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Notes on automorphisms of ultrapowers of II1 factors

by

David Sherman (Charlottesville, VA)

Abstract. In functional analysis, approximative properties of an object become pre-
cise in its ultrapower. We discuss this idea and its consequences for automorphisms of II1
factors. Here are some sample results: (1) an automorphism is approximately inner if and
only if its ultrapower is ℵ0-locally inner; (2) the ultrapower of an outer automorphism is
always outer; (3) for unital ∗-homomorphisms from a separable nuclear C∗-algebra into an
ultrapower of a II1 factor, equality of the induced traces implies unitary equivalence. All
statements are proved using operator-algebraic techniques, but in the last section of the
paper we indicate how the underlying principle is related to theorems of Henson’s positive
bounded logic.

1. Introduction. We start with some comments on the historical record.
The general ultrapower/ultraproduct construction originates in model

theory, with Łoś’s theorem in 1955 ([Ł]) and a wave of logical applications
in the 1960s. Ultrapowers appropriate for functional analysis appeared for-
mally around 1970 in two main flavors: a normed version for structures such
as Banach spaces, and a tracial version for finite von Neumann algebras. It
is well-known that the mathematics underlying the tracial ultrapower con-
struction was written down much earlier in Sakai’s 1962 notes ([Sa1, Section
II.7]), although Sakai does not use ultrapower terminology. But it seems to
be less appreciated that Sakai’s write-up was motivated by a 1954 article of
Wright ([W]). A student of Kaplansky, Wright worked with AW∗-algebras
and lattices, which may explain his paper’s diminished legacy. (Currently its
most recent citation on MathSciNet is from 1974.) Nonetheless, the modern
reader will easily recognize Wright’s descriptions of maximal ideals and the
resulting quotients as the underpinnings of (the AW∗-version of) the tracial
ultrapower. Thus one may justifiably say that the tracial ultrapower is older
than its “classical” set-theoretic cousin.
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Still in functional analysis the role of an ultrapower is simultaneously
analytic and logical.

Pattern. An approximative property of a structure associated
to a normed space corresponds to a precise version of the prop-
erty in an ultrapower. When an ultrapower has an approximative
property, it automatically acquires the precise version.

We do not assert this as a theorem. Aided by appropriate definitions, it
can be supported by metamathematical results, and we give some sampling of
this in Section 4. There are several examples of this pattern in the literature,
of which probably the best-known is that for Banach spaces E and F , the
space E is finitely representable in F if and only if E embeds isometrically
in an ultrapower of F ([HM, St], see also [He] for an analyst-friendly expo-
sition of Banach space ultraproducts). But its implementation is not always
straightforward: given one member of an “approximative/precise property”
pair, it may not be clear what the other is.

The main body of this paper concerns new examples of this pattern,
proved without logical theorems or terminology. Our primary objects are
automorphisms of II1 factors and their tracial ultrapowers. We ask: If an au-
tomorphism has a certain property, what can we say about its ultrapower?
And what can we say about automorphisms of ultrapower algebras in gen-
eral? We will return to discussion of “approximative vs. precise” at the end
of this introduction; here let us mention that one of the precise properties
involves local innerness, which was introduced recently in [S1]. We also note
that two of our results improve on conclusions of Haagerup and Størmer—but
they had different motivations and proved only what they needed in the con-
text of their long article [HS2]. We start by reviewing the main constructions
and terminology.

Throughout, M and N will be von Neumann algebras. We always as-
sumeM to be a II1 factor, but there are no cardinality assumptions unless
explicitly stated. Any II1 factor has a unique tracial state which we denote
by τ , avoiding subscripts when context makes the ambient algebra clear.
The L2 norm on a II1 factor is ‖x‖2 =

√
τ(x∗x), and it induces the strong

topology on bounded subsets. We write U(N ) for the unitary group of N .
Let ω be a free ultrafilter on N, which one may choose to think of as an

element of βN \ N. Set Iω ⊂ `∞(M) to be the two-sided ideal of sequences
(xj) with ‖xj‖2 → 0 as j → ω. Then Iω is a maximal ideal of `∞(M), and
the quotient (`∞(M)/Iω) , Mω is a II1 factor. (See [HL, Theorem 4.1]
for an elegant proof that Mω is a von Neumann algebra. It follows easily
from the definition of an ultrafilter that any two projections inMω are com-
parable, making it a factor.) We call Mω a tracial ultrapower of M. It is
big—even its maximal abelian ∗-subalgebras fail to be countably-generated
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([P1, Proposition 4.3]). Elements ofMω will be denoted either by a capital
letter, e.g. X, or by a sequence (xj) ∈ `∞(M) representing the coset, fol-
lowing convention by omitting “+ Iω.” For any self-adjoint element, positive
element, projection, or unitary inMω, we can and always do choose a repre-
senting sequence in which all terms have this same property. (This has been
proved in many places—see [HL, Theorem 4.10] for a very general result.)
We also identify M with the subalgebra of constant sequences. Interest in
Mω has largely focused on the relative commutantM′ ∩Mω, which is the
algebra of ω-central sequences. See, for instance, the celebrated papers of
McDuff ([McD]) and Connes ([C2]). Ge and Hadwin showed ([GH, Theorem
3.2]) that ifM is countably-generated and one assumes the continuum hy-
pothesis, then the inclusion M ⊂ Mω is independent (up to isomorphism)
of the choice of ω.

