(C(f))∧(t) = Lp
∗
(R)- lim

a→∞

{
(C(fa))∧(t)(3.7)

+
1

2π

[
1− e−iat

it

∞�

a

f(u)
u

du+
1− eiat
it

−a�

−∞

f(u)
u

du

]}
.

Third, we claim that

(3.8) Lp
∗
(R)- lim

a→∞

[
1− e−iat

it

∞�

a

f(u)
u

du+
1− eiat
it

−a�

−∞

f(u)
u

du

]
= 0.

In fact, by Hölder’s inequality we have
�

|u|>a

∣∣∣∣
f(u)
u

∣∣∣∣ du ≤
{ �

|u|>a
|f(u)|p du

}1/p{ �

|u|>a
u−p

∗
du
}1/p∗

= o(1)O(a−p
∗+1)1/p∗ = o(a−1/p) as a→∞.
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On the other hand, by (3.2) and Minkowski’s inequality, we find
∥∥∥∥

1− e−iat
it

∞�

a

f(u)
u

du

∥∥∥∥
Lp
∗ (dt)

≤
∞�

a

∣∣∣∣
f(u)
u

∣∣∣∣ du
[{ �

|t|≤1/a

ap
∗
dt
}1/p∗

+
{ �

|t|≥1/a

∣∣∣∣
2
t

∣∣∣∣
p∗

dt

}1/p∗]

= o(a−1/p)O(a1/p) = o(1) as a→∞.
The other term in (3.8) can be estimated analogously.

To sum up, (3.7), (3.8) and (3.4) yield

(3.9) (C(f))∧ = Lp
∗
(R)- lim

a→∞
(C(fa))∧ = Lp

∗
(R)- lim

a→∞
C∗(f̂a).

Comparing (3.5) and (3.9) yields (2.1) to be proved.

As a by-product of (3.1) and (3.9), we have the following representation:
If f ∈ Lp(R) for some 1 ≤ p ≤ 2, then

(C(f))∧(t) = lim
a→∞

(C(fa))∧(t) = lim
a→∞

1√
2π

�

|u|<a
f(u)

1− e−itu
itu

du(3.10)

=
1√
2π

�

R
f(u)

1− e−itu
itu

du a.e.

The pointwise limit exists for all t 6= 0, since f ∈ Lp(R) and (1−e−itu)/(itu)
∈ Lq(R) for all 1 < q ≤ ∞ (cf. (3.2)).

One more remark is appropriate here. Observe that the right-hand side
in (2.1) is continuous except possibly at t = 0 and vanishes at infinity. Con-
sequently, we may change the values of (C(f))∧(t) (originally defined as a
limit in the norm of Lp

∗
(R)) on a set of measure zero so that (C(f))∧(t)

becomes continuous except possibly at t = 0 and vanishes at infinity.

4. Proof of Theorem 2. Consider again the truncated function fa :=
fχ(−a,a), where a > 0. Then fa ∈ L1(R) and (1.2) applies. For the sake of
definiteness, let 0 < t <∞ be fixed, and let b > t. By Fubini’s theorem, we
may write

√
2π

b�

t

f̂a(u)
u

du =
b�

t

du

u

�

|x|<a
f(x)e−iux dx =

�

|x|<a
f(x) dx

b�

t

e−iux

u
du.

First, letting a tend to ∞ gives

(4.1)
√

2π
b�

t

f̂(u)
u

du =
�

R
f(x) dx

b�

t

e−iux

u
du.
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In fact, by (1.3) we have
∣∣∣∣
b�

t

f̂a(u)
u

du−
b�

t

fa(u)
u

du

∣∣∣∣ ≤ ‖f̂a − f̂‖p∗
{ b�

t

du

up

}1/p

→ 0 as a→∞.

On the other hand, introducing the auxiliary function

(4.2) ht,b(x) :=
b�

t

e−iux

u
du,

from the second mean value theorem for integrals it follows that

(4.3) |ht,b(x)| ≤ 4
t|x| for all t > 0 and x 6= 0.