There are many variations of this. Sakai actually showed that the quo-
tient of a finite von Neumann algebra by a maximal ideal is a finite factor, so
one may construct ultrapowers over larger index sets. One may also replace
`∞(M) by a direct sum of arbitrary finite factors {Mj}, in which case the
quotient by a maximal ideal is called a tracial ultraproduct of the {Mj}.
When N is not finite, one may still define Iω as the bounded sequences
that go to zero ∗-strongly as n → ω, but this is not an ideal of `∞(N ).
Appropriate generalizations of M′ ∩Mω and Mω that are valid for arbi-
trary N were first defined by Connes ([C1, Section II]) and Ocneanu ([O,
Section 5.1]), respectively. In the category of C∗-algebras, ultrapowers are
defined essentially as they are for Banach spaces: change Iω to the closed
ideal of sequences that converge to 0 in norm as n→ ω. And finally, there is
the model-theoretic ultrapower, in which Iω is the algebraic ideal in `∞(M)
consisting of the sequences that are 0 in a neighborhood of ω. We have listed
all these constructions mostly to remind the reader what we are not doing.

Now we turn to automorphisms. Here are some ways in which an auto-
morphism θ of a II1 factor can be “close to inner.”

• We say θ is pointwise inner if, on any self-adjoint element, it agrees
with some inner automorphism.
• We say θ is locally inner if, on any element, it agrees with some inner

automorphism. More generally, for a cardinal κ we say that θ is κ-
locally inner if, on any set of ≤ κ elements, it agrees with some inner
automorphism.
• We say θ is approximately inner if, for any finite set {xk} and ε > 0,

there is a unitary u with

max
k
‖θ(xk)− uxku∗‖2 < ε.

We should immediately remark that the “real” definition of pointwise
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innerness, due to Haagerup and Størmer ([HS1, Definition 12.3]) and appli-
cable to any von Neumann algebra, is that for any normal state ϕ, there is a
unitary u with ϕ = ϕ ◦Ad(u). Thus it is a predual version of local innerness
(although it came first, and it uses only the positive part of the predual). In
a II1 factor, this is equivalent to the definition above ([HS2, Lemma 2.2]),
which may be thought of as “1/2-local innerness.” Now if κ is the minimal
cardinality of a generating set, and κ > κ′ > κ′′ ≥ 1, then

inner ⇔ κ-locally inner ⇒ κ′-locally inner(1.1)
⇒ κ′′-locally inner ⇒ locally inner ⇒ pointwise inner.

Somewhat surprisingly, in a countably-generated II1 factor these distinc-
tions are meaningless: pointwise innerness already implies innerness ([HS1,
Proposition 12.5]). But for general II1 factors, none of the one-way impli-
cations in (1.1) can be reversed ([S3, Proposition 2.2, Theorem 2.5, and
Section 4.2]), except that we have no examples to distinguish the classes of
κ-locally inner automorphisms, 1 ≤ κ ≤ ℵ0. They are all the same if every
countably-generated von Neumann algebra is singly-generated, which is one
formulation of the famous generator problem ([S4, Theorem 3.4]).

Approximate innerness in a II1 factorM says that θ belongs to the clo-
sure of the inner automorphisms in the point-strong topology. Recall that
Murray and von Neumann defined a II1 factorM to have property Γ if for
any ε > 0 and finite set {xj} ⊂ M, there is a unitary u with τ(u) = 0 and
maxj ‖uxj − xju‖2 < ε ([MvN, Definition 6.1.1]). Property Γ is approxima-
tive; we discuss it further in Example 4.2. It is mentioned here because for
countably-generated M, the inner automorphisms are point-strong closed
(and thus approximately inner implies inner) if and only ifM does not have
Γ ([Sa2], [C1, Section III]). Examples: free group factors do not have Γ,
while the hyperfinite factor, which we denote throughout the paper as R,
does. Approximate innerness is evidently implied by ℵ0-local innerness, so an
affirmative answer to the generator problem would mean that approximate
innerness is implied by local innerness.

Here are our main results. Some of the terms are not explicitly defined
until later in the text.

(1) An automorphism of a II1 factor is approximately inner if and only
if the ultrapower of the automorphism is ℵ0-locally inner (Theorem
2.1). Also, when an automorphism of an ultrapower is approximately
inner, it is already ℵ0-locally inner (Corollary 3.2).

(2) The ultrapower of an outer automorphism is always outer (Theorem
2.5).

(3) When two unital ∗-homomorphisms from a separable C∗-algebra to
an ultrapower are weakly approximately unitarily equivalent, they
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are already unitarily equivalent (Theorem 3.1). If in addition the C∗-
algebra is nuclear, unitary equivalence follows merely from equality
of the induced traces (Corollary 3.4).

(4) Any automorphism of an ultrapower is pointwise inner, but it need
not be locally inner (Corollary 3.6(2)).

Now we return to “approximative vs. precise,” immediately replacing
these terms with a more accurate one.

Terminology. Let P and P̂ be properties that are meaningful in some
class of normed space structures (Banach spaces, tracial von Neumann alge-
bras with automorphism, etc.), and suppose that a structure has P if and
only if any of its ultrapowers (based on a free ultrafilter of N) has P̂ . Then
we say that P is local and call it the localization of P̂ or simply “local P̂ .”

We hesitate to call this a definition, as we have not defined “normed space
structures” either in general or in the specific cases of interest. In any event
this terminology is only used to talk about the results in Sections 2 and 3,
not to state or prove them.

Localization is a well-known phenomenon in Banach space theory. We
summarize some of its main properties, borrowing from the elegant discussion
in Henson’s article [H].

• Not all properties are local or have localizations. It turns out that a
property is local if and only if the class of spaces having it is closed
under isometry, ultrapower, and ultraroot ([H, p. 127]). (An ultraroot of
a Banach space X is any Banach space having an ultrapower isometric
to X.)
• The properties P and P̂ are equivalent in ultrapowers. This follows

from the fact that X and XU have isomorphic ultrapowers ([H, Corol-
lary 1.11 and Theorem 1.13]). For if (XU )V ' XV , then XU has P̂
⇔ X has P⇔XV' (XU )V has P̂⇔XU has P . As a consequence, for a
local property P we can always make the uninteresting choice P̂ =P .
• The property P̂ need not be either strictly stronger or strictly weaker

than P . However, if P is axiomatizable—which amounts to being lo-
cal and closed under ultraproduct—then there is a certain canonical
choice for P̂ which is at least as strong as P ([H, Theorems 1.9 and
1.20]). Loosely speaking, axiomatizable properties assert existence, as
opposed to nonexistence, of approximate solutions. (See Section 4: ax-
iomatizable properties can be expressed as approximate satisfaction of
a set of positive bounded sentences, and the canonical strengthening is
the switch from approximate satisfaction to satisfaction, as in (4.1).)
• This analysis would not change if we used any countably incomplete

ultrafilter. (An ultrafilter is countably incomplete if it has a countable
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collection of members with empty intersection.) But the pattern would
never be realized in a nontrivial way if we allowed all ultrafilters, as
any model is an ultrapower of itself. See [GH, Section 6] for more on
the distinct behavior of ultrapowers based on ultrafilters that are not
countably incomplete.

Henson approaches this topic via positive bounded logic, a version of
model theory that interacts well with the ultraproducts of functional analy-
sis. At this writing it is a topic of current interest to apply positive bounded
logic, or one of its equivalents, to structures like the ones considered in this
paper. We give some indication of the payoffs in Section 4.

With the terminology in place, the four main results enumerated above
are reflected in Table 1. The second and fourth rows should be read right-
to-left to match the sense of the corresponding statements.

Table 1. Properties of models, with corresponding properties of their
ultrapowers, in the context of this paper

P (“approximative”) bP (“precise”)
approximate innerness ℵ0-local innerness

innerness innerness
weak approximate unitary equivalence unitary equivalence

“approximate pointwise innerness” (universal) pointwise innerness

2. Relations between an automorphism and its ultrapower. A
family {θj} ⊂ Aut(M) determines an automorphism Πθj of `∞(M) that
descends to a well-defined automorphism ofMω,

(θj) : (xj) 7→ (θj(xj)).

This automorphism is called an ultraproduct of the {θj}, and one can only
recover the representing sequence (θj) up to an obvious equivalence relation.
(The term “liftable,” which would seem appropriate here, has a different es-
tablished meaning for automorphisms of ultrapowers ([O, Section 5.2]).) It is
natural to wonder whether every automorphism ofMω is such an ultraprod-
uct. We will show elsewhere, in joint work with Ilijas Farah, that sometimes
the answer is negative. (The first version of this result was proved in unpub-
lished work of Farah and Nik Weaver.)