Making use of (4.3) and Hölder’s inequality, we obtain
∣∣∣

�

R
f(x)ht,b(x) dx−

�

|x|<a
f(x)ht,b(x) dx

∣∣∣

≤ 4
t

�

|x|>a

∣∣∣∣
f(x)
x

∣∣∣∣ dx ≤
4
t

{ �

|x|>a
|f(x)|p dx

}1/p
{ �

|x|>a

dx

xp∗

}1/p∗

→ 0

as a→∞. This completes the proof of (4.1).
In what follows, we need another estimate: if t|x| ≤ 1/e and b|x| ≥ 1,

then by (4.3) we have

(4.4) |ht,b(x)| ≤
1/|x|�

t

1
u
du+ |h1/|x|,b(x)| ≤ ln

1
t|x| + 4 ≤ 5 ln

1
t|x| .

Set

(4.5) ht(x) := lim
b→∞

ht,b(x) =
→∞�

t

e−iux

u
du.

Clearly, ht(x) exists as an improper integral. In fact, if t < b < b1 < ∞,
then by (4.2) and (4.3) we have

|ht,b(x)− ht,b1(x)| =
∣∣∣∣
b1�

b

e−iux

u
du

∣∣∣∣ ≤
5
b|x| → 0 as b→∞.

Furthermore, inequalities (4.3) and (4.4) (the latter for t|x| ≤ 1/e) remain
valid for ht in place of ht,b.

Second, we claim that letting b tend to ∞ in (4.1) gives

(4.6)
√

2π C(f̂ )(t) :=
√

2π
∞�

t

f̂(u)
u

du =
�

R
f(x)ht(x) dx,
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where ht(x) is defined in (4.5). To see the validity of (4.6), first we notice
that

lim
b→∞

b�

t

f̂(u)
u

du =
∞�

t

f̂(u)
u

du,

since f̂ ∈ Lp∗(R) and 1/u ∈ Lp(t,∞); consequently, f̂(u)/u ∈ L1(t,∞) for
all t > 0.

On the other hand, by (4.2)–(4.4) and Hölder’s inequality we obtain

(4.7)
∣∣∣

�

R
f(x)ht(x) dx−

�

R
f(x)ht,b(x) dx

∣∣∣ =
∣∣∣

�

R
f(x)hb(x)dx

∣∣∣

≤ 5
�

|x|<1/(be)

|f(x)| ln 1
b|x| dx+

4
b

�

|x|>1/(be)

∣∣∣∣
f(x)
x

∣∣∣∣ dx

≤ 5
{ �

|x|<1/(be)

|f(x)|pdx
}1/p

{ �

|x|<1/(be)

(
ln

1
b|x|

)p∗
dx

}1/p∗

+
4
b

{ �

|x|>1/(be)

|f(x)|pdx
}1/p

{ �

|x|>1/(be)

dx

|x|p∗
}1/p∗

→ 0

as b→∞, since
{1/(be)�

0

(
ln

1
bx

)p∗
dx

}1/p∗

≤
{1/(be)�

0

∣∣∣∣ln
1
b

∣∣∣∣
p∗

dx
}1/p∗

+
1/be�

0

(
ln

1
x

)p∗
dx

}1/p∗

≤ ln b
(be)1/p∗

+
∞�

1+ln b

tp
∗
e−t dt = O(1)

as b→∞. This completes the justification of (4.6).
Third, returning to (4.5), we may write

ht(x) :=
→∞�

t

e−iux

u
du =

→∞�

tx

e−iv

v
dv =

→∞�

x

e−itu

u
du for x > 0

(the last integral equals hx(t)), and

ht(x) := −
tx�

→−∞

e−iv

v
dv = −

x�

→−∞

e−itu

u
du for x < 0.

Substituting these into (4.6), we obtain

(4.8)
√

2π C(f̂ )(t) =
∞�

0

f(x) dx
→∞�

x

e−itu

u
du−

0�

−∞
f(x) dx

x�

→−∞

e−itu

u
du.
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Fourth, we claim that

(4.9)
√

2π C(f̂ )(t) = lim
a→∞

{a�

0

f(x) dx
a�

x

e−itu

u
du−

0�

−a
f(x) dx

x�

−a

e−itu

u
du

}
.