In any case, the subgroup {(θj) | {θj} ⊂ Aut(M)} < Aut(Mω) itself
contains two distinguished subgroups: those for which each θj is some fixed θ
(in which case we denote the ultrapower automorphism by θω), and those for
which each θj is inner. The latter is nothing but the inner automorphisms
ofMω. We determine the intersection of these two subgroups in Theorem 2.5
below.
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For countably-generated factors, the approximate innerness of θ amounts
to the fact that θω agrees with an inner automorphism of Mω on the sub-
algebra M. This is well-known, but here we break up the logic in order to
emphasize the roles of cardinality and local innerness.

Theorem 2.1. For an automorphism θ of a II1 factor M, these condi-
tions are equivalent :

(1) θ is approximately inner ;
(2) θω is ℵ0-locally inner ;
(3) θω is approximately inner.

The following condition implies the previous ones and is equivalent to them
ifM is countably-generated , but not in general :

(4) θω agrees with an inner automorphism ofMω onM.

Proof. (1)⇒(2). Given a countable family {Xn} = {(xnj )}, use the ap-
proximate innerness of θ to find unitaries uj such that

‖θ(xnj )− ujxnj u∗j‖2 ≤ 2−j , ∀n ≤ j.
Then for each n,

Ad((uj))(Xn) = (ujxnj u
∗
j ) = (θ(xnj )) = θω(Xn).

(3)⇒(1). Given ε > 0 and a finite set {xn} ⊂ M ⊂Mω, by the approx-
imate innerness of θω we can find U = (uj) ∈ U(Mω) such that

ε

2
≥ max

n
‖θω((xn))− U(xn)U∗‖2 = max

n
lim
j→ω
‖θ(xn)− ujxnu∗j‖2.

Thus there must be some index j0 with

max
n
‖θ(xn)− uj0xnu∗j0‖2 < ε,

as required.
(4)⇒(1). Given ε > 0 and a finite set {xn} ⊂ M ⊂Mω, use the hypoth-

esis to find (uj) ∈ U(Mω) such that θω agrees with Ad((uj)) on all (xn).
This means

0 = lim
j→ω
‖θ(xn)− ujxnu∗j‖2, ∀n.

Again there must be some index j0 with

max
n
‖θ(xn)− uj0xnu∗j0‖2 < ε,

as required.
The implications (2)⇒(3) and (under the hypothesis thatM is countably-

generated) (2)⇒(4) are trivial.
In [S3, Theorem 2.5], we displayed an outer ℵ0-locally inner automor-

phism θ of a II1 factorM that was constructed as a union
⋃
α<ℵ1Mα. This
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satisfies (1), since ℵ0-local innerness implies approximate innerness. We indi-
cate why (4) fails, referring the reader to [S3] for supporting details. It is re-
quired to show that an automorphism of the form Ad((uj)) cannot agree with
θω on all ofM⊂Mω. Let each uj ∈Mαj , and set β = (supαj)+1 < ℵ1. By
construction,Mβ = M2 ⊗M(supαj); let x ∈ Mβ be the element

(
1 0
0 0

)
⊗ 1.

Again by construction, θ(x) 6= x. Thus, viewing x ∈M ⊂Mω, we have

Ad((uj))((x)) = (ujxu∗j ) = (x) 6= (θ(x)) = θω((x)).

Remark 2.2.

(a) The equivalence of (2) and (3) in fact holds for all automorphisms of
Mω (Corollary 3.2).

(b) Haagerup and Størmer showed that if θω is inner, then θ is approxi-
mately inner ([HS2, Theorem 6.2]). Theorem 2.1 gets the same con-
clusion from a weaker hypothesis, approximate innerness of θω. This
suggests that their stronger hypothesis should have a stronger con-
clusion, and indeed it does (Theorem 2.5).

(c) Since the implication (1)⇒(2) is based on an ultrafilter of N, one
might hope that for a suitable ultrafilter of a larger index set, the
ultrapower of an approximately inner automorphism may actually
be inner. This does not happen (Theorem 2.5).

Some parts of the next lemma are probably known, but we lack a refer-
ence. We thank Narutaka Ozawa for suggesting the use of Dixmier averaging,
which simplified our original argument.

We denote the norm in B(M, L2(M)) by ‖ · ‖∞,2.

Lemma 2.3. LetM be a II1 factor.

(1) For any u ∈ U(M) we have

‖u− τ(u)1‖2 ≤ ‖Ad(u)− id‖∞,2.

(2) Consider the following groups equipped with metrics: (inner automor-
phisms of M, ‖ · ‖∞,2) and (U(M)/T = projective unitary group of
M, quotient of the L2 metric). With u denoting the coset of u in
U(M)/T, the group isomorphism u ↔ Ad(u) is Lipschitz continu-
ous.

(3) The inner automorphisms ofM are complete in ‖ · ‖∞,2.

Proof. Given u ∈ U(M), Dixmier’s averaging theorem ([D, Théorème
12]) says that conv{vuv∗ | v ∈ U(M)}‖ ‖∩C = {τ(u)1}. So for any ε > 0 we
can find unitaries v1, . . . , vn and positive scalars c1, . . . , cn with

∑
cn = 1

such that ‖
∑
cjvjuv

∗
j − τ(u)1‖2 < ε. (We only require the L2 estimate.)
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Then we have the L2 approximations

τ(u)1
ε
≈
∑

cjvjuv
∗
j =

∑
cjvj(uv∗ju

∗)u
‖Ad(u)−id‖∞,2

≈
∑

cjvj(v∗j )u = u.

Since this is true for any ε, we obtain (1).
The function dist(u, v)=min|λ|=1 ‖u−λv‖2 defines a metric on U(M)/T

(essentially because T is a closed subgroup whose multiplicative actions on
U(M) are isometric). We compute

[dist(u, v)]2 = min
|λ|=1

‖u− λv‖22 = min
|λ|=1

‖uv∗ − λ‖22(2.1)

= min
|λ|=1

‖(uv∗ − τ(uv∗)) + (τ(uv∗)− λ)‖22

= ‖uv∗ − τ(uv∗)‖22 + min
|λ|=1

‖τ(uv∗)− λ‖22

= ‖uv∗ − τ(uv∗)‖22 + (1− |τ(uv∗)|)2

≤ ‖uv∗ − τ(uv∗)‖22 + (1− |τ(uv∗)|2) = 2‖uv∗ − τ(uv∗)‖22
≤ 2‖Ad(uv∗)− id‖2∞,2 = 2‖Ad(u)−Ad(v)‖2∞,2.

The fourth step is justified because uv∗−τ(uv∗) is orthogonal to the scalars,
and the second-to-last step is (1). By an easy use of the triangle inequality,
‖Ad(u)−Ad(v)‖∞,2 ≤ 2‖u− v‖2, and this remains true if v is multiplied by
any unit scalar:

(2.2) ‖Ad(u)−Ad(v)‖∞,2 ≤ min
|λ|=1

2‖u− λv‖2 = 2 dist(u, v).

Lipschitz continuity of the group isomorphism in (2) follows from (2.1) and
(2.2).

For (3), it suffices by (2) to show that U(M)/T is complete in the quotient
of the L2 metric. So let {uj} ⊂ U(M)/T be a Cauchy sequence. Choose a
subsequence with dist(ujk , ujk−1

) < 2−k. Multiplying each ujk in turn by an
appropriate unimodular scalar (and still denoting the sequence by {ujk}),
we may obtain ‖ujk − ujk−1

‖2 < 2−k. By L2 completeness of U(M), the
sequence {ujk} converges in L2 to some u ∈ U(M). It is immediate that
{ujk} converges to u in the quotient metric, and the Cauchy sequence {uj}
must converge to u as well. (A general fact, proved in the same way: when a
group is a complete metric space, and a closed subgroup acts isometrically
by right multiplication, then the left coset space is complete in the quotient
metric.)

Remark 2.4. The constant 2 in inequality (2.2) is sharp, and the isomor-
phism in Lemma 2.3(2) is not isometric. This can be verified with unitaries
from a copy of M2 insideM. The inequalities in Lemma 2.3(1) and (2.1) are
probably true with better constants.
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Theorem 2.5. Let θ be an automorphism of the II1 factor M. If θω is
inner , then θ is inner.

Proof. Suppose θω = Ad((uj)). For each j find a contraction xj ∈ M
such that

‖[θ −Ad(uj)](xj)‖2 ≥
1
2
‖θ −Ad(uj)‖∞,2

and compute
0 = ‖θω((xj))−Ad((uj))((xj))‖2 = lim

j→ω
‖[θ −Ad(uj)](xj)‖2

≥ 1
2

lim
j→ω
‖θ −Ad(uj)‖∞,2.

Lemma 2.3(3) then implies that θ is inner.
Theorem 2.5 is valid for any ultrafilter, not just ω ∈ (βN \ N), corrobo-

rating Remark 2.2(c).
From Theorems 2.1 and 2.5, we obtain new examples of outer (even ℵ0-)

locally inner automorphisms: θω, for θ outer and approximately inner. As
mentioned earlier, any countably-generated Γ factor admits such θ.

3. Approximate equivalence for maps into ultrapowers. We first
specify some notation. For y in a von Neumann algebra, we write s`(y) for
the left support of y, which is the least projection p with py = y. When the
algebra is represented on a Hilbert space, the left support is nothing but the
range projection.

For unital ∗-homomorphisms π, ρ from a C∗-algebra A to a von Neumann
algebra N , we consider the following four relations:

(1) Unitary equivalence: ∃u ∈ U(N ), (Ad u) ◦ π = ρ.
(2) Approximate unitary equivalence: ∃{uα} ⊂ U(N ), (Ad uα) ◦ π → ρ

in the point-norm topology.
(3) Weak approximate unitary equivalence: ∃{uα} ⊂ U(N ), (Ad uα) ◦ π
→ ρ, and ∃{vα} ⊂ U(N ), (Ad vα) ◦ ρ → π, both in point-weak
topology. (It makes no difference to use the point-strong or point
strong∗, as first pointed out in [Ha1, Section 1].)