By (4.8), it is enough to check that

lim
a→∞

a�

0

f(x) dx
a�

x

e−itu

u
du =

∞�

0

f(x) dx
→∞�

x

e−itu

u
du,(4.10)

lim
a→∞

0�

−a
f(x) dx

x�

−a

e−itu

u
du =

0�

−∞
f(x) dx

x�

→−∞

e−itu

u
du.(4.11)

We shall present the proof of (4.10) in detail. It will be done in two steps.
By (4.3), (4.5) and Hölder’s inequality, we obtain

(4.12)
∣∣∣∣
a�

0

f(x) dx
→∞�

x

e−itu

u
du−

a�

0

f(x)dx
a�

x

e−itu

u
du

∣∣∣∣

=
∣∣∣∣
a�

0

f(x) dx
→∞�

a

e−itu

u
du

∣∣∣∣ ≤ |ha(t)|
a�

0

|f(x)| dx

≤ 4
at

{a�

0

|f(x)|pdx
}1/p

a1/p∗ → 0 as a→∞.

Again by (4.3), (4.5) and Hölder’s inequality, we find that

(4.13)
∣∣∣∣
a�

0

f(x) dx
→∞�

x

e−itu

u
du−

∞�

0

f(x) dx
→∞�

x

e−itu

u
du

∣∣∣∣

=
∣∣∣∣
∞�

a

f(x) dx
→∞�

x

e−itu

u
du

∣∣∣∣ =
∣∣∣
∞�

a

f(x)hx(t) dx
∣∣∣

≤
{∞�

a

|f(x)|p dx
}1/p{∞�

a

|hx(t)|p∗dx
}1/p∗

= o(1)
{∞�

a

(
4
tx

)p∗
dx

}1/p∗

→ 0 as a→∞.

Clearly, (4.10) follows immediately from (4.12) and (4.13).
The limit relation in (4.11) can be proved in a similar manner.
Fifth, by definition we have

(4.14) (C∗(f))∧ := Lp
∗
(R)- lim

a→∞
((C∗(f))a)∧.
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Since (C∗(f))a ∈ L1(R), by (1.2) and Fubini’s theorem, we may write

(4.15)
√

2π ((C∗(f))a)∧(t) :=
�

|u|<a

{
1
u

u�

0

f(x) dx
}
e−itu du

=
a�

0

f(x) dx
a�

x

e−itu

u
du−

0�

−a
f(x) dx

x�

−a

e−itu

u
du.

A comparison of (4.9), (4.14) and (4.15) completes the proof of (2.2) for
t > 0. The proof of (2.2) for t < 0 can be carried out in an analogous way.

As a by-product of (2.2), (4.5) and (4.8), we obtain the following repre-
sentation: If f ∈ Lp(R) for some 1 < p ≤ 2, then

(4.16)
√

2π (C∗(f))∧(t)

=
∞�

0

f(x) dx
→∞�

x

e−itu

u
du−

0�

−∞
f(x) dx

x�

→−∞

e−itu

u
du a.e.

Both outer integrals on the right-hand side exist in the Lebesgue sense for
all t 6= 0, since f ∈ Lp(R) and

(4.17)
→∞�

x

e−itu

u
du ∈ Lq(R+, dx),

x�

→−∞

e−itu

u
du ∈ Lq(R−, dx)

for all t 6= 0 and 1 < q < ∞. In fact, let t > 0, say; then by (4.3)–(4.5) we
have

∞�

0

dx

∣∣∣∣
→∞�

x

e−itu

u
du

∣∣∣∣
q

≤
{1/(et)�

0

+
∞�

1/(et)

}
|ht(x)|q dx

≤ 5q
1/(et)�

0

(
ln

1
tx

)q
dx+

4q

tq

∞�

1/(et)

1
xq
dx <∞

(cf. the computations in (4.7)). The above claim for t < 0 as well as the
second claim in (4.17) can be proved in a similar way.

We make one more remark. Observe that the right-hand side in (2.2)
is continuous except possibly at t = 0 and vanishes at infinity. Therefore,
we may change the values of (C∗(f))∧(t) (originally defined as a limit in
the norm of Lp

∗
(R)) on a set of measure zero so that (C∗(f))∧(t) becomes

continuous except possibly at t = 0 and vanishes at infinity.

References

[1] R. Bellman, A note on a theorem of Hardy on Fourier constants, Bull. Amer. Math.
Soc. 50 (1944), 741–744.
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