(4) Equal rank : for all x ∈ A, s`(π(x)) ∼ s`(ρ(x)).
Obviously, conditions (1) through (3) are progressively weaker. We always

have the implication (2)⇒(4), but (3)⇒(4) holds if and only if N is a direct
sum of σ-finite von Neumann algebras. To see these implications, note that
s`(π(x)) = χC\{0}(π(x∗x)) and apply [S2, Theorem 5.4]. As for the failure
of the second implication when N is not a direct sum of σ-finite algebras,
consider π, ρ : C2 → N such that π(1 ⊕ 0) and ρ(1 ⊕ 0) have equal central
support, while one is ℵ1-homogeneous and the other is ℵ0-homogeneous ([S1,
Theorem 3.5 and Proposition 3.8]).
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There is much left to understand about the partial validity of the con-
verses to these implications. We think of these as generalizations of Voicu-
lescu’s noncommutative Weyl–von Neumann theorem ([V, Theorem 1.5]), as
Hadwin’s beautiful reformulation ([Ha1, Theorem 3.14]) says that (4)⇒(2)
when N = B(H). In general, the implication (4)⇒(3) can fail even for A
separable and N = R ([Ha2, Corollary 3.5]). See [Ha2, DH, S2] for more
discussion.

In case N is a II1 factor, the conditions above can be simplified and
related to other familiar terms. The net {vα} is not needed in (3), as

‖uαπ(x)u∗α − ρ(x)‖2 → 0 ⇔ ‖π(x)− u∗αρ(x)uα‖2 → 0.

Also, (4) is the same as requiring τ ◦π = τ ◦ρ ([DH, Lemma 3]). Viewing an
automorphism as a ∗-homomorphism from N to N , approximate innerness
amounts to being weakly approximately unitarily equivalent to the identity.
And any pair of automorphisms satisfy (4), by uniqueness of the trace. Ac-
tually, the only factors that admit “rank-changing” automorphisms are those
II∞ factors whose fundamental group is nontrivial.

In the rest of this section we focus on N = Mω. The main results are
that (3)⇒(1) for A separable and, by a result of Ding and Hadwin, (4)⇒(1)
if in addition A is nuclear.

Theorem 3.1. Let A be a separable C∗-algebra,M be a II1 factor , and
π, ρ : A →Mω be unital ∗-homomorphisms. If π and ρ are weakly approxi-
mately unitarily equivalent , then they are unitarily equivalent.

Proof. Let {xk} ⊂ A1 be a countable generating set for A, and let
π(xk) = Ak = (akj ), ρ(xk) = Bk = (bkj ). Although nets are unavoidable
in the general definition of weak approximate unitary equivalence, here a
sequence will work. For each n ∈ N find a unitary Un with

max
1≤k≤n

‖UnAkUn∗ −Bk‖2 ≤
1
n
.

It is straightforward to check that Ad(Un) ◦ π → ρ in the point-strong
topology.

Now let Un = (unj ). For k ≤ n we have

lim
j→ω
‖unj akjun∗j − bkj ‖2 ≤

1
n
.

We consider the function
f : U(Mω)→ [0, 2],

W = (wj) 7→
∑
k

2−k‖WAkW ∗ −Bk‖2 = lim
j→ω

∑
k

2−k‖wjakjw∗j − bkj ‖2.

(The interchange of limits is justified by the fact that the functions {(j 7→
2−k‖wjakjw∗j − bkj ‖2)}k are absolutely summable in `∞ = C(βN), so evalu-
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ating their sum at j = ω is the same as summing their individual values at
j = ω.) By construction,

f(Un) =
∑
k

2−k‖UnAkUn∗ −Bk‖2 ≤
n∑
k=1

2−k
1
n

+
∞∑

k=n+1

2−k · 2

≤ 1
n

+ 2−n+1.

So we have for each n,

lim
j→ω

∑
k

2−k‖unj akjun∗j − bkj ‖2 ≤
1
n

+ 2−n+1.

For each j, define vj from among u1
j , u

2
j , . . . , u

j
j so that the quantity in paren-

theses above is minimized. Thus for j ≥ n,∑
k

2−k‖vjakj v∗j − bkj ‖2 ≤
∑
k

2−k‖unj akjun∗j − bkj ‖2.

Taking limits, we conclude that for any n,

lim
j→ω

∑
k

2−k‖vjakj v∗j − bkj ‖2 ≤
1
n

+ 2−n+1.

Thus with V = (vj) ∈Mω, we must have f(V ) = 0. But then V AkV ∗ = Bk

for all k, so that π and ρ are unitarily equivalent.

Corollary 3.2. Let M be a II1 factor. If an automorphism of Mω is
approximately inner , then it is ℵ0-locally inner.

Proof. Let α be an approximately inner automorphism of Mω. Take
a countable family {Xj} ⊂ Mω, and set A = C∗({Xj}). Then the two
representations id, α ◦ id : A → Mω are weakly approximately unitarily
equivalent. By Theorem 3.1 they are actually unitarily equivalent, so that α
agrees with some inner automorphism on all the Xj .

Theorem 3.3 ([DH, Theorem 5] or [Ha2, Theorem 2.1]). Let A be a
nuclear C∗-algebra,M be a II1 factor , and π, ρ : A→M be unital ∗-homo-
morphisms with τ◦π = τ◦ρ. Then π and ρ are weakly approximately unitarily
equivalent.

(The theorem is stated in [DH] with the assumption that M acts on a
separable Hilbert space, but this is only so that disintegration theory may
be applied to a nonfactor.)

Corollary 3.4. Let A be either a separable nuclear C∗-algebra or a
countably-generated hyperfinite finite von Neumann algebra,M be a II1 fac-
tor , and π, ρ : A → Mω be unital (normal , in the von Neumann algebra
case) ∗-homomorphisms with τMω ◦π = τMω ◦ρ. Then π and ρ are unitarily
equivalent.
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Proof. For the C∗-algebra version, combine Theorems 3.3 and 3.1. For
the von Neumann algebra version, just create a weakly dense nuclear C∗-
subalgebra as the norm closure of a weakly dense increasing sequence of
finite-dimensional C∗-subalgebras ([E]).

Remark 3.5. Let N be a finitely-generated von Neumann algebra that
embeds in Rω, and fix a faithful normal trace τN on N . Jung proved in [J]
that N is hyperfinite if and only if all ∗-homomorphisms π : N → Rω
satisfying τRω ◦ π = τN are unitarily equivalent. The forward implication
of Jung’s theorem was also established in [FGL, Theorem 6.1] without the
hypothesis of finite generation. These results contain Corollary 3.4 for the
situationM = R.

Note that the C∗-algebra version of Corollary 3.4 also follows easily from
the von Neumann algebra version, as π(A)

s ' ρ(A)
s
is a hyperfinite von

Neumann algebra to which π and ρ extend (because τ ◦ π = τ ◦ ρ).
Haagerup and Størmer showed in [HS2, Theorem 6.2] that automor-

phisms of Mω of the form θω are always pointwise inner. The first state-
ment of Corollary 3.6 shows that all automorphisms ofMω actually have a
stronger property.

Corollary 3.6. LetM be a II1 factor.

(1) Let A be a separable nuclear C∗-subalgebra ofMω, and α an automor-
phism ofMω. Then α agrees with some inner automorphism on A.

(2) Every automorphism ofMω is pointwise inner.
(3) Let N be a countably-generated hyperfinite von Neumann subalgebra

of Mω, and α an automorphism of Mω. Then α agrees with some
inner automorphism on N .

Proof. For the first part, unitize A if necessary and then note that id, α◦id:
A → Mω satisfy the conditions of Corollary 3.4. The second part is an
immediate consequence of the first. As in the proof of Corollary 3.4, the
third part follows from (also implies) the first.

Remark 3.7. The second statement essentially follows from the proof of
[P2, Lemma 7.1] or [FGL, Lemma 4.2], although there only diffuse abelian
subalgebras are discussed. Note that the statement becomes false if “point-
wise inner” is replaced with “locally inner” ([S3, Proposition 2.2]).

The third statement is false without the hyperfiniteness assumption, as
the ultrapower of a non-approximately inner automorphism ofM fails to be
ℵ0-locally inner (Theorem 2.1). Since countably-generated hyperfinite von
Neumann algebras are actually singly-generated ([S4, Proposition 3.5]), one
may view the asserted property of α as somewhere between pointwise inner-
ness and local innerness. In the taxonomy of (1.1), this is “hyperfinite-local
innerness”, where 1 > “hyperfinite” > 1/2.
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4. A logical conclusion. There are a few different versions of model
theory that are compatible with the ultrapowers of functional analysis. In
this section we give a simplified idea of Henson’s positive bounded logic—see
[HI] for the whole story—then sketch how “approximative/precise” property
pairs can be justified by metamathematical theorems. Tracial von Neumann
algebras have not yet been treated in the published literature as a class
of model structures, although there is current work undertaking to do so
using the so-called “model theory for metric structures” ([BBHU]), which
may be viewed as a generalization of positive bounded logic. See [BHJR]
for the assertion (without proof) that tracial von Neumann algebras are an
axiomatizable class.

As in classical model theory, one starts with a language that is suitable
for describing the functions and relations of the models one is interested in,
e.g., addition, scalar multiplication, and norm functions for Banach spaces.
Syntactically one is limited to the positive bounded formulas: the ones that
can be built out of nonstrict norm inequalities via ∧, ∨, and quantification
over bounded sets—implication and negation are off limits. Given a model
M and a positive bounded sentence (= formula with no free variables) ϕ,
we write M |= ϕ and say that M satisfies ϕ if ϕ is true in M . Now suppose
only that M satisfies all sentences obtained by weakening the constants of ϕ
by arbitrarily small amounts. In this case we write M |=a ϕ and say that M
approximately satisfies ϕ.

Positive bounded logic is a model theory in which approximate satisfac-
tion is used in place of satisfaction. There are analogues of many of the clas-
sical theorems: compactness, Löwenheim–Skolem, Łoś, Keisler–Shelah, etc.
Regarding ultrapowers, one can deduce ([HI, Corollary 9.3 and Proposition
9.26])

(4.1) M |=a ϕ ⇔ Mω |= ϕ ⇔ Mω |=a ϕ.

This is a version of our pattern (but not the whole story).
Below we apply positive bounded logic to revisit two examples based

on II1 factors equipped with the L2 norm. Our discussion is conceptually
accurate but brief, so we do not present the languages explicitly. The second
example is meant to reassure operator algebraists that they have already
been working with approximate satisfaction for a long time.

Example 4.1 (Second proof of Theorem 2.5). In the terminology of the
introduction, we need to show that the localization of innerness is again
innerness.

Working in the class whose models consist of a II1 factor with a single
automorphism, the assertion that (M, θ) is inner can be expressed as
(M, θ) |= ϕ, where ϕ is the positive bounded sentence
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(∃1u)(∀1x)‖θ(x)− uxu∗‖2 ≤ 0.

Here “∃1” means “there exists in the closed ball of radius 1”; “∀1” is similar.
According to (4.1) the localization of innerness is (M, θ) |=a ϕ. This means
that (M, θ) satisfies every sentence of the form

(4.2) (∃1+δ1u)(∀1−δ2x)‖θ(x)− uxu∗‖2 ≤ δ3,
for arbitrarily small δj . The u whose existence is asserted by (4.2) need not
be unitary, but taking scalar x gives uu∗ ≈ 1 in L2, which implies that
there is a unitary near u that will satisfy a slightly worse bound. Then the
sentences (4.2) say that θ is a uniform-L2 limit of inner automorphisms. The
proof is completed by invoking Lemma 2.3(3) as before.

Example 4.2 (Property Γ). LetM be a model for the class of II1 factors,
with language sufficiently rich to allow the positive bounded sentences

ϕn : (∀1x1)(∀1x2) . . . (∀1xn)(∃1u)[
(‖u∗u− 1‖2 ≤ 0) ∧ (|τ(u)| ≤ 0) ∧

( n∧
j=1

‖uxj − xju‖2 ≤ 0
)]
.

The conditionM |= {ϕn}n∈N says that the relative commutant of any finite
set inM contains a unitary with zero trace; equivalently, the relative com-
mutant of any finite set inM is nontrivial. This is clearly impossible ifM is
finitely-generated. In fact, it is still impossible ifM is countably-generated,
asM contains an irreducible hyperfinite (so singly-generated) subfactor ([P1,
Corollary 4.1]).

The condition M |=a {ϕn} says that M has property Γ. (As in the
previous example, one can L2-perturb u to a trace-zero unitary with slightly
worse bounds on the commutators.) By (4.1) this is equivalent to Mω |=a

{ϕn}, i.e.M has Γ if and only ifMω has Γ ([FGL, Corollary 5.2]). Also by
(4.1), it is equivalent to Mω |= {ϕn}, which says that any finite subset of
Mω has nontrivial relative commutant. If M is finitely-generated, a small
argument shows that this in turn is equivalent toM′∩Mω 6= C. Well-known
conclusion (for finitely-generatedM):M has Γ if and only ifM′∩Mω 6= C.

One can and should replace “finite” with “countable” in the last three
sentences. This requires a slightly different approach that appeals to the ℵ1-
saturation ofMω, and the details are omitted. Notice the similarity between
the four conditions in the previous paragraph and those of Theorem 2.1.
Also notice that property Γ is the localization of “countable subsets have
nontrivial relative commutant.”

Actually, there are several places in the literature on operator-algebraic
ultrapowers where a logical approach would be effective, but in few, if any, of
these cases would it be shorter—especially considering the extra machinery
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that must be introduced to the reader. Kirchberg simply proves the version
of ℵ1-saturation that he needs in an Appendix ([K, Lemma A.1 and Remark
A.2]), although he does not name it as such. However, in recent work with
Ilijas Farah and Bradd Hart, the author has used logical methods to obtain
results on ultrapowers that may be (in some sense) inaccessible via analytic
techniques. These will appear at a later date.
